
CHAPTER IV

DEFINITIONS OF HIGHER K-THEORY

The higher algebraicK-groups of a ring R are defined to be the homotopy groups
Kn(R) = πnK(R) of a certain topological space K(R), which we shall construct in
this chapter. Of course, the space K(R) is rigged so that if n = 0, 1, 2 then πnK(R)
agrees with the groups Kn(R) constructed in chapters II and III.

We shall also define the higher K-theory of a category A in each of the three
settings where K0(A) was defined in chapter II: when A is a symmetric monoidal
category (§4), an exact category (§6) and a Waldhausen category (§8). In each
case we build a “K-theory space” KA and define the group KnA to be its ho-
motopy groups: KnA = πnKA. Of course the group π0KA will agree with the
corresponding group K0A defined in chapter II.

We will show these definitions of KnA coincide whenever they coincide for K0.
For example, the group K0(R) of a ring R was defined in §II.2 as K0 of the cat-
egory P(R) of finitely generated projective R-modules, but to define K0P(R) we
could also regard the category P(R) as being either a symmetric monoidal cate-
gory (II.5.2), an exact category (II.7.1) or a Waldhausen category (II.9.1.3). We
will show that the various constructions give homotopy equivalent spaces KP(R),
and hence the same homotopy groups. Thus the groups Kn(R) = πnKP(R) will
be independent of the construction used.

Many readers will not be interested in the topological details, so we have designed
this chapter to allow “surfing.” Since the most non-technical way to constructK(R)
is to use the “+”-construction, we will do this in §1 below. The short section 2
defines K-theory with finite coefficients, as the homotopy groups of K(R) with
finite coefficients. These have proved to be remarkably useful in describing the
structure of the groups Kn(R), especially as related to étale cohomology. This is
illustrated in chapter VI.

In §3, we summarize the basic facts about the geometric realization BC of a
category C, and the basic connection between category theory and homotopy the-
ory needed for the rest of the constructions. Indeed, the K-theory space KA is
constructed in each setting using the geometric realization BC of some category C,
concocted out of A. For this, we assume only that the reader has a slight familiar-
ity with cell complexes, or CW complexes, which are spaces obtained by successive
attachment of cells, with the weak topology.

Sections 4–9 give the construction of the K-theory spaces. Thus in §4 we have
group completion constructions for a symmetric monoidal category S, such as the
S−1S construction and the connection with the +-construction). It is used in
§5 to construct λ-operations on K(R). Quillen’s Q-construction for abelian and

Typeset by AMS-TEX

1



2 IV. DEFINITIONS OF HIGHER K-THEORY

exact categories is given in §6; in §7 we prove the “+ = Q” theorem, that the
Q-construction and group completion constructions agree for split exact categories
(II.7.1.2). The wS· construction for Waldhausen categories is in §8, along with its
connection to the Q-construction. In §9 we give an alternative construction for
exact categories, due to Gillet and Grayson.

Section 10 gives a construction of the non-connective spectrum for algebraic K-
theory of a ring, whose negative homotopy groups are the negativeK-groups of Bass
developed in chapter III.4. Sections 11 and 12 are devoted to Karoubi-Villamayor
K-theory and the homotopy-invariant version KH of K-theory. We will return to
this topic in chapter V.

§1. The BGL+ definition for Rings

Let R be an associative ring with unit. Recall from chapter III that the infinite
general linear group GL(R) is the union of the groups GLn(R), and that its com-
mutator subgroup is the perfect group E(R) generated by the elementary matrices
eij(r). Moreover the group K1(R) is defined to be the quotient GL(R)/E(R).

In 1969, Quillen proposed defining the higher K-theory of a ring R to be the
homotopy groups of a certain topological space, which he called “BGL(R)+.” Be-
fore describing the elementary properties of Quillen’s construction, and the related
subject of acyclic maps, we present Quillen’s description of BGL(R)+ and define
the groups Kn(R) for n ≥ 1.

For any group G, we can naturally construct a connected topological space BG
whose fundamental group is G, but whose higher homotopy groups are zero. De-
tails of this construction are in §3 below (see 3.1.3). Moreover, the homology of
the topological space BG (with coefficients in a G-module M) coincides with the
algebraic homology of the group G (with coefficients inM); the homology of a space
X with coefficients in a π1(X)-module is defined in [Wh, VI.1–4]. For G = GL(R)
we obtain the space BGL(R), which is central to the following definition.

Definition 1.1. The notation BGL(R)+ will denote any CW complex X which
has a distinguished map BGL(R)→ BGL(R)+ such that

(1) π1BGL(R)
+ ∼= K1(R), and the natural map from GL(R) = π1BGL(R) to

π1BGL(R)
+ is onto with kernel E(R);

(2) H∗(BGL(R);M)
∼=−→ H∗(BGL(R)

+;M) for every K1(R)-module M .

We will sometimes say that X is a model for BGL(R)+.
For n ≥ 1, Kn(R) is defined to be the homotopy group πnBGL(R)

+.

By Theorem 1.5 below, any two models are homotopy equivalent, i.e., the space
BGL(R)+ is uniquely defined up to homotopy. Hence the homotopy groups Kn(R)
of BGL(R)+ are well-defined up to a canonical isomorphism.

By construction, K1(R) agrees with the group K1(R) = GL(R)/E(R) defined
in chapter III. We will see in 1.7.1 below that K2(R) = π2BGL

+(R) agrees with
the group K2(R) defined in chapter III.

Several distinct models for BGL(R)+ are described in 1.9 below. We will con-
struct even more models for BGL(R)+ in the rest of this chapter: the space
P−1P(R) of §3, the space ΩBQP(R) of §5 and the space Ω(isoS·S) arising from
the Waldhausen construction in §8.
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Definition 1.1.1. Write K(R) for the product K0(R) × BGL(R)+. That is,
K(R) is the disjoint union of copies of the connected space BGL(R)+, one for each
element of K0(R). By construction, K0(R) = π0K(R). Moreover, it is clear that
πnK(R) = πnBGL(R)

+ = Kn(R) for n ≥ 1.

Functoriality 1.1.2. EachKn is a functor from rings to abelian groups, while
the topological spaces BGL(R)+ and K(R) are functors from rings to the homo-
topy category of topological spaces. However, without more information about the
models used, the topological maps BGL(R)+ → BGL(R′)+ are only well-defined
up to homotopy.

To see this, note that any ring map R → R′ induces a natural group map
GL(R) → GL(R′), and hence a natural map BGL(R) → BGL(R′). This induces
a map BGL(R)+ → BGL(R′)+, unique up to homotopy, by Theorem 1.5 below.
Thus the group maps Kn(R) → Kn(R

′) are well defined. Since the identity of
R induces the identity on BGL(R)+, only composition remains to be considered.
Given a second map R′ → R′′, the composition BGL(R)→ BGL(R′)→ BGL(R′′)
is induced by R→ R′′ because BGL is natural. By uniqueness in Theorem 1.5, the
composition BGL(R)+ → BGL(R′)+ → BGL(R′′)+ must be homotopy equivalent
to any a priori map BGL(R)+ → BGL(R′′)+.

It is possible to modify the components of K(R) = K0(R) × BGL(R)+ up to
homotopy equivalence in order to form a homotopy-commutative H-space in a
functorial way, using other constructions (see 4.11.1). Because the map K1(R/I)→
K0(R, I) is nontrivial (see III.2.3),K(R) is not the product of theH-spaceBGL(R)+

and the discrete group K0(R) in a natural way.

Transfer maps 1.1.3. If R → S is a ring map such that S ∼= Rd as an R-
module, the isomorphisms Sm ∼= Rmd induce a group map GL(S) → GL(R) and
hence a map BGL(S)+ → BGL(R)+, again unique up to homotopy. On homotopy
groups, the maps Kn(S) → Kn(R) are called transfer maps. We will see another
construction of these maps in 6.3.2 below.

We shall be interested in the homotopy fiber of the map BGL(R)→ BGL(R)+.

Homotopy Fiber 1.2. The maps π∗E → π∗B induced by a continuous map

E
f−→ B can always be made to fit into a long exact sequence, in a natural way.

The homotopy fiber F (f) of a f , relative to a basepoint ∗B of B, is the space of
pairs (e, γ), where e ∈ E and γ : [0, 1]→ B is a path in B starting at the basepoint

γ(0) = ∗B , and ending at γ(1) = f(e). A sequence of based spaces F → E
f−→ B

with F → B constant is called a homotopy fibration sequence if the evident map
F → F (f) (using γ(t) = ∗B) is a homotopy equivalence.

The key property of the homotopy fiber is that (given a basepoint ∗E with
f(∗E) = ∗B) there is a long exact sequence of homotopy groups/pointed sets

· · ·πn+1B
∂−→πnF (f)→ πnE → πnB

∂−→ πn−1F (f)→ · · ·

· · · ∂−→π1F (f)→ π1E → π1B
∂−→ π0F (f)→ π0E → π0B.

When E → B is an H-map of H-spaces, F (f) is also an H-space, and the maps
ending the sequence are product-preserving.
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Acyclic Spaces and Acyclic Maps

The definition of BGL(R)+ fits into the general framework of acyclic maps, which
we now discuss. Our discussion of acyclicity is taken from [HH] and [Berrick].

Definition 1.3 (Acyclic spaces). We call a topological space F acyclic if it

has the homology of a point, that is, if H̃∗(F ;Z) = 0.

Lemma 1.3.1. Let F be an acyclic space. Then F is connected, its fundamental
group G = π1(F ) is a perfect group, and H2(G;Z) = 0 as well.

Proof. The acyclic space F must be connected, as H0(F ) = Z. Because
G/[G,G] = H1(F ;Z) = 0, we have G = [G,G], i.e., G is a perfect group. To

calculate H2(G), observe that the universal covering space F̃ has H1(F̃ ;Z) = 0.
Moreover, the homotopy fiber (1.2) of the canonical map F → BG is homo-

topy equivalent to F̃ ; to see this, consider the long exact sequence of homotopy
groups 1.2. The Serre Spectral Sequence for this homotopy fibration is E2

pq =

Hp(G;Hq(F̃ ;Z))⇒ Hp+q(F ;Z) and the conclusion that H2(G;Z) = 0 follows from
the associated exact sequence of low degree terms:

H2(F ;Z)→ H2(G;Z)
d2−→ H1(F̃ ;Z)

G → H1(F ;Z)→ H1(G;Z). �

Example 1.3.2 (Volodin Spaces). The Volodin space X(R) is an acyclic
subspace of BGL(R), constructed as follows. For each n, let Tn(R) denote the sub-
group of GLn(R) consisting of upper triangular matrices with 1’s on the diagonal.
As n varies, the union of these groups forms a subgroup T (R) of GL(R). Similarly
we may regard the permutation groups Σn as subgroups of GLn(R) by their repre-
sentation as permutation matrices, and their union (the infinite permutation group
Σ∞) is a subgroup of GL(R). For each σ ∈ Σn, let T

σ
n (R) denote the subgroup of

GLn(R) obtained by conjugating Tn(R) by σ. For example, if σ = (n . . . 1) then
Tσn (R) is the subgroup of lower triangular matrices.

Since the classifying spaces BTn(R) and BTn(R)
σ are subspaces of BGLn(R),

and hence of BGL(R), we may form their union over all n and σ: X(R) =⋃
n,σ BTn(R)

σ. The space X(R) is acyclic (see [Su81]). Since X(R) was first
described by Volodin in 1971, it is usually called the Volodin space of R.

The image of the map π1X(R) → π1BGL(R) = GL(R) is the group E(R). To
see this, note that π1(X) is generated by the images of the π1BTn(R)

σ, the image
of the composition π1BT

σ
n (R) → π1(X) → π1BGL(R) = GL(R) is the subgroup

Tσn (R) of E(R), and every generator eij(r) of E(R) is contained in some Tσn (R).

Definition 1.4 (Acyclic maps). Let X and Y be based connected CW com-
plexes. A map f :X → Y is called acyclic if the homotopy fiber F (f) of f is acyclic
(has the homology of a point). This implies that F (f) is connected and π1F (f) is
a perfect group.

From the exact sequence π1F (f) → π1(X) → π1(Y ) → π0F (f) of homotopy
groups/pointed sets, we see that if X → Y is acyclic then the map π1(X)→ π1(Y )
is onto, and its kernel P is a perfect normal subgroup of π1(X).
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Definition 1.4.1. Let P be a perfect normal subgroup of π1(X), where X is a
based connected CW complex. An acyclic map f :X → Y is called a +–construction
on X (relative to P ) if P is the kernel of π1(X)→ π1(Y ).

Example 1.4.2. If X is acyclic, the map X → point is acyclic. By Ex. 1.2, it
is a +-construction.

When Quillen introduced the notion of acyclic maps in 1969, he observed that
both Y and the map f are determined up to homotopy by the subgroup P . This is
the content of the following theorem; its proof uses topological obstruction theory.
Part (1) is proven in Ex. 1.4; an explicit proof may be found in §5 of [Berrick].

Theorem 1.5 (Quillen). Let P be a perfect normal subgroup of π1(X). Then

(1) There is a +–construction f :X → Y relative to P
(2) Let f :X → Y be a +–construction relative to P , and g:X → Z a map such

that P vanishes in π1(Z). Then there is a map h:Y → Z, unique up to
homotopy, such that g = hf .

(3) In particular, if g is another +–construction relative to P , then the map h

in (2) is a homotopy equivalence: h:Y
∼−→ Z.

Remark 1.5.1. Every group G has a unique largest perfect subgroup P , called
the perfect radical of G, and it is a normal subgroup of G; see Ex. 1.5. If no mention
is made to the contrary, the notation X+ will always denote the +–construction
relative to the perfect radical of π1(X).

The first construction along these lines was announced by Quillen in 1969, so
we have adopted Quillen’s term “+–construction” as well as his notation. A good
description of his approach may be found in [HH] or [Berrick].

Lemma 1.6. Let X and Y be connected CW complexes. A map f :X → Y is
acyclic if and only if H∗(X,M) ∼= H∗(Y,M) for every π1(Y )-module M .

Proof. Suppose first that f is acyclic, with homotopy fiber F (f). Since the
map π1F (f) → π1Y is trivial, π1F (f) acts trivially upon M . By the Universal
Coefficient Theorem, Hq(F (f);M) = 0 for q 6= 0 andH0(F (f);M) =M . Therefore
E2
pq = 0 for q 6= 0 in the Serre Spectral Sequence for f :

E2
pq = Hp(Y ;Hq(F (f);M))⇒ Hp+q(X;M).

Hence the spectral sequence collapses to yield Hp(X;M)
∼=−→ Hp(Y ;M) for all p.

Conversely, we suppose first that π1Y = 0 and H∗(X;Z) ∼= H∗(Y ;Z). By the

Comparison Theorem for the Serre Spectral Sequences for F (f) → X
f−→ Y and

∗ → Y
=−→ Y , we have H̃∗(F (f);Z) = 0. Hence F (f) and f are acyclic.

The general case reduces to this by the following trick. Let Ỹ denote the universal
covering space of Y , and X̃ = X×Y Ỹ the corresponding covering space of X. Then
there are natural isomorphisms H∗(Ỹ ;Z) ∼= H∗(Y ;M) and H∗(X̃;Z) ∼= H∗(X;M),
where M = Z[π1(Y )]. The assumption that H∗(X;M) ∼= H∗(Y ;M) implies that

the map f̃ : X̃ → Ỹ induces isomorphisms on integral homology. But π1(Ỹ ) = 0, so

by the special case above the homotopy fiber F (f̃) of f̃ is an acyclic space. But by

path lifting we have F (f̃) ∼= F (f), so F (f) is acyclic. Thus f is an acyclic map. �
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Recall from III.5.4 that every perfect group P has a universal central extension
E → P , and that the kernel of this extension is the abelian group H2(P ;Z).

Proposition 1.7. Let P be a perfect normal subgroup of a group G, with cor-
responding +–construction f :BG→ BG+. If F (f) is the homotopy fiber of f then
π1F (f) is the universal central extension of P , and π2(BG

+) ∼= H2(P ;Z).

Proof. We have an exact sequence π2(BG) → π2(BG
+) → π1F (f) → G →

G/P → 1. But π2(BG) = 0, and π2(BG
+) is in the center of π1F (f) by [Wh,

IV.3.5]. Thus π1F (f) is a central extension of P with kernel π2(BG
+). But F (f)

is acyclic, so π1F (f) is perfect and H2(F ;Z) = 0 by 1.3.1. By the Recognition
Theorem III.5.4, π1F (f) is the universal central extension of P . �

Recall from Theorem III.5.5 that the Steinberg group St(R) is the universal
central extension of the perfect group E(R). Thus we have:

Corollary 1.7.1. The group K2(R) = π2BGL(R)
+ is isomorphic to the group

K2(R) ∼= H2(E(R);Z) of chapter III.

In fact, we will see in Ex. 1.8 and 1.9 that Kn(R) ∼= πn(BE(R)+) for all n ≥ 2,
and Kn(R) ∼= πn(BSt(R)

+) for all n ≥ 3, with K3(R) ∼= H3(St(R);Z).

Corollary 1.7.2. The fundamental group π1X(R) of the Volodin space (1.3.2)
is the Steinberg group St(R).

Construction Techniques

One problem with the +construction approach is the fact that BGL(R)+ is not
a uniquely defined space. It is not hard to see that BGL(R)+ is an H-space (see
Ex. 1.11). Quillen proved that that it is also an infinite loop space, and extends
to an Ω-spectrum K(R). We omit the proof here, because it will follow from the
+ = Q theorem in section 7.

Here is one of the most useful recognition criteria, due to Quillen. The proof is
is an application of obstruction theory, which we omit (but see [Ger72, 1.5].)

Theorem 1.8. The map i : BGL(R) → BGL(R)+ is universal for maps into
H-spaces. That is, for each map f : BGL(R) → H, where H is an H-space,
there is a map g : BGL(R)+ → H so that f = gi, and such that the induced
map πi(BGL(R)

+)→ πi(H) is independent of g.

Remark 1.8.1. If f∗ : H∗(BGL(R),Z) ∼= H∗(H,Z) is an isomorphism, then f
is acyclic and g is a homotopy equivalence: BGL(R)+ ≃ H. This gives another
characterization of BGL(R)+. The proof is indicated in Exercise 1.3.

Constructions 1.9. Here are some ways that BGL(R)+ may be constructed:
(i) Using point-set topology, e.g., by attaching 2-cells and 3-cells to BGL(R). If

we perform this construction over Z and let BGL(R)+ be the pushout of BGL(Z)+

and BGL(R) along BGL(Z), this gives a construction which is functorial in R. This
method is described Ex. 1.4, and in the books [Berrick] and [Rosenberg].

(ii) By the Bousfield-Kan integral completion functor Z∞: we set BGL(R)+ =
Z∞BGL(R). This approach, which is also functorial in R, is used in [Dror] and
[Ger72].
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(iii) “Group completing” the H-space
∐∞
n=0BGLn(R) yields an infinite loop

space whose basepoint component is BGL(R)+. This method will be discussed
more in section 3, and is due to G. Segal [Segal].

(iv) By taking BGL of a free simplicial ring F∗ with an augmentation F0 → R
such that F∗ → R is a homotopy equivalence, as in [Swan]. Swan showed that the
simplicial group GL(F∗) and the simplicial space BGL(F∗) are independent (up to
simplicial homotopy) of the choice of resolution F∗ → R, and that π1BGL(F∗) =
π0GL(F∗) = E(R). The Swan K-theory space ΩKSw(R) is defined to be the
homotopy fiber of BGL(F∗)→ BGL(R), and we set KSw

i (R) = πi−1ΩK
Sw(R) for

i ≥ 1 so that KSw
1 (R) = K1(R) by construction. The space ΩKSw(R) is a model

for the loop space ΩBGL(R)+.
As an application, if F is a free ring (without unit), we may take F∗ to be

the constant simplicial ring, so ΩKSw(F ) is contractible, and KSw
i (F ) = 0 for all

i. Gersten proved in [Ger74] (see V.6.5) that BGL(F )+ is contractible; this was
used by Don Anderson [And72] to prove that the canonical map from GL(R) =
ΩBGL(R) to ΩKSw(R) induces a homotopy equivalence ΩBGL(R)+ → ΩKSw(R).

(v) Volodin’s construction. Let X(R) denote the acyclic Volodin space of Exam-
ple 1.3.2. By Ex. 1.6, the quotient group BGL(R)/X(R) is a model for BGL(R)+.

An excellent survey of these constructions may be found in [Ger72], except for
details on Volodin’s construction, which are in [Su81].

Products

If A and B are rings, any natural isomorphism ϕpq : Ap ⊗ Bq ∼= (A ⊗ B)pq of
A ⊗ B-modules allows us to define a “tensor product” homomorphism GLp(A) ×
GLq(B)→ GLpq(A⊗B). This in turn induces continuous maps ϕp,q : BGLp(A)

+×
BGLq(B)+ → BGLpq(A⊗B)+ → BGL(A⊗B)+. A different choice of ϕ yields a
tensor product homomorphism conjugate to the original, and a new map ϕp,q freely
homotopic to the original. It follows that ϕp,q is compatible up to homotopy with
stabilization in p and q.

Since the target is an H-space (Ex. 1.11), we can define new maps γp,q(a, b) =
ϕp,q(a, b)−ϕp,q(a, ∗)−ϕp,q(∗, b), where ∗ denotes the basepoint. Since γp,q(a, ∗) =
γp,q(∗, b) = ∗, and γp,q is compatible with stabilization in p, q, it induces a map,
well defined up to weak homotopy equivalence

γ : BGL(A)+ ∧BGL(B)+ → BGL(A⊗B)+.

Combining γ with the reduced join πp(X) ⊗ πq(Y ) → πp+q(X ∧ Y ) [Wh, p. 480]
allows us to define a product map :

Kp(A)⊗Kq(B)→ Kp+q(A⊗B).

Loday proved the following result in [Lo76].

Theorem 1.10. (Loday) The product map is natural in A and B, bilinear and
associative, and if A is commutative, the induced product

Kp(A)⊗Kq(A)→ Kp+q(A⊗A)→ Kp+q(A)

is graded-commutative. Moreover, the special case K1(A) ⊗K1(B) → K2(A ⊗ B)
coincides with the product defined in III.5.12.
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Example 1.10.1. (Steinberg symbols) If r1, ..., rn are units of a commutative
ring R, the product of the ri ∈ K1(R) is an element {r1, ..., rn} of Kn(R). These
elements are called Steinberg symbols, since the products {r1, r2} ∈ K2(R) agree
with the Steinberg symbols of III.5.10. If F is a field, the universal property (III.7.1)
of Milnor K-theory implies that there is a ring homomorphism KM

∗ (F )→ K∗(F ).
We will see in Ex. 1.12 that it need not be an injection.

Example 1.10.2. Associated to the unit x of Λ = Z[x, x−1] we choose a map
S1 → BGL(Λ)+, representing [x] ∈ π1BGL(Λ)

+. The pairing γ induces a map
BGL(R)+∧S1 to BGL(R[x, x−1])+. By adjunction, this yields a map BGL(R)+ →
ΩBGL(R[x, x−1])+. A spectrum version of this map is given in Ex. 4.14.

Example 1.10.3. (The K-theory Assembly Map) IfG is any group, the inclusion
G ⊂ Z[G]× = GL(Z[G]) induces a map BG → BGL(Z[G])+. If R is any ring,
the product map BGL(R)+ ∧ BGL(Z[G])+ → BGL(R[G])+ induces a map from
BGL(R)+∧ (BG+) to BGL(R[G])

+, where BG+ denotes the disjoint union of BG
and a basepoint. By Ex. 1.14, there is also a map from K(R)∧ (BG+) to K(R[G]).

Now for any infinite loop space (or spectrum) E, and any pointed space X, the
homotopy groups of the space E ∧ X give the generalized homology of X with
coefficients in E, Hn(BG;E). For E = K(R), Hn(BG;K(R)) is the generalized
homology of BG with coefficients in K(R).

The map Hn(BG;K(R)) = πn

(
BGL(R)+∧BG+

)
→ K(Rn[G]) which we have

just constructed is called the K-theory Assembly Map, and it plays a critical role
in the K-theory of group rings. It is due to Quinn and Loday [Lo76], who observed
that for n = 0 it is just the map K0(R)→ K0(R[G]), while for n = 1 it is the map
K1(R) ⊕ G/[G,G] → K1(R[G]). The higher Whitehead Group Whn(G) is defined
to be πn−1 of the homotopy fiber of the map K(Z) ∧ (BG+) → K(Z[G]). The
above calculations show that Wh0(G) is Wall’s finiteness obstruction (II.2.4), and
the classical Whitehead group Wh1(G) = K1(Z[G])/{±G} of III.1.9.

If G is a torsionfree group, the Isomorphism Conjecture for G states that the
assembly map Hn(BG;K(R)) → Kn(R[G]) should be an isomorphism for any
regular ring R. There is a more general Isomorphism Conjecture for infinite groups
with torsion, due to Farrell-Jones [FJ]; it replacesHn(BG;K(R)) by the equivariant
homology of EvcG, an equivariant version of the universal covering space EG of
BG relative to the class of virtually cyclic subgroups of G.

Relative K-groups

Relative groups 1.11.1. Given a ring homomorphism f : R→ R′, letK(f) be
the homotopy fiber of K(R)→ K(R′), and set Kn(f) = πnK(f). This construction
is designed so that these relative groups fit into a long exact sequence:

· · ·Kn+1(R
′)

∂−→Kn(f)→ Kn(R)→ Kn(R
′)

∂−→ · · ·

· · ·K1(f)→ K1(R)→ K1(R
′)

∂−→K0(f)→ K0(R)→ K0(R
′).

Using the functorial homotopy-commutativeH-space structure onK(R) (see 1.1.2),
it follows that each Kn(f), including K0(f), is an abelian group.
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When R′ = R/I for some ideal I, we write K(R, I) for K(R→ R/I). It is easy
to see (Ex. 1.15) that K0(R, I) and K1(R, I) agree with the relative groups defined
in Ex. II.2.3 and III.2.2, and that the ending of this sequence is the exact sequence
of III.2.3 and III.5.7. Keune and Loday have shown that K2(R, I) agrees with the
relative group defined in III.5.7.

Absolute Excision 1.11.2. A non-unital ring I is said to satisfy absolute

excision for Kn if Kn(Z⊕ I, I)
∼=−→ Kn(R, I) is an isomorphism for every unital ring

R containing I as an ideal; Z⊕ I is the canonical augmented ring (see Ex. I.1.10.)
By II, Ex. 2.3, every I satisfies absolute excision for K0. By III, Remark 2.2.1, I
satisfies absolute excision for K1 if and only if I = I2.

Suslin proved in [Su95] that I satisfies absolute excision for Kn if and only if the

groups TorZ⊕Ii (Z,Z) vanish for i = 1, . . . , n. (Since Tor1(Z,Z) = I/I2, this recovers
the result for K1.) In homological algebra, a non-unital ring I is called H-unital if
every Tori(Z,Z) vanishes; Suslin’s result says that I satisfies absolute excision for
all Kn if and only if I is H-unital.

Together with a result of Suslin and Wodzicki [SuW], this implies that I satisfies
absolute excision for Kn ⊗Q if and only if I ⊗Q satisfies absolute excision for Kn.

Suppose now that I = I2. In this case the commutator subgroup of GL(I) is
perfect (III, Ex. 2.10). By Theorem 1.5 there is a +-construction BGL(I)+ and a
map from BGL(I)+ to the basepoint component of K(R, I). When I is H-unital,
this is a homotopy equivalence; πnBGL(I)

+ ∼= Kn(R, I) for all n ≥ 1. This concrete
version of absolute excision was proven by Suslin and Wodzicki in [SuW, 1.7].

Suspension Rings 1.11.3. Let C(R) be the cone ring of row-and-column finite
matrices over a fixed ring R (Ex. I.1.8); by II.2.1.3, C(R) is flasque, so K(C(R)) is
contractible by Ex. 1.17. The suspension ring S(R) of III, Ex. 1.15 is C(R)/M(R),
where M(R) is the ideal of finite matrices over R. Since M(R) ∼= M(M(R)) and
GL(R) = GL1(M(R)), we have GL(R) ∼= GL(M(R)) and hence BGL(R)+ ∼=
BGL(M(R))+. Since M(R) is H-unital (Ex. 1.20), it satisfies absolute excision
and we have a fibration sequence

K0(R)×BGL(R)+ → BGL(C(R))+ → BGL(S(R))+.

Since the middle term is contractible, this proves that K0(R) × BGL(R)+ ≃
ΩBGL(S(R))+ so that Kn+1S(R) ∼= Kn(R) for all n ≥ 1. (K0S(R) ∼= K−1(R)
by III, Ex. 4.10.) This result was first proven by Gersten and Wagoner.

K-theory of finite fields

Next, we describe Quillen’s construction for the K-theory of finite fields, arising
from his work on the Adams Conjecture [Q70]. Adams had shown that the Adams
operations ψk on topological K-theory (II.4.4) are represented by maps ψk : BU →
BU in the sense that for each X the Adams operations on K̃U(X) are the maps:

K̃U(X) = [X,BU ]
[X,ψk]−−−−→ [X,BU ] = K̃U(X).
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Fix a finite field Fq with q = pν elements. For each n, the Brauer lifting of the
trivial and standard n-dimensional representations of GLn(Fq) are n-dimensional
complex representations, given by homomorphisms 1n, idn : GLn(Fq) → U . Since
BU is an H-space, we can form the difference ρn = B(idn) − B(1n) as a map
BGLn(Fq) → BU . Quillen observed that ρn and ρn+1 are compatible up to ho-
motopy with the inclusion of BGLn(Fq) in BGLn+1(Fq). (See 5.3.1 below.) Hence
there is a map ρ : BGL(Fq)→ BU , well defined up to homotopy. By Theorem 1.8,
ρ induces a map from BGL(Fq)

+ to BU , and hence maps ρ∗ : Kn(Fq)→ πn(BU) =

K̃U(Sn).
We will define operations λk and ψk on K∗(Fq) in 5.3.1 and Ex. 5.2 below, and

show (5.5.2) that ψp is induced by the Frobenius on Fq, so that ψq is the identity
map on Kn(Fq). We will also see in 5.7 and 5.8 below that ρ∗ commutes with the

operations λk and ψk on Kn(Fq) and K̃U(Sn).

Theorem 1.12. (Quillen) The map BGL(Fq)
+ → BU identifies BGL(Fq)

+

with the homotopy fiber of ψq − 1. That is, the following is a homotopy fibration.

BGL(Fq)
+ ρ−→ BU

ψq−1−−−→ BU

On homotopy groups, II.4.4.1 shows that ψq is multiplication by qi on π2iBU =

K̃U(S2i). Using the homotopy sequence 1.2 and 1.12, we immediately deduce:

Corollary 1.13. For every finite field Fq, and n ≥ 1, we have

Kn(Fq) = πnBGL(Fq)
+ ∼=

{
Z/(qi − 1) n = 2i− 1,

0 n even.

Moreover, if Fq ⊂ Fq′ then Kn(Fq) → Kn(Fq′) is an injection, identifying Kn(Fq)
with Kn(Fq′)

G, where G = Gal(Fq′/Fq); the transfer map Kn(Fq′) → Kn(Fq) is
onto (see 1.1.3).

Remark 1.13.1. Clearly all products in the ring K∗(Fq) are trivial. We will see
in section 2 that it is also possible to put a ring structure on the homotopy groups
with mod-ℓ coefficients, Kn(Fq;Z/ℓ) = πn(BGL(Fq);Z/ℓ).

If ℓ | (q− 1), the long exact sequence for homotopy with mod-ℓ coefficients (2.2)
shows that Kn(Fq;Z/ℓ) ∼= Z/ℓ for all n ≥ 0. The choice of a primitive unit ζ ∈ F×q
and a primitive ℓth root of unity ω gives generators ζ for K1(Fq;Z/ℓ) and the Bott
element β for K2(Fq;Z/ℓ), respectively. (The Bockstein sends β to ω ∈ K1(Fq).)
Browder has shown [Br] that K∗(Fq;Z/ℓ) ∼= Z/ℓ[β, ζ]/(ζ2) as a graded ring, and
that the natural isomorphism from the even part ⊕nK2n(Fq;Z/ℓ) ∼= Z/ℓ[β] to
⊕π2n(BU ;Z/ℓ) is a ring isomorphism.

If p 6= ℓ, the algebraic closure F̄p is the union of the Fq where q = pν and
ℓ | (q − 1). Hence the ring K∗(F̄p;Z/ℓ) is the direct limit of the K∗(Fq;Z/ℓ). As
each ζ vanishes and the Bott elements map to each other, we have:

K∗(F̄p;Z/ℓ) ∼= Z/ℓ[β] ∼= π∗(BU ;Z/ℓ).
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Remark 1.13.2. Browder has also shown in [Br, 2.4] that the Bott element β
in K2(C;Z/m) maps to a generator of π2(BU ;Z/m) = Z/m under the change-of-
topology map. Hence the map K∗(C;Z/m) → π∗(BU ;Z/m) is also onto. We will
see in VI.1.4 that it is an isomorphism.

Homological Stability

Homological stability, the study of how the homology of a group like GLn(R)
depends upon n, plays an important role in algebraic K-theory. The following
theorem was proven by Suslin in [Su82], using Volodin’s construction of K(R).
Recall from Ex. I.1.5 that the stable range of R, sr(R), is defined in terms of
unimodular rows; if R is commutative and noetherian it is at most dim(R) + 1.

Theorem 1.14. Let R be a ring with stable range sr(R). For r ≥ max{2n +
1, n+ sr(R)} the maps πnBGLr(R)

+ → πnBGLr+1(R)
+ are isomorphisms.

Now assume that r > sr(R) + 1, so that Er(R) is a perfect normal subgroup
of GLr(R) by Ex. III.1.3. The universal covering space of BGLr(R)

+ is then
homotopy equivalent to BEr(R)

+ for (by Ex. 1.8). Applying the Hurewicz theorem
(and the Comparison Theorem) to these spaces implies:

Corollary 1.14.1. In the range r ≥ max{2n + 1, n + sr(R)}, the following
maps are isomorphisms:

Hn(BGLr(R))→ Hn(BGLr+1(R))→ Hn(BGL(R)
+)

Hn(BEr(R))→ Hn(BEr+1(R))→ Hn(BE(R)+)

For example, suppose that R is an Artinian ring, so that sr(R) = 1 by Ex. I.1.5.
Then πnBGLr(R)

+ ∼= Kn(R) and Hn(BGLr(R)) ∼= Hn(BGL(R)
+) for all r > 2n.

The following result, due to Suslin [Su-KM], improves this bound for fields.

Proposition 1.15. (Suslin) If F is an infinite field, Hn(GLr(F ))→Hn(GL(F ))
is an isomorphism for all r ≥ n. In addition, there is a canonical isomorphism
Hn(GLn(F ))/imHn(GLn−1(F )) ∼= KM

n (F ).

Proposition 1.16. (Kuku) If R is a finite ring, then Kn(R) is a finite abelian
group for all n > 0.

Proof. The case n = 1 follows from III.1.2.5 (or Ex. III.1.2): K1(R) is a
quotient of R×. Since Kn(R) = πnBE(R)+ for n > 1 by Ex. 1.8, it suffices to show
that the homology groups Hn(E(R);Z) are finite for n > 0. But each Er(R) is a
finite group, so the groups Hn(BEr(R);Z) are indeed finite for n > 0. �

Rank of Kn over number fields

It is a well known theorem of Cartan and Serre that the “rational” homotopy
groups πn(X) ⊗ Q of an H-space X inject into the rational homology groups
Hn(X;Q), and that π∗(X)⊗Q forms the primitive elements in the coalgebra struc-
ture on H∗(X;Q). (See [MM, p. 163].) For X = BGL(R)+, which is an H-space by
Ex. 1.11, this means that the groups Kn(R)⊗ Q = πn(BGL(R)

+)⊗ Q inject into
the groups H∗(GL(R);Q) = H∗(BGL(R);Q) = H∗(BGL(R)

+;Q) as the primitive
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elements. For X = BSL(R)+, this means that the groups Kn(R) ⊗ Q inject into
H∗(SL(R);Q) as the primitive elements for n ≥ 2.

Now suppose that A is a finite dimensional semisimple algebra over Q, such as a
number field, and that R is a subring of A which is finitely generated over Z and has
R⊗Q = A (R is an order). In this case, Borel determined the ring H∗(SLm(R);Q)
and hence the dual coalgebra H∗(SLm(R);Q) and hence its primitive part, K∗(R)⊗
Q. (See the review MR0387496 of Borel’s paper [Bor] by Garland.) The answer
only depends upon the semisimple R-algebra A⊗Q R.

More concretely, let g and k be the Lie algebras (over Q) of SLm(A ⊗ R) and
one of its maximal compact subgroups K. Borel first proved in [Bor, Thm. 1] that

Hq(SLm(R);R) ∼= Hq(SLm(A);R) ∼= Hq(g, k;R) for m≫ q.

By the above remarks, this proves:

Theorem 1.17 (Borel). Let A be a finite dimensional semisimple Q-algebra.
Then for every order R in A we have Kn(R)⊗Q ∼= Kn(A)⊗Q for all n ≥ 2.

Borel also calculated the ranks of these groups. Since A is a finite product of
simple algebras Ai, and Kn(A) is the product of the Kn(Ai) by Ex. 1.7, we may
assume that A is simple, i.e., a matrix algebra over a division algebra. The center
of A is then a number field F . It is traditional to write r1 and r2 for the number
of factors of R and C in the R-algebra F ⊗Q R, so that F ⊗Q R ∼= (R)r1 × (C)r2.
Borel proved in [Bor, thm. 2] [Bor1, 12.2] that H∗(SL(A),R) is a tensor product of
r1 exterior algebras having generators xi in degrees 4i + 1 (i ≥ 1) and r2 exterior
algebras having generators xj in degrees 2j + 1 (j ≥ 1). Taking primitive parts,
this proves the following result:

Theorem 1.18 (Borel). Let F be a number field, and A a central simple F -
algebra. Then for n ≥ 2 we have Kn(A)⊗Q ∼= Kn(F ) and

rankKn(A)⊗Q =





r2, n ≡ 3 (mod 4)

r1 + r2, n ≡ 1 (mod 4)

0, else.

By Theorem 1.17, this also gives the rank of Kn(R) for every order R.

In particular, these groups are torsion for every even n ≥ 2.

Regulator Maps 1.18.1. Borel’s construction provides a specific map from
Kn(R) to the real vector space Pn of primitives in Hn(SL(R),R); Borel observed
that the image is a lattice Λ. There is another canonical lattice Λ′ in Pn: the image
of πn(X) for the symmetric space X contained in K\GLm(C). The higher regulator
of R is defined to be the positive real number Rn such that the volume of Pn/Λ is
Rn times the volume of Pn/Λ

′. Borel also proved that R2i+1 was a positive rational

number times
√
D π−m(i+1)ζF (i+ 1), where D is the discriminant of F/Q and ζF

is the zeta function of F .
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Group Rings 1.18.2. The group ring Z[G] of a finite group G is an order in
the semisimple algebra Q[G]. Therefore Theorem 1.18 gives the rank of the groups
Kn(Z[G]) for n ≥ 2. The rank of K1(Z[G]) was given in III.1.8, and does not
follow this pattern. For example, if Cp is a cyclic group of prime order p ≥ 3 then
r1 + r2 = (p+ 1)/2 yet K1(Z[Cp]) has rank (p− 3)/2.

K3(R) and H3(E(R),Z)

The following material is due to Suslin [Su91]. Given an element α of πn(X) and
an element β of πm(Sn), the composition product α ◦ β is the element of πm(X)

represented by Sm
β−→ Sn

α−→ X. We will apply this to the Hopf element η ∈ π3(S2),
using the following observation.

If Yn is the wedge of n copies of S2, the Hilton-Milnor Theorem [Wh, XI(8.1)]
says that

ΩΣYn ≃
∏n

i=1
ΩS3 ×

∏
i 6=j

ΩS5 × Y ′n,

where Y ′n is 5-connected and Σ is suspension. Note that π3(ΩΣS
2) = π4(S

3) = Z/2,
on the image of η ∈ π3(S2). Hence π3(ΩΣYn) ∼= (Z/2)n. If YI is a wedge of copies
of S2 indexed by an infinite set I then (taking the filtered colimit over finite subsets
of I) it follows that π3(ΩΣYI) ∼= ⊕I Z/2, generated by the factors S2 → ΩS2 → YI .

Lemma 1.19. If X is a simply connected loop space, the composition product
with η and the Hurewicz map h : π3(X)→ H3(X,Z) fit into an exact sequence

π2(X)
◦η−→ π3(X)

h−→ H3(X,Z)→ 0.

Proof. Let I be a set of generators of π2(X); the maps f(i) : S2 → X induce

a map f : Y → X, where Y = ∨I S2. The map f factors as Y → ΩΣY
Ωf∗

−−→ X,
where X = ΩX ′ and f∗ : ΣY → X ′ is the adjoint of f . Since π2(Y ) → π2(X) is
onto, the sequence π3(ΩΣY )→ π3(X)→ H3(X)→ 0 is exact by Exercise 1.25.

As above, π3(ΩΣY ) ∼= ⊕I π3(ΩΣS2), and the ith factor is the image of π3(S
2),

generated by η. The map π3(ΩΣY )→ π3(X) sends the generator of the ith factor

to the composition product f(i) ◦ η : S3 η−→ S2 → ΩΣS2 −→ X. Since π2(X) is
generated by the f(i), the result follows. �

Remark 1.19.1. (Suslin) Lemma 1.19 holds for any simply connected H-space
X. To see this, note that the Hilton-Milnor Theorem for Yn = ∨S2 states that
the space ΩYn is homotopy equivalent to

∏
i ΩS

2 ×∏
i 6=j ΩS

3 × Y ′′ where Y ′′ is
3-connected. Thus π3(Yn) = π2(ΩYn) is the sum of Zn = ⊕π3(S2) and ⊕i 6=jπ3(S3),
where the second summand is generated by the Whitehead products [ιi, ιj ] of the
generators of π2(Y ). These Whitehead products map to [f(i), f(j)], which vanish
in π3(X) when X is any H-space by [Wh, X(7.8)]. With this modification, the
proof of Lemma 1.19 goes through.

Corollary 1.20. For any ring R the product with [−1] ∈ K1(Z) fits into an
exact sequence

K2(R)
[−1]−−→ K3(R)

h−→ H3(E(R),Z)→ 0.
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Proof. By Ex. 1.12(a), the map π3(S
2) → K1(Z) sends η to [−1]. Since X =

BGL(R+) is anH-space, the composition product π2(X)
η−→ π3(X) is multiplication

by the image of η in π1(X) = K1(R), namely [−1]; see Ex. 1.12(e). The result
follows from Lemma 1.19 and the observation in Exercise 1.8 that πnBE(R)+ →
Kn(R) is an isomorphism for n ≥ 2. �

EXERCISES

1.1 (Kervaire) Let X be a homology n-sphere, i.e., a space with H∗(X) = H∗(S
n).

Show that there is a homotopy equivalence Sn → X+. Hint: Show that π1(X) is
perfect if n 6= 1, so X+ is simply connected, and use the Hurewicz theorem.

The binary icosohedral group Γ = SL2(F5) embeds in O3(R) as the symmetry
group of both the dodecahedron and icosahedron. Show that the quotient X =
S3/Γ is a homology 3-sphere, and conclude that the canonical map S3 → X+ is a
homotopy equivalence. (The fact that it is a homology sphere was discovered by
Poincaré in 1904, and X is sometimes called the Poincaré sphere.)

1.2 a) If F is an acyclic space, show that F+ is contractible.

b) If X
f−→ Y is acyclic and f∗ : π1(X) ∼= π1(Y ), show that f is a homotopy

equivalence.

1.3 Prove the assertions in Remark 1.8.1 using the following standard result: Let
X and Y be H-spaces having the homotopy type of a CW complex. If f : X → Y
is a map which induces an isomorphism H∗(X,Z) ∼= H∗(Y,Z), show that f is a
homotopy equivalence. Hint: Since π1(Y ) acts trivially on the homotopy fiber F
by [Wh, IV.3.6], the relative Hurewicz theorem [Wh, IV.7.2] shows that π∗(F ) = 0.

1.4 Here is a point-set construction of X+ relative to a perfect normal subgroup P .
Form Y by attaching one 2-cell ep for each element of P , so that π1(Y ) = π1(X)/P .
Show that H2(Y ;Z) is the direct sum of H2(X;Z) and the free abelian group on
the set {[ep] : p ∈ P}. Next, prove that each homology class [ep] is represented by a
map hp : S

2 → Y , and form Z by attaching 3-cells to Y (one for each p ∈ P ) using
the hp. Finally, prove that Z is a model for X+.

1.5 Perfect Radicals. Show that the subgroup generated by the union of perfect
subgroups of any group G is itself a perfect subgroup. Conclude that G has a
largest perfect subgroup P , called the perfect radical of G, and that it is a normal
subgroup of G.

1.6 Let cone(i) denote the mapping cone of a map F
i−→ X. If F is an acyclic space,

show that the map X → cone(i) is acyclic. If F is a subcomplex of X then cone(i)
is homotopy equivalent to the quotient space X/F , so X → X/F is also acyclic.
Conclude that if X(R) is the Volodin space of Example 1.3.2 then BGL(R)/X(R)
is a model for BGL(R)+. Hint: Consider long exact sequences in homology.

1.7 Show that BGL(R1 × R2)
+ ≃ BGL(R1)

+ × BGL(R2)
+ and hence Kn(R1 ×

R2) ∼= Kn(R1) × Kn(R2) for every pair of rings R1, R2 and every n. Hint: Use
3.1(6) below to see that BGL(R1 ×R2) ∼= BGL(R1)×BGL(R2).

1.8 Let P be a perfect normal subgroup of G, and let BG → BG+ be a +-
construction relative to P . Show that BP+ is homotopy equivalent to the universal
covering space of BG+. Hence πn(BP

+) ∼= πn(BG
+) for all n ≥ 2. Hint: BP is

homotopy equivalent to a covering space of BG.
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For G = GL(R) and P = E(R), this shows that BE(R)+ is homotopy equivalent
to the universal covering space of BGL(R)+. Thus Kn(R) ∼= πnBE(R)+ for n ≥ 2.

(a) If R is a commutative ring, show that SL(R) →֒ GL(R) induces isomorphisms
πnBSL(R)

+ ∼= Kn(R) for n ≥ 2, and π1BSL(R)
+ ∼= SK1(R). Conclude that

the map BSL(R)+ ×B(R×)→ BGL(R)+ is a homotopy equivalence.

(b) If A is a finite semisimple algebra over a field, the subgroups SLn(A) of
GLn(A) were defined in III.1.2.4. Show that SL(A) →֒ GL(A) induces iso-
morphisms πnBSL(A)

+ ∼= Kn(A) for n ≥ 2, and π1BSL(A)
+ ∼= SK1(A).

1.9 Suppose that A → S → P is a universal central extension (III.5.3). In par-
ticular, S and P are perfect groups. Show that there is a homotopy fibration
BA→ BS+ → BP+. Conclude that πn(BS

+) = 0 for n ≤ 2, and that πn(BS
+) ∼=

πn(BP
+) ∼= πn(BG

+) for all n ≥ 3. In particular, π3(BP
+) ∼= H3(S;Z).

Since the Steinberg group St(R) is the universal central extension of E(R), this
shows that Kn(R) ∼= πnSt(R)

+ for all n ≥ 3, and that K3(R) ∼= H3(St(R);Z).

1.10 For n ≥ 3, let Pn denote the normal closure of the perfect group En(R) in
GLn(R), and let BGLn(R)

+ denote the +–construction on BGLn(R) relative to
Pn. Corresponding to the inclusions GLn ⊂ GLn+1 we can choose a sequence of
maps BGLn(R)

+ → BGLn+1(R)
+. Show that lim−→BGLn(R)

+ is BGL(R)+.

1.11 For each m and n, the group map � : GLm(R) × GLn(R) → GLm+n(R) ⊂
GL(R) induces a map BGLm(R) × BGLn(R) → BGL(R) → BGL(R)+. Show
that these maps induce an H-space structure on BGL(R)+.

1.12 In this exercise, we develop some properties of BΣ+
∞, where Σ∞ denotes the

union of the symmetric groups Σn. We will see in 4.9.3 that πn(BΣ+
∞) is the stable

homotopy group πsn. The permutation representations Σn → GLn(Z) (1.3.2) induce
a map BΣ+

∞ → BGL(Z)+ and hence homomorphisms πsn → Kn(Z).

(a) Show that η ∈ πs1 ∼= Z/2 maps to [−1] ∈ K1(Z).

(b) Show that the subgroups Σm × Σn of Σm+n induce an H-space structure on
BΣ+
∞ such that BΣ+

∞ → BGL(Z)+ is an H-map. (See Ex. 1.11.)

(c) Modify the construction of Loday’s product (1.10) to show that product
representations Σm × Σn → Σmn induce a map BΣ+

∞ ∧ BΣ+
∞ → BΣ+

∞

compatible with the corresponding map for BGL(Z)+. The resulting prod-
uct πsm ⊗ πsn → πsm+n makes the stable homotopy groups into a graded-
commutative ring, and makes πs∗ → K∗(Z) into a ring homomorphism.

(d) Show that the Steinberg symbol {−1,−1,−1,−1} of 1.10.1 vanishes in K4(Z)
and K4(Q). Since this symbol is nonzero in KM

4 (Q) by III.7.2(c,d), this shows
that the Milnor K-groups of a field need not inject into its Quillen K-groups.
Hint: η3 6= 0 in πs3 but η4 = 0 in πs4.

(e) If β ∈ πn+t(Sn) and α ∈ Kn(R), show that the composition product α ◦ β in
Kn+t(R) agrees with the product of α with [β] ∈ πst .

1.13 Let A∞ denote the union of the alternating groups An; it is a subgroup of
Σ∞ of index 2. A∞ is a perfect group, since the An are perfect for n ≥ 5.

(a) Show that BΣ+
∞ ≃ BA+

∞ ×B(Z/2), so πnBA
+
∞
∼= πsn for all n ≥ 2.

(b) Use Lemma 1.19 and πs3
∼= Z/24 to conclude that H3(A∞,Z) ∼= Z/12.

(c) Use the Künneth formula and (a) to show that H3(Σ∞,Z) ∼= H3(A∞,Z) ⊕
(Z/2)2. This calculation was first done by Nakaoka [Nak].
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1.14 Extend the product map γ of Theorem 1.10 to a map K(A) ∧ K(B) →
K(A⊗B), so that the induced maps K0(A)×Kn(B)→ Kn(A⊗B) agree with the
products defined in III.1.6.1 and Ex. III.5.4.

1.15 Let I be an ideal in R. Show that the group π0K(R, I) of 1.11.1 is isomorphic
to the group K0(I) of Ex. II.2.3, and that the maps K1(R/I) → K0(I) → K0(R)
in loc. cit. agree with the maps of 1.11.1. Hint: π0K(R⊕ I, 0⊕ I) must be K0(I).

Use Ex. III.2.7 to show that π1K(R→ R/I) is isomorphic to the group K1(R, I)
of III.2.2, and that the maps K2(R/I)→ K1(R, I)→ K1(R) in III.5.7.1 agree with
those of 1.11.1.

1.16 If f : R→ S is a ring homomorphism, show that the relative group K0(f) of
1.11.1 agrees with the relative group K0(f) of II.2.10.

1.17 (Wagoner) We say GL(R) is flabby if there is a homomorphism τ : GL(R)→
GL(R) so that for each n the restriction τn : GLn(R) → GL(R) of τ is conjugate
to the map (1, τn) : g 7→

(
g
0

0
τn(g)

)
. In particular, τn and (1, τn) induce the same

map H∗(BGLn(R))→ H∗(BGL(R)) by [WHomo, 6.7.8].

(a) Assuming that GL(R) is flabby, show that BGL(R) is acyclic. By Ex. 1.2,
this implies that BGL(R)+ is contractible, i.e., that Kn(R) = 0 for n > 0.
Hint: The H-space structure (Ex. 1.11) makes H∗(BGL(R)) into a ring.

(b) Show that GL(R) is flabby for every flasque ring R (see II.2.1.3). This shows
that flasque rings have Kn(R) = 0 for all n. Hint: Modify Ex. II.2.15(a).

1.18 Suppose that I is a nilpotent ideal and that pνI = 0 for some ν. Show
that H∗(GL(R);M) ∼= H∗(GL(R/I);M) for every uniquely p-divisible module M .
Conclude that the relative groups K∗(R, I) are p-groups.

1.19 Suppose that I is a nilpotent ideal in a ring R, and that I is uniquely divisible
as an abelian group. Show that H∗(GL(R);M) ∼= H∗(GL(R/I);M) for every tor-
sion module M . Conclude that the relative groups K∗(R, I) are uniquely divisible
abelian groups.

1.20 Show that every ring with unit is H-unital (see 1.11.2). Then show that a
non-unital ring I is H-unital if every finite subset of I is contained in a unital
subring. (This shows that the ring M(R) of finite matrices over R is H-unital.)

Finally, show that I is H-unital if for every finite subset {aj} of I there is an
e ∈ I such that eaj = aj . (An example of such an I is the non-unital ring of
functions with compact support on Cn.)

1.21 (Morita invariance) For each n > 0, we saw in III.1.1.4 that GL(R) ∼=
GL(Mn(R)) via isomorphisms Mm(R) ∼= Mm(Mn(R)). Deduce that there is a ho-
motopy equivalence BGL(R)+≃ BGL(Mn(R))

+ and hence isomorphismsK∗(R) ∼=
K∗(Mn(R)). (The cases ∗ = 0, 1, 2 were given in II.2.7, III.1.6.4 and III.5.6.1.) We
will give a more categorical proof in 6.3.5 below.

Compare this to the approach of 1.11.2, using M(R).

1.22 (Loday symbols) Let a1, ..., an be elements of A so that ana1 = 0 and each
aiai+1 = 0. Show that the elementary matrices en,1(an) and ei,i+1(ai) commute
and define a ring homomorphism B = Z[x1, 1/x1, . . . , xn, 1/xn] → Mn(A). Using
Ex. 1.21, we define the Loday symbol 〈〈a1, ..., an〉〉 in Kn(A) to be the image of
{x1, ..., xn} under Kn(B)→ Kn(Mn(A)) ∼= Kn(A).
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1.23 Let F → E
p−→ B and F ′ → E′

p′−→ B′ be homotopy fibrations (1.2), and
suppose given pairings e : E ∧X → E′, b : B ∧X → B′ so that p′e = b(p ∧ 1).

ΩB ∧X ∂∧1−−−−→ F ∧X −−−−→ E ∧X p∧1−−−−→ B ∧X
yΩb

yf
ye

yb

ΩB′
∂′

−−−−→ F ′ −−−−→ E′
p′−−−−→ B′.

Show that there is a pairing F ∧X f−→ F ′ compatible with e and such that for β ∈
π∗(B) and γ ∈ π∗(X) the reduced join [Wh, p. 480] satisfies ∂(β ∧b γ) = ∂(β)∧f γ.
1.24 Let f : A → B be a ring homomorphism and let K(f) (resp., K(fC) be
the relative groups (1.11.1), i.e., the homotopy fiber of K(A) → K(B) (resp.,
K(A ⊗ C) → K(B ⊗ C)). Use Ex. 1.23 to show that there is an induced pairing
K∗(f) ⊗ K∗(C) → K∗(fC) such that for β ∈ K∗(B) and γ ∈ K∗(C) we have
∂(β ∧ γ) = ∂(β) ∧ γ in K∗(fC).

When f is an R-algebra homomorphism, show that K∗(f) is a right K∗(R)-
module and that the maps in the relative sequence Kn+1(B)→ Kn(f)→ Kn(A)→
Kn(B) of (1.11.1) are K∗(R)-module homomorphisms.

1.25 Suppose given a homotopy fibration sequence F → Y → X with X, Y and F
simply connected. Compare the long exact homotopy sequence (see 1.2) with the ex-
act sequence of low degree terms in the Leray-Serre Spectral sequence (see [WHomo,
5.3.3]) to show that there is an exact sequence π3(Y )→ π3(X)→ H3(X)→ 0.

1.26 The Galois group G = Gal(Fqi/Fq) acts on the group µ of units of Fqi , and

also on the i-fold tensor product µ⊗i = µ⊗ · · · ⊗ µ. By functoriality 1.1.2, G acts
on K∗(Fq). Show that K2i−1(Fq) is isomorphic to µ⊗i as a G-module.

1.27 Monomial matrices Let F be a field and consider the subgroup M of GL(F )
consisting of matrices with only one nonzero entry in each row and column.

(a) Show that M is the wreath product F× ≀ Σ∞, and contains F× ≀A∞.
(b) Show that [M,M ] is the kernel of det : F× ≀A∞ → F×, so H1(M) ∼= F××Σ2.
(c) Show that [M,M ] is perfect, and BM+ ≃ B[M,M ]+ ×B(F×)×BΣ2.
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§2. K-theory with finite Coefficients

In addition to the usual K-groups Ki(R), or the K-groups Ki(C) of a category
C, it is often useful to study its K-groups with coefficients “mod ℓ” Ki(R;Z/ℓ)
(or Ki(C;Z/ℓ),) where ℓ is a positive integer. In this section we quickly recount
the basic construction from mod ℓ homotopy theory. Basic properties of mod ℓ
homotopy theory may be found in [N ].

Recall [N] that ifm ≥ 2 the mod ℓMoore space Pm(Z/ℓ) is the space formed from
the sphere Sm−1 by attaching an m-cell via a degree ℓ map. It is characterized as
having only one nonzero reduced integral homology group, namely H̃m(P ) = Z/ℓ.
The suspension of Pm(Z/ℓ) is the Moore space Pm+1(Z/ℓ), and as m varies these
fit together to form a suspension spectrum P∞(Z/ℓ), called the Moore spectrum.

Definition 2.1. If m ≥ 2, the mod ℓ homotopy “group” πm(X;Z/ℓ) of a based
topological spaceX is defined to be the pointed set [Pm(Z/ℓ), X] of based homotopy
classes of maps from the Moore space Pm(Z/ℓ) to X.

For a general space X, π2(X;Z/ℓ) isn’t even a group, but the πm(X;Z/ℓ) are
always groups for m ≥ 3 and abelian groups for m ≥ 4 [N]. If X is an H-space,
such as a loop space, then these bounds improve by one. If X = ΩY then we can
define π1(X;Z/ℓ) as π2(Y ;Z/ℓ); this is independent of the choice of Y by Ex. 2.1.
More generally, if X = ΩkYk for k >> 0 and Pm = Pm(Z/ℓ) then the formula

πm(X;Z/ℓ) = [Pm, X] = [Pm,ΩkYk] ∼= [Pm+k, Yk] = πm+k(Yk;Z/ℓ)

shows that we can ignore these restrictions onm, and that πm(X;Z/ℓ) is an abelian
group for all m ≥ 0 (or even negative m, as long as k > 2 + |m|).

In particular, if X is an infinite loop space then abelian groups πm(X;Z/ℓ) are
defined for all m ∈ Z, using the explicit sequence of deloopings of X provided by
the given structure on X.

2.1.1. If F → E → B is a Serre fibration there is a long exact sequence of
groups/pointed sets (which is natural in the fibration):

· · · → πm+1(B;Z/ℓ)→πm(F ;Z/ℓ)→ πm(E;Z/ℓ)→
πm(B;Z/ℓ)→πm−1(F ;Z/ℓ)→ · · · → π2(B;Z/ℓ).

This is just a special case of the fact that · · · → [P, F ] → [P,E] → [P,B] is exact
for any CW complex P ; see [Wh, III.6.18*].

Ifm ≥ 2, the cofibration sequence Sm−1
ℓ−→ Sm−1 −→ Pm(Z/ℓ) defining Pm(Z/ℓ)

induces an exact sequence of homotopy groups/pointed sets

πm(X)
ℓ−→ πm(X)→ πm(X;Z/ℓ)

∂−→ πm−1(X)
ℓ−→ πm−1(X).

If ℓ is odd, or divisible by 4, F. Peterson showed that there is even a non-canonical
splitting πm(X;Z/ℓ)→ πm(X)/ℓ (see [Br, 1.8]).

It is convenient to adopt the notation that if A is an abelian group then ℓA
denotes the subgroup of all elements a of A such that ℓ · a = 0. This allows us to
restate the above exact sequence in a concise fashion.
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Universal Coefficient Sequence 2.2. For all m ≥ 3 there is a natural
short exact sequence

0→ (πmX)⊗ Z/ℓ→ πm(X;Z/ℓ)
∂−→ ℓ(πm−1X)→ 0.

This sequence is split exact (but not naturally) when ℓ 6≡ 2 mod 4.

For π2, the sequence 2.2 of pointed sets is also exact in a suitable sense; see [N,
p. 3]. However this point is irrelevant for loop spaces, so we ignore it.

Example 2.2.1. When ℓ = 2, the sequence need not split. For example,
it is known that πm+2(S

m;Z/2) = Z/4 for m ≥ 3, and that π2(BO;Z/2) =
π3(O;Z/2) = Z/4; see [AT65].

Here is another way to define mod ℓ homotopy groups, and hence K∗(R;Z/ℓ).

Proposition 2.3. Suppose that X is a loop space, and let F denote the homo-
topy fiber of the map X → X which is multiplication by ℓ. Then πm(X;Z/ℓ) ∼=
πm−1(F ) for all m ≥ 2.

Proof. (Neisendorfer) Let Maps(A,X) be the space of pointed maps. If S = Sk

is the k-sphere then the homotopy groups of Maps(Sk, X) are the homotopy groups
of X (reindexed by k), while if P = P k(Z/ℓ) is a mod ℓ Moore space, the homotopy
groups of Maps(P,X) are the mod ℓ homotopy groups of X (reindexed by k).

Now applying Maps(−, X) to a cofibration sequence yields a fibration sequence,
and applying Maps(A,−) to a fibration sequence yields a fibration sequence; this
may be formally deduced from the axioms (SM0) and (SM7) for any model struc-
ture, which hold for spaces. Applying Maps(−, X) to Sk → Sk → P k+1(Z/ℓ) shows
that Maps(P,X) is the homotopy fiber of Maps(Sk, X)→ Maps(Sk, X). Applying
Maps(Sk,−) to F → X → X shows that Maps(Sk, F ) is also the homotopy fiber,
and is therefore homotopy equivalent to Maps(P,X). Taking the homotopy groups
yields the result. �

Spectra 2.3.1. For fixed ℓ, the Moore spectrum P∞(Z/ℓ) is equivalent to the
(spectrum) cofiber of multiplication by ℓ on the sphere spectrum. If E is a spectrum,
then (by S-duality) the homotopy groups π∗(E;Z/ℓ) = lim−→π∗+r(Er;Z/ℓ) are the
same as the homotopy groups of the spectrum E ∧ P∞(Z/ℓ).

Now suppose that C is either a symmetric monoidal category, or an exact cate-
gory, or a Waldhausen category. We will construct a K-theory space K(C) below
(in 4.3, 6.3 and 8.5); in each case K(C) is an infinite loop space.

Definition 2.4. The mod ℓ K-groups of R are defined to be the abelian group:

Km(R;Z/ℓ) = πm(K(R);Z/ℓ), m ∈ Z.

Similarly, if the K-theory space K(C) of a category C is defined then the mod ℓ
K-groups of C are defined to be Km(C;Z/ℓ) = πm(K(C);Z/ℓ).

By 2.1.1, if C1 → C2 → C3 is a sequence such that K(C1)→ K(C2)→ K(C3) is a
fibration, then there is a long exact sequence of abelian groups

· · · → Kn+1(C3;Z/ℓ)→ Kn(C1;Z/ℓ)→ Kn(C2;Z/ℓ)→ Kn(C3;Z/ℓ) · · ·



20 IV. DEFINITIONS OF HIGHER K-THEORY

If m ≥ 2 this definition states that Km(R;Z/ℓ) = [Pm(Z/ℓ),K(R)]. Because
K(R) ≃ ΩY , we can define K1(R;Z/ℓ) in a way that is independent of the choice
of Y (Ex. 2.1); it agrees with the definition in III.1.7.4 (see Ex. 2.2). However, the
groups K0(R;Z/ℓ) and Km(R;Z/ℓ) for m < 0 depend not only upon the loop space
K(R), but also upon the choice of the deloopings of K(R) in the underlying K-
theory spectrum K(R). In fact, the literature is not consistent about Km(R;Z/ℓ)
when m < 2, even for K1(R;Z/ℓ). Similar remarks apply to the definition of
Km(C;Z/ℓ).

By Universal Coefficients 2.2, the mod ℓ K-groups are related to the usual K-
groups:

Universal Coefficient Theorem 2.5. There is a short exact sequence

0→ Km(R)⊗ Z/ℓ→ Km(R;Z/ℓ)→ ℓKm−1(R)→ 0

for every m ∈ Z, C, and ℓ. It is split exact unless ℓ ≡ 2 mod 4. Ex. 2.3 shows that
the splitting is not natural in R.

Similarly, if the K-theory of a category C is defined then we have an exact
sequence

0→ Km(C)⊗ Z/ℓ→ Km(C;Z/ℓ)→ ℓKm−1(C)→ 0

Example 2.5.1. (ℓ = 2) Since the isomorphism Ω∞Σ∞ → Z × BO factors
through K(Z) and K(R), the universal coefficient theorem and 2.2.1 show that

K2(Z;Z/2) ∼= K2(R;Z/2) ∼= π2(BO;Z/2) = Z/4.

It turns out [AT65] that for ℓ = 2 the sequence for Km(R;Z/2) is split whenever
multiplication by [−1] ∈ K1(Z) is the zero map from Km−1(R) to Km(R). For
example, this is the case for the finite fields Fq, an observation made in [Br].

Example 2.5.2 (Bott elements). Suppose that R contains a primitive ℓth

root of unity ζ. The Universal Coefficient Theorem 2.5 provides an element β ∈
K2(R;Z/ℓ), mapping to ζ ∈ ℓK1(R). This element is called the Bott element, and
it plays an important role in the product structure of the ring K∗(R;Z/ℓ). For
finite fields, this role was mentioned briefly in Remark 1.13.1.

Remark 2.5.3. A priori, β depends not only upon ζ but also upon the choice
of the splitting in 2.5. One way to choose β is to observe that the inclusion of µℓ in
GL1(R) induces a map Bµℓ → BGL(R)→ BGL(R)+ and therefore a set function
µℓ → K2(R;Z/ℓ). A posteriori, it turns out that this is a group homomorphism
unless ℓ ≡ 2 (mod 4).

Example 2.6. Let k be the algebraic closure of the field Fp. Quillen’s com-
putation of K∗(Fq) in 1.13 shows that Kn(k) = 0 for m even (m ≥ 2), and that
Km(k) = Q/Z[ 1

p
] for m odd (m ≥ 1). It follows that if ℓ is prime to p then:

Km(k;Z/ℓ) =

{
Z/ℓ if m is even, m ≥ 0

0 otherwise.

In fact,K∗(k;Z/ℓ) is the polynomial ring Z/ℓ[β] on the Bott element β ∈K2(k;Z/ℓ),
under the K-theory product of 2.8 below. See 1.13.1 (and Chapter VI, 1.3.1) for
more details.
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The next result shows that we may always assume that ℓ is a power of a prime.

Proposition 2.7. If ℓ = q1q2 with q1 and q2 relatively prime, then πm(X;Z/ℓ)
is naturally isomorphic to πm(X;Z/q1)× πm(X;Z/q1).

Proof. Set P1 = Pm(Z/q1), P2 = Pm(Z/q2) and P = P1∨P2. Since P has only

one nonzero reduced integral homology group, namely H̃m(P ) = Z/q1 × Z/q2 ∼=
Z/ℓ, the natural map P → Pm(Z/ℓ) must be a homotopy equivalence. But then
πm(X;Z/ℓ) is naturally isomorphic to

[Pm(Z/q1) ∨ Pm(Z/q2), X] ∼= [Pm(Z/q1), X]× [Pm(Z/q2), X],

which is the required group πm(X;Z/q1)× πm(X;Z/q1). �

Products

If ℓ ≥ 3 is prime, there is a homotopy equivalence Pm(Z/ℓν) ∧ Pn(Z/ℓν) ≃
Pm+n(Z/ℓν)∨Pm+n−1(Z/ℓν). The projections onto the first factor give a spectrum
“product” map P∞(Z/ℓν)∧P∞(Z/ℓν)→ P∞(Z/ℓν) which is homotopy associative
and commutative unless ℓν = 3. (The same thing is true when ℓ = 2, except the
product map does not exist if 2ν = 2, it is not homotopy associative if 2ν = 4 and
it is not homotopy commutative when 2ν = 4, 8.) These facts are due to Araki and
Toda, and follow by S-duality from [N, 8.5–6]. So from now on, we shall exclude
the pathological cases ℓν = 2, 3, 4, 8.

If E is a homotopy associative and commutative ring spectrum, then so is the
spectrum E ∧ P∞(Z/ℓν), unless ℓν = 2, 3, 4, 8. Applying this to E = K(R) yields
the following result.

Theorem 2.8. Let R be a commutative ring, and suppose ℓν 6= 2, 3, 4, 8. Then
K(R) ∧ P∞(Z/ℓν) is a homotopy associative and commutative ring spectrum. In
particular, K∗(R;Z/ℓ

ν) is a graded-commutative ring.

Scholium 2.8.1. Browder [Br] has observed that if πm(E) = 0 for all even
m > 0 (and m < 0) then E∧P∞(Z/ℓν) is a homotopy associative and commutative
ring spectrum even for ℓν = 2, 3, 4, 8. This applies in particular to E = K(Fq), as
remarked in 1.13.1 and 2.6 above.

Corollary 2.8.2. If ℓ ≥ 3 and R contains a primitive ℓth root of unity ζ, and
β ∈ K2(R;Z/ℓ) is the Bott element (2.5.2), there is a graded ring homomorphism
Z/ℓ[ζ, β]→ K∗(R;Z/ℓ).

If ζ 6∈ R, there are elements β′ ∈ K2ℓ(R;Z/ℓ) and ζ ′ ∈ K2ℓ−1(R;Z/ℓ) whose
images in K2ℓ(R[ζ];Z/ℓ) and K2ℓ−1(R[ζ];Z/ℓ) are β

ℓ−1 and βℓ−2ζ, respectively.

Proof. The first assertion is immediate from 2.8 and 2.5.2. For the second
assertion we may assume that R = Z. Then the Galois group G of Z[ζ] over Z is
cyclic of order ℓ − 1, and we define β′ to be the image of −βℓ−1 ∈ K2ℓ(Z[ζ];Z/ℓ)
under the transfer map i∗ (1.1.3). Since i

∗i∗ is
∑
g∈G g

∗ by Ex. 6.13,

i∗β′ = −
∑

g∗βℓ−1 = −(ℓ− 1)βℓ−1.

Similarly, ζ ′ = i∗(−ζβℓ−2) has i∗ζ ′ = ζβℓ−2. �
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2.9 The ℓ-adic completion. Fix a prime ℓ. The ℓ-adic completion of a spectrum E,
Êp, is the homotopy limit (over ν) of the spectra E ∧ P∞(Z/ℓν). We let πn(E;Zℓ)
denote the homotopy groups of this spectrum; if E = K(R) we write Kn(R;Zℓ) for
πn(K(R);Zℓ). There is an extension

0→ lim←−
1πn+1(E;Z/ℓν)→ πn(E;Zℓ)→ lim←−πn(E;Z/ℓν)→ 0.

If the homotopy groups πn+1(E;Z/ℓν) are finite, the lim←− 1 term vanishes and, by
Universal Coefficients 2.5, πn(E;Zℓ) is an extension of the Tate module of πn−1(E)
by the ℓ-adic completion of πn(E). (The (ℓ-primary) Tate module of an abelian
group A is the inverse limit of the groups Hom(Z/ℓν , A).) For example, the Tate
module of K1(C) = C× is Zℓ, so K1(C;Zℓ) = π1(K(C);Zℓ) is Zℓ.

If E is a homotopy associative and commutative ring spectrum then so is the
homotopy limit Êp. Thus π∗(E;Zℓ), and in particular K∗(R;Zℓ), is also a graded-
commutative ring.

We conclude with Gabber’s Rigidity Theorem [Gabber]. If I is an ideal in a
commutative ring A, we say that (A, I) is a Hensel pair if for every finite commu-
tative A-algebra C the map C → C/IC induces a bijection on idempotents. A
Hensel local ring is a commutative local ring R such that (A,m) is a Hensel pair.
These conditions imply that I is a radical ideal (Ex. I.2.1), and (A, I) is a Hensel
pair whenever I is complete by Ex. I.2.2(i).

Rigidity Theorem 2.10. If (A, I) is a Hensel pair and 1/ℓ ∈ A, then for all

n ≥ 1 we have Kn(A;Z/ℓ)
∼=−→ Kn(A/I;Z/ℓ), and H̃∗(GL(I),Z/ℓ) = 0

Gabber proves that H̃∗(GL(I),Z/ℓ) = 0, and observes that this is equivalent to
Kn(A;Z/ℓ)→ Kn(A/I;Z/ℓ) being onto.

Example 2.10.1. If 1/ℓ ∈ R then Kn(R[[x]];Z/ℓ) ∼= Kn(R;Z/ℓ) for all n ≥ 0.

Examples 2.10.2. A restriction like n ≥ 0 is necessary. Les Reid [Reid] has
given an example of a 2-dimensional hensel local Q-algebra with K−2(A) = Z, and
Drinfeld [Drin] has shown that K−1(I) = 0.

EXERCISES

2.1 Suppose that X is a loop space. Show that π1(X;Z/ℓ) is independent of the
choice of Y such that X ≃ ΩY . This shows that K1(R;Z/ℓ) and even K1(C;Z/ℓ)
are well defined.

2.2 Show that the group K1(R;Z/ℓ) defined in 2.4 is isomorphic to the group
defined in III.1.7.4. Using the Fundamental Theorem III.3.7 (and III.4.1.2), show
that K0(R;Z/ℓ) and even the groups Kn(R;Z/ℓ) for n < 0 which are defined in 2.4
are isomorphic to the corresponding groups defined in Ex. III.4.6.

2.3 Let R be a Dedekind domain with fraction field F . Show that the kernel of the
map K1(R;Z/ℓ)→ K1(F ;Z/ℓ) is SK1(R)/ℓ. Hence it induces a natural map

ℓ Pic(R)
ρ−→ F×/F×ℓR×.

Note that F×/R× is a free abelian group by I.3.6, so the target is a free Z/ℓ-module
for every integer ℓ. Finally, use I.3.6 and I.3.8.1 to give an elementary description
of ρ.
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In particular, If R is the ring of integers in a number field F , the Bass-Milnor-
Serre Theorem III.2.5 shows that the extension K1(R;Z/ℓ) of ℓPic(R) by R

×/R×ℓ

injects into F×/F×ℓ, and that ℓK0(R) is not a natural summand of K1(R;Z/ℓ).
(If 1/ℓ ∈ R, the étale Chern class K1(R;Z/ℓ)→ H1

et(Spec(R), µℓ) of V.11.10 is an
isomorphism.)

2.4 If n ≥ 2, there is a Hurewicz map πn(X;Z/ℓ)→ Hn(X;Z/ℓ) sending the class
of a map f : Pn → X to f∗[e], where [e] ∈ Hn(P

n;Z/ℓ) ∼= Hn(S
n;Z/ℓ) is the

canonical generator. Its restriction to πn(X)/ℓ is the reduction modulo ℓ of the
usual Hurewicz homomorphism πn(X)→ Hn(X;Z).
(a) If n ≥ 3, show that the Hurewicz map is a homomorphism. (If n = 2 and ℓ is

odd, it is also a homomorphism.) Hint: Since Pn is a suspension, there is a
comultiplication map Pn → Pn ∨ Pn.

If n = 2 and ℓ is even, the Hurewicz map hmay not be a homomorphism, even ifX is
an infinite loop space. The precise formula is: h(a+b) = h(a)+h(b)+(ℓ/2){∂a, ∂b}.
(See [We93].)
(b) In example 2.5.1, show that the Hurewicz map from K2(R;Z/2) ∼= Z/4 to

H2(SL(R);Z/2) ∼= Z/2 is nonzero on β and 2β = {−1,−1}, but zero on 3β.
(c) If n = 2, show that the Hurewicz map is compatible with the action of π2(X)

on π2(X;Z/ℓ) and on H2(X;Z/ℓ).

2.5 Show that K∗(R;Z/ℓ
ν) is a graded module over K∗(R), associated to the evi-

dent pairing K(R) ∧K(R) ∧ P∞(Z/ℓν)→ K(R) ∧ P∞(Z/ℓν).

2.6 Fix a prime ℓ and let Z/ℓ∞ denote the union of the groups Z/ℓν , which is a
divisible torsion group. Show that there is a space Pm(Z/ℓ∞) = lim−→Pm(Z/ℓν) such
that πm(X;Z/ℓ∞) = [Pm(Z/ℓ∞), X] is the direct limit of the πm(X;Z/ℓν). Then
show that there is a universal coefficient sequence for m ≥ 3:

0→ (πmX)⊗ Z/ℓ∞ → πm(X;Z/ℓ∞)
∂−→ (πm−1X)ℓ-tors → 0.



24 IV. DEFINITIONS OF HIGHER K-THEORY

§3. Geometric realization of a small category

Recall (II.6.1.3) that a “small” category is a category whose objects form a set.
If C is a small category, its geometric realization BC is a CW complex constructed
naturally out of C. By definition, BC is the geometric realization |NC| of the nerve
NC of C; see 3.1.4 below. However, it is characterized in a simple way.

Characterization 3.1. The realization BC of a small category C is the CW
complex uniquely characterized up to homeomorphism by the following proper-
ties. Let n denote the category with n objects {0, 1, · · · , n − 1}, with exactly one
morphism i→ j for each i ≤ j; n is an ordered set, regarded as a category.

(1) (Naturality) A functor F : C → D induces a cellular map BF : BC → BD,
BF ◦BG = B(FG) and B(idC) is the identity map on BC.

(2) Bn is the standard (n − 1)–simplex ∆n−1. The functor φ : i → n induces
the simplicial map ∆i−1 → ∆n−1 sending vertex j to vertex φ(j).

(3) BC is the colimit colimΦBi, where Φ is the category whose objects are
functors n→ C, and whose morphisms are factorizations i→ n→ C. The
corresponding map Bi→ Bn is given by (2).

The following useful properties are consequences of this characterization:

(4) If C is a subcategory of D, BC is a subcomplex of BD;
(5) If C is the coproduct of categories Cα, BC =

∐
BCα;

(6) B(C × D) is homeomorphic to (BC) × (BD), where the product is given
the compactly generated topology;

Here are some useful special cases of (2) for small n:
B0 = ∅ is the empty set, because 0 is the empty category.
B1 = {0} is a one-point space, since 1 is the one object-one morphism category.
B2 = [0, 1] is the unit interval, whose picture is: 0 · −→ · 1.
B3 is the 2-simplex; the picture of this identification is:

1
·

f0 ր ցf1

0 · −−−−−−−→
f1◦f0

· 2

The small categories form the objects of a category CAT , whose morphisms are
functors. By (1), we see that geometric realization is a functor from CAT to the
category of CW complexes and cellular maps.

Recipe 3.1.1. The above characterization of the CW complex BC gives it the
following explicit cellular decomposition. The 0-cells (vertices) are the objects of
C. The 1-cells (edges) are the morphisms in C, excluding all identity morphisms,
and they are attached to their source and target. For each pair (f, g) of composable
maps in C, attach a 2-simplex, using the above picture of B3 as the model. (Ignore
pairs (f, g) where either f or g is an identity.) Inductively, given an n-tuple of
composable maps in C (none an identity map), c0 → c1 → · · · → cn, attach an
n-simplex, using B(n+ 1) as the model. By (3), BC is the union of these spaces,
equipped with the weak topology.
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Notice that this recipe implies a canonical cellular homeomorphism between BC
and the realization BCop of the opposite category Cop. In effect, the recipe doesn’t
notice which way the arrows run.

Example 3.1.2. Let C2 be the category with one object and two morphisms, 1
and σ, with σ2= 1. The recipe tells us that BC2 has exactly one n-cell for each n,
attached to the (n−1)-cell by a map of degree 2 (corresponding to the first and last
faces of the n-simplex). Therefore the n-skeleton of BC2 is the projective n-space
RPn, and their union BC2 is the infinite projective space RP∞.

Example 3.1.3. Any group G (or monoid) may be regarded as a category with
one object. The realization BG of this category is the space studied in Section 1.
The recipe 3.1.1 shows that BG has only one vertex, and one 1-cell for every
nontrivial element of G.

Although the above recipe gives an explicit description of the cell decomposition
of BC, it is a bit vague about the attaching maps. To be more precise, we shall
assume that the reader has a slight familiarity with the basic notions in the theory
of simplicial sets, as found for example in [WHomo] or [May]. A simplicial set X
is a contravariant functor ∆→ Sets, where ∆ denotes the subcategory of ordered
sets on the objects {0,1, ...,n, ...}. Alternatively, it is a sequence of sets X0, X1, . . . ,
together with “face” maps ∂i : Xn → Xn−1 and “degeneracy maps” σi : Xn → Xn+1

(0 ≤ i ≤ n), subject to certain identities for the compositions of these maps.
We may break down the recipe for BC into two steps: we first construct a

simplicial set NC, called the nerve of the category C, and then set BC = |NC|.
Definition 3.1.4 (The nerve of C). The nerve NC of a small category C

is the simplicial set defined by the following data. Its n-simplices are functors
c:n+ 1→ C, i.e., diagrams in C of the form

c0 → c1 → · · · → cn.

The ith face ∂i(c) of this simplex is obtained by deleting ci in the evident way; to

get the ith degeneracy σi(c), one replaces ci by ci
=−→ ci.

The geometric realization |X·| of a simplicial set X· is defined to be the CW
complex obtained by following the recipe 3.1.1 above, attaching an n-cell for each
nondegenerate n-simplex x, identifying the boundary faces of the simplex with the
(n − 1)-simplices indexed by the ∂ix. See [WHomo, 8.1.6] or [May, §14] for more
details.
BC is defined as the geometric realization |NC| of the nerve of C. From this

prescription, it is clear that BC is given by recipe 3.1.1 above.

By abuse of notation, we will say that a category is contractible, or connected,
or has any other topological property if its geometric realization has that property.
Similarly, we will say that a functor F :C → D is a homotopy equivalence if BF is
a homotopy equivalence BC ≃ BD.

Homotopy-theoretic properties 3.2. A natural transformation η:F0 ⇒ F1

between two functors Fi:C → D gives a homotopy BC × [0, 1]→ BD between the
maps BF0 and BF1. This follows from (4) and (6) of 3.1, because η may be viewed
as a functor from C × 2 to D whose restriction to C × {i} is Fi.



26 IV. DEFINITIONS OF HIGHER K-THEORY

As a consequence, any adjoint pair of functors L:C → D, R:D → C induces a
homotopy equivalence between BC and BD, because there are natural transforma-
tions LR⇒ idD and idC ⇒ RL.

Example 3.2.1 (Smallness). Any equivalence C0
F−→ C between small cate-

gories induces a homotopy equivalence BC0
∼−→ BC, because F has an adjoint.

In practice, we will often work with a category C, such as P(R) or M(R), which
is not actually a small category, but which is skeletally small (II.6.1.3). This means
that C is equivalent to a small category, say to C0. In this case, we can use BC0

instead of the mythical BC, because any other choice for C0 will have a homotopy
equivalent geometric realization. We shall usually overlook this fine set-theoretic
point in practice, just as we did in defining K0 in chapter II.

Example 3.2.2 (Initial objects). Any category with an initial object is con-
tractible, because then the natural functor C → 1 has a left adjoint. Similarly, any
category with a terminal object is contractible.

For example, suppose given an object d of a category C. The comma category
C/d of objects over d has as its objects the morphisms f : c→ d in C with target d.
A morphism in the comma category from f to f ′: c′ → d is a morphism h: c→ c′ so
that f = f ′h. The comma category C/d is contractible because it has a terminal

object, namely the identity map idd: d
=−→ d. The dual comma category d\C with

objects d→ c is similar, and left to the reader.

Example 3.2.3 (Comma categories). Suppose given a functor F :C → D
and an object d of D. The comma category F/d has as its objects all pairs (c, f)
with c an object in C and f a morphism in D from F (c) to d. By abuse of notation,

we shall write such objects as F (c)
f−→ d. A morphism in F/d from this object to

F (c′)
f ′

−→ d is a morphism h: c → c′ in C so that the following diagram commutes
in D.

F (c)
F (h)−−−→ F (c′)

f ց ւf ′

d

There is a canonical forgetful functor j:F/d→ C, j(c, f) = c, and there is a natural
transformation η(c,f) = f from the composite F ◦j:F/d→ D to the constant functor
with image d. So B(F ◦ j) is a contractible map. It follows that there is a natural
continuous map from B(F/d) to the homotopy fiber of BC → BD.

There is a dual comma category d\F , whose objects are written as d −→ F (c), and
morphisms are morphisms h: c→ c′ in C. It also has a forgetful functor to C, and a
map from B(d\F ) to the homotopy fiber of BC → BD. In fact, d\F = (d/F op)op.

In the same spirit, we can define comma categories F/D (resp., D\F ); an object
is just an object of F/d (resp., of d\F ) for some d in D. A morphism in F/D from
(c, F (c) → d) to (c′, F (c′) → d′) is a pair of morphisms c → c′, d → d′ so that the
two maps F (c) → d′ agree; there is an evident forgetful functor F/D → C × D.
A morphism in D\F from (c, d → F (c)) to (c′, d′ → F (c′)) is a pair of morphisms
c→ c′, d′ → d so that the two maps d′ → F (c′) agree; there is an evident forgetful
functor D\F → Dop × C.
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The set π0 of components of a category

The set π0(X) of connected components of any CW complex X can be described
as the set of vertices modulo the incidence relation of edges. For BC this takes
the following form. Let obj(C) denote the set of objects of C, and write π0(C) for
π0(BC).

Lemma 3.3. Let ∼ be the equivalence relation on obj(C) which is generated by
the relation that c ∼ c′ if there is a morphism in C between c and c′. Then

π0(C) = obj(C)/ ∼ .

Translation categories 3.3.1. Suppose that G is a group, or even a monoid,
acting on a set X. The translation category G

∫
X is defined as the category whose

objects are the elements of X, with Hom(x, x′) = {g ∈ G|g ·x = x′}. By Lemma 3.3,
π0(G

∫
X) is the orbit spaceX/G. The components of G

∫
X are described in Ex. 3.2.

Thinking of a G-set X as a functor G→ CAT , the translation category becomes
a special case of the following construction, due to Grothendieck.

Example 3.3.2. Let I be a small category. Given a functor X: I → Sets, let
I
∫
X denote the category of pairs (i, x) with i an object of I and x ∈ X(i), in which

a morphism (i, x) → (i′, x′) is a morphism f : i → i′ in I with X(f)(x) = x′. By
Lemma 3.3 we have π0(I

∫
X) = colimi∈I X(i).

More generally, given a functor X: I → CAT , let I
∫
X denote the category of

pairs (i, x) with i an object of I and x an object of X(i), in which a morphism
(f, φ): (i, x) → (i′, x′) is given by a morphism f : i → i′ in I and a morphism
φ:X(f)(x)→ x′ in X(i′). Using Lemma 3.3, it is not hard to show that π0(I

∫
X) =

colimi∈I π0X(i).
For example, if F : C → D is a functor then d 7→ F/d is a functor on D, and

D
∫
(F/−) is F/D, while d 7→ d\F is a functor on Dop, and D

∫
(−\F ) is Dop\F .

The fundamental group π1 of a category

Suppose that T is a set of morphisms in a category C. The graph of T is the
1-dimensional subcomplex of BC consisting of the edges corresponding to T and
their incident vertices. We say that T is a tree in C if its graph is contractible (i.e.,
a tree in the sense of graph theory). If C is connected then a tree T is maximal
(a maximal tree) just in case every object of C is either the source or target of a
morphism in T . By Zorn’s Lemma, maximal trees exist when C 6= ∅.

Classically, the fundamental group π1(Γ) of the 1-skeleton Γ of BC is a free group
on symbols [f ], one for every non-identity morphism f in C not in T . (The loop
is the composite of f with the unique paths in the tree between the basepoint and
the source and target of f .) The following well known formula for the fundamental
group of BC is a straight-forward application of Van Kampen’s Theorem.

Lemma 3.4. Suppose that T is a maximal tree in a small connected category C.
Then the group π1(BC) has the following presentation: it is generated by symbols
[f ], one for every morphism in C, modulo the relations that

(1) [t] = 1 for every t ∈ T , and [idc] = 1 for the identity morphism idc of each
object c.

(2) [f ] · [g] = [f ◦ g] for every pair (f, g) of composable morphisms in C.
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This presentation does not depend upon the choice of the object c0 of C chosen
as the basepoint. Geometrically, the class of f : c1 → c2 is represented by the unique
path in T from c0 to c1, followed by the edge f , followed by the unique path in T
from c2 back to c0.

Application 3.4.1 (Groups). Let G be a group, considered as a category with
one object. Since BG has only one vertex, BG is connected. By Lemma 3.4 (with
T empty) we see that π1(BG) = G. In fact, πi(BG) = 0 for all i ≥ 2. (See Ex. 3.2.)
BG is often called the classifying space of the group G, for reasons discussed in
Examples 3.9.2 and 3.9.3 below.

Application 3.4.2 (Monoids). If M is a monoid then BM has only one ver-
tex. This time, Lemma 3.4 shows that the group π = π1(BM) is the group com-
pletion (Ex. II.1.1) of the monoid M .

For our purposes, one important thing about BG is that its homology is the
same as the ordinary Eilenberg-MacLane homology of the group G (see [WHomo,
6.10.5 or 8.2.3]). In fact, if M is any G-module then we may consider M as a local
coefficient system on BG (see 3.5.1). The cellular chain complex used to form the
homology of BG with coefficients in M is the same as the canonical chain complex
used to compute the homology of G, so we have H∗(BG;M) = H∗(G;M). As a
special case, we have H1(BG;Z) = H1(G;Z) = G/[G,G], where [G,G] denotes the
commutator subgroup of G, i.e., the subgroup of G generated by all commutators
[g, h] = ghg−1h−1 (g, h ∈ G).

(3.5) The homology of C and BC. The ith homology of a CW complex
X such as BC is given by the homology of the cellular chain complex C∗(X). By
definition, Cn(X) is the free abelian group on the n-cells of X. If e is an n+ 1-cell
and f is an n-cell, then the coefficient of [f ] in the boundary of [e] is the degree of

the map Sn
ε−→ X(n) f−→ Sn, where ε is the attaching map of e and the second map

is the projection from X(n) (the n-skeleton of X) onto Sn given by the n-cell f .
For example, H∗(BC;Z) is the homology of the unreduced cellular chain complex

C∗(BC), which in degree n is the free abelian group on the set of all n-tuples

(f1, ..., fn) of composable morphisms in C, composable in the order c0
f1−→ c1 →

· · · fn−→ cn. The boundary map in this complex sends the generator (f1, ..., fn) to
the alternating sum obtained by succesively deleting the ci in the evident way:

(f2, ..., fn)− (f2f1, f3, ..., fn) + · · · ± (..., fi+1fi, ...)∓ · · · ± (..., fnfn−1)∓ (..., fn−1).

More generally, for each functor M :C → Ab we let Hi(C;M) denote the ith

homology of the chain complex

· · · →
∐

c0→···→cn

M(c0)→ · · · →
∐

c0→c1

M(c0)→
∐

c0

M(c0).

The final boundary map sends the copy of M(c0) indexed by c0
f−→ c1 to M(c0)⊕

M(c1) by x 7→ (−x, fx). The cokernel of this map is the usual description for the
colimit of the functor M , so H0(C;M) = colimc∈CM(c).
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Local coefficients 3.5.1. A functor C → Sets is said to be morphism-
inverting if it carries all morphisms of C into isomorphisms. By Ex. 3.1, morphism-
inverting functors are in 1–1 correspondence with covering spaces of BC. Therefore
the morphism-inverting functors M :C → Ab are in 1–1 correspondence with local
coefficient systems on the topological space BC. In this case, the groups Hi(C;M)
are canonically isomorphic to Hi(BC;M), the topologist’s homology groups of BC
with local coefficients M . The isomorphism is given in [Wh, VI.4.8].

Bisimplicial Sets

A bisimplicial set X is a contravariant functor ∆ ×∆ → Sets, where ∆ is the
subcategory of ordered sets on the objects {0,1, ...,n, ...}. Alternatively, it is a
doubly indexed family Xp,q of sets, together with “horizontal” face and degeneracy
maps (∂hi : Xp,q → Xp−1,q and σhi : Xp,q → Xp+1,q) and “vertical” face and
degeneracy maps (∂vi : Xp,q → Xp,q−1 and σvi : Xp,q → Xp,q+1), satisfying the
horizontal and vertical simplicial identities and such that horizontal maps commute
with vertical maps. In particular, each Xp,· and X·,q is a simplicial set.

Definition 3.6. The geometric realization BX of a bisimplicial set X is ob-
tained by taking one copy of the product ∆p ×∆q for each element of Xp,q, induc-
tively identifying its horizontal and vertical faces with the appropriate ∆p−1×∆q or
∆p ×∆q−1, and collapsing horizontal and vertical degeneracies. This construction
is sometimes described as a coend: BX =

∫
p,q
Xp,q ×∆p ×∆q.

There is a diagonalization functor diag from bisimplicial sets to simplicial sets
(diag(X)p = Xp,p), and it is well known (see [BF,B.1]) that BX is homeomorphic
to B diag(X). The following theorem is also well known; see [Wa78, p. 164–5] or
[Q341, p. 98] for example.

Theorem 3.6.1. Let f : X → Y be a map of bisimplicial sets.
(i) If each simplicial map Xp,∗ → Yp,∗ is a homotopy equivalence, so is BX → BY .
(ii) If Y is the nerve of a category I (constant in the second simplicial coordinate),
and f−1(i) → f−1(j) is a homotopy equivalence for every i → j in I, then each
B(f−1(i))→ BX → B(I) is a homotopy fibration sequence.

Example 3.6.2. (Quillen) If F : C → D is a functor, the canonical functor
D\F → C is a homotopy equivalence, where D\F is the comma category of Exam-
ple 3.2.3. To see this, let X denote the bisimplicial set such that Xp.q is the set of
all pairs of sequences

(dq → · · · → d0 → F (c0), c0 → · · · → cp);

the horizontal and vertical faces come from the nerves of C and D. Consider the
projection of X onto the nerve of C. Since NCp is the discrete set of all sequences
c0 → · · · → cp, the inverse image of this sequence is isomorphic to the nerve of
D\F (c0), and D\F (c0) is contractible since it has a terminal object. Theorem 3.6.1

applies to yield BX
∼−→ BC. The simplicial set diag(X) is the nerve of D\F , and

the composition B(D\F ) ∼−→ BX
∼−→ BC is the canonical map, whence the result.

Homotopy Fibers of Functors
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If F : C → D is a functor, it is useful to study the realization mapBF :BC → BD
in terms of homotopy groups, and for this we want a category-theoretic interpre-
tation of the homotopy fiber (1.2). The näıve approximations to the homotopy
fiber are the realization of the comma categories F/d and its dual d\F . Indeed, we
saw in 3.2.3 that there are continuous maps from both B(F/d) and B(d\F ) to the
homotopy fiber.

Here is the fundamental theorem used to prove that two categories are homotopy
equivalent. It was proven by Quillen in [Q341]. Note that it has a dual formulation,
replacing d\F by F/d, because BD ≃ BDop.

3.7 Quillen’s Theorem A. Let F :C → D be a functor such that d\F is

contractible for every d in D. Then BF :BC
≃−→ BD is a homotopy equivalence.

Proof. Consider the comma category D\F of 3.2.3, which is equipped with
functors C ←− D\F −→ Dop such that BC ←− B(D\F ) is a homotopy equivalence
(by 3.6.2). The functor D\F → D\D, sending (d → F (c), c) to (d → F (c), F (c)),
fits into a commutative diagram of categories

C
≃←−−−− D\F −−−−→ Dop

F

y
y

∥∥∥

D
≃←−−−− D\D −−−−→ Dop

Therefore it suffices to show that B(D\F ) → BDop is a homotopy equivalence.

This map factors as B(D\F ) ≃ BX
π−→ BDop, where X is the bisimplicial set

of Example 3.6.2 and π is the projection. Consider the simplicial map π∗,q from
X∗,q to the qth component of the nerve of Dop, which is the discrete set of all
sequences dq → · · · → d0 in D. For each such sequence, the inverse image in
X∗,q is the nerve of d0\F , which is assumed to be contractible. By Theorem 3.6.1,
B(D\F ) ≃ BX → BD is a homotopy equivalence, as required. �

Example 3.7.1. If F :C → D has a left adjoint L, then d\F is isomorphic to
the comma category L(d)\C, which is contractible by Example 3.2.2. In this case,
Quillen’s Theorem A recovers the observation in 3.2 that C and D are homotopy
equivalent.

Example 3.7.2. Consider the inclusion of monoids i : N →֒ Z as a functor
between categories with one object ∗. Then ∗\i is isomorphic to the translation
category N

∫
Z, which is contractible (why?). Quillen’s Theorem A shows that

BN ≃ BZ ≃ S1.

The inverse image F−1(d) of an object d is the subcategory of C consisting of
all objects c with F (c) = d, and all morphisms h in C mapping to the identity of

d. It is isomorphic to the full subcategory of F/d consisting of pairs (c, F (c)
=−→ d),

and also to the full subcategory of pairs (d
=−→ F (c), c) of d\F . It will usually not

be homotopy equivalent to either F/d or d\F .
One way to ensure that F−1(d) is homotopic to a comma category is to assume

that F is either pre-fibered or pre-cofibered in the following sense.
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Fibered and Cofibered functors 3.7.3. (Cf. [SGA 1, Exp. VI]) We say that
a functor F :C → D is pre-fibered if for every d in D the inclusion F−1(d) →֒ d\F
has a right adjoint. This implies that BF−1(d) ≃ B(d\F ), and the base change
functor f∗:F−1(d′) → F−1(d) associated to a morphism f : d → d′ in D is defined
as the composite F−1(d′) →֒ (d\F )→ F−1(d). F is called fibered if it is pre-fibered
and g∗f∗ = (fg)∗ for every pair of composable maps f, g, so that F−1 gives a
contravariant functor from D to CAT .

Dually, we say that F is pre-cofibered if for every d the inclusion F−1(d) →֒ F/d
has a left adjoint. In this case we have BF−1(d) ≃ B(F/d). The cobase change
functor f∗:F

−1(d) → F−1(d′) associated to a morphism f : d → d′ in D is defined
as the composite F−1(d) →֒ (F/d′) → F−1(d′). F is called cofibered if it is pre-
cofibered and (fg)∗ = f∗g∗ for every pair of composable maps f, g, so that F−1

gives a covariant functor from D to CAT .

These notions allow us to state a variation on Quillen’s Theorem A.

Corollary 3.7.4. Suppose that F : C → D is either pre-fibered or pre-cofibered,
and that F−1(d) is contractible for each d in D. Then BF is a homotopy equivalence
BC ≃ BD.

Example 3.7.5. Cofibered functors overD are in 1–1 correspondence with func-
torsD → CAT . We have already mentioned one direction: if F :C → D is cofibered,
F−1 is a functor from D to CAT . Conversely, for each functor X:D → CAT ,
the category D

∫
X of Example 3.3.2 is cofibered over D by the forgetful functor

(d, x) 7→ d. It is easy to check that these are inverses: C is equivalent to D
∫
F−1.

Here is the fundamental theorem used to construct homotopy fibration sequences
of categories. It was originally proven in[Q341]. Note that it has a dual formulation,
in which d\F is replaced by F/d; see Ex. 3.6.

3.8 Quillen’s Theorem B. Let F :C → D be a functor such that for every
morphism d→ d′ in D the induced functor d′\F → d\F is a homotopy equivalence.
Then for each d in D the geometric realization of the sequence

d\F j−→ C
F−→ D

is a homotopy fibration sequence. Thus there is a long exact sequence

· · · → πi+1(BD)
∂−→ πiB(d\F ) j−→ πi(BC)

F−→ πi(BD)
∂−→ · · · .

Proof. We consider the projection functor X
p−→ NDop of 3.6.2. Since p−1(d)

is the nerve of d\F , we may apply Theorem 3.6.1 to conclude that B(d\F ) →
BX → BDop is a homotopy fibration sequence. Since B(d\F ) → B diag(X) =

B(D\F ) ≃−→ BC is induced from j : d\F → C, the theorem follows from the
diagram

d\F −−−−→ D\F −−−−→ Dop

y F

y
∥∥∥

∗ ≃ d\D −−−−→ D\D ≃−−−−→ Dop. �
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Corollary 3.8.1. Suppose that F is pre-fibered, and for every f : d→ d′ in D
the base change f∗ is a homotopy equivalence. Then for each d in D the geometric
realization of the sequence

F−1(d)
j−→ C

F−→ D

is a homotopy fibration sequence. Thus there is a long exact sequence

· · · → πi+1(BD)
∂−→ πiBF

−1(d)
j−→ πi(BC)

F−→ πi(BD)
∂−→ · · · .

Topological Categories 3.9. If C = Ctop is a topological category (i.e.,
the object and morphism sets form topological spaces), then the nerve of Ctop

is a simplicial topological space. Using the appropriate geometric realization of
simplicial spaces, we can form the topological space BCtop = |NCtop|. It has the
same underlying set as our previous realization BCδ (the δ standing for “discrete,”
i.e., no topology), but the topology of BCtop is more intricate. Since the identity
may be viewed as a continuous functor Cδ → Ctop between topological categories,
it induces a continuous map BCδ → BCtop.

For example, any topological groupG = Gtop is a topological category, so we need
to distinguish between the two connected spaces BGδ and BGtop. It is traditional
to write BG for BGtop, reserving the notation BGδ for the less structured space.
As noted above, BGδ has only one nonzero homotopy group: π1(BG

δ) = Gδ. In
contrast, the loop space Ω(BGtop) is Gtop, so πiBG

top = πi−1G
top for i > 0.

Example 3.9.1. Let G = R be the topological group of real numbers under
addition. Then BRtop is contractible because Rtop is, but BRδ is not contractible
because π1(BRδ) = R.

Example 3.9.2 (BU). The unitary groups Un are topological groups, and we
see from I.4.10.1 that BUn is homotopy equivalent to the infinite complex Grass-
mannian manifold Gn, which classifies n-dimensional complex vector bundles by
Theorem I.4.10. The unitary group Un is a deformation retract of the complex
general linear group GLn(C)

top. Thus BUn and BGLn(C)
top are homotopy equiv-

alent spaces. Taking the limit as n → ∞, we have a homotopy equivalence
BU ≃ BGL(C)top.

By Theorem II.3.2, KU(X) ∼= [X,Z × BU ] and K̃U(X) ∼= [X,BU ] for every
compact space X. By Ex. II.3.11 we also have KU−n(X) ∼= [X,Ωn(Z×BU)] for all
n ≥ 0. In particular, for the one-point space ∗ the groups KU−n(∗) = πn(Z×BU)
are periodic of order 2: Z if n is even, 0 if not. This follows from the observation in
II.3.2 that the homotopy groups of BU are periodic — except for π0(BU), which
is zero as BU is connected.

A refinement of Bott periodicity states that ΩU ≃ Z× BU . Since Ω(BU) ≃ U ,
we have Ω2(Z×BU) ≃ Ω2BU ≃ Z×BU and Ω2U ≃ U . This yields the periodicity
formula: KU−n(X) = KU−n−2(X).

Example 3.9.3 (BO). The orthogonal group On is a deformation retract of the
real general linear group GLn(R)

top. Thus the spaces BOn and BGLn(R)
top are

homotopy equivalent, and we see from I.4.10.1 that they are also homotopy equiv-
alent to the infinite real Grassmannian manifold Gn. In particular, they classify
n-dimensional real vector bundles by Theorem I.4.10. Taking the limit as n→∞,
we have a homotopy equivalence BO ≃ BGL(R)top.
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Bott periodicity states that the homotopy groups of BO are periodic of order 8
— except for π0(BO) = 0, and that the homotopy groups of Z × BO are actually
periodic of order 8. These homotopy groups are tabulated in II.3.1.1. A refinement
of Bott periodicity states that Ω7O ≃ Z × BO. Since Ω(BO) ≃ O, we have
Ω8(Z×BO) ≃ Ω8(BO) ≃ Z×BO and Ω8O ≃ O.

By Definition II.3.5 and Ex. II.3.11, the (real) topological K-theory of a compact
space X is given by the formula KO−n(X) = [X,Ωn(Z×BO)], n ≥ 0. This yields
the periodicity formula: KO−n(X) = KO−n−8(X).

Bicategories

One construction that has proven useful in constructing spectra is the geometric
realization of a bicategory. Just as we could have regarded a small category A as
a special type of simplicial set, via its nerve 3.1.2 (A0 and A1 are the objects and
morphisms, all other An are pullbacks and ∂1 : A2 = A1 ×A0

A1 → A1 defines
composition), we can do the same with small bicategories.

Definition 3.10. A small bicategory C is a bisimplicial set such that every row
C·,q and column Cp,· is the nerve of a category. We refer to elements of C0,0, C1,0,
C0,1 and C1,1 as the objects, horizontal and vertical morphisms, and bimorphisms.
A bifunctor between bicategories is a morphism of the underlying bisimplicial sets.

Example 3.10.1. If A and B are categories, we can form the product bicate-
gory A ⊗ B. Its objects (resp., bimorphisms) are ordered pairs of objects (resp.,
morphisms) from A and B. Its (p, q)-morphisms are pairs of functors p+ 1 → A,
q+ 1→ B.

It is easy to see that diag(A⊗B) is the product category A×B, and that B(A⊗B)
is BA×BB. In particular B((p+ 1)× (q+ 1)) = ∆p ×∆q.

Bicategory terminology arose (in the 1960’s) from the following paradigm.

Example 3.10.2. For any category B, biB is the bicategory whose degree (p, q)
part consists of commutative diagrams arising from functors p+ 1×q+ 1→ B. In
particular, bimorphisms are commutative squares in B; the horizontal and vertical
edges of such a square are its associated horizontal and vertical morphisms. If A is
a subcategory, AB is the sub-bicategory of biB whose vertical maps are in A.

We may also regard the small category B as a bicategory which is constant in
the vertical direction (Bp,q = NBp); this does not affect the homotopy type BB
since diagB recovers the category B. The natural inclusion into biB is a homotopy
equivalence by Ex. 3.13. It follows that any bifunctor A ⊗ B → biC induces a
continuous map

BA×BB → B biC ≃ BC.

EXERCISES

3.1 Covering spaces. If X: I → Sets is a morphism-inverting functor (3.5.1), use
the recipe 3.1.1 to show that the forgetful functor I

∫
X → I of Example 3.3.2 makes

B(I
∫
X) into a covering space of BI with fiber X(i) over each vertex i of BI.

Conversely, if E
π−→ BI is a covering space, show that X(i) = π−1(i) defines a

morphism-inverting functor on I, where i is considered as a 0-cell of BI. Conclude
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that these constructions give a 1–1 correspondence between covering spaces of BI
and morphism-inverting functors. (See [Q341, p. 90].)
3.2 Translation categories. Suppose that a group G acts on a set X, and form
the translation category G

∫
X. Show that B(G

∫
X) is homotopy equivalent to

the disjoint union of the classifying spaces BGx of the stabilizer subgroups Gx,
one space for each orbit in X. For example, if X is the coset space G/H then
B(G

∫
X) ≃ BH.

In particular, if X = G is given the G-set structure g · g′ = gg′, this shows
that B(G

∫
G) is contractible, i.e., the universal covering space of BG. Use this to

calculate the homotopy groups of BG, as described in Example 3.4.1.

3.3 Let H be a subgroup of G, and ι:H →֒ G the inclusion as a subcategory.
(a) Show that ι/∗ is the category H

∫
G of Ex. 3.1. Conclude that the homotopy

fiber of BH → BG is the discrete set G/H, while Bι−1(∗) is a point.
(b) Use Ex. 3.2 to give another proof of (a).

3.4 If C is a filtering category [WHomo, 2.6.13], show that BC is contractible.
Hint: It suffices to show that all homotopy groups are trivial (see [Wh, V.3.5]).
Any map from a sphere into a CW complex lands in a finite subcomplex, and every
finite subcomplex of BC lands in the realization BD of a finite subcategory D of
C; D lies in another subcategory D′ of C which has a terminal object.

3.5 Mapping telescopes. If ∪n denotes the union of the categories n of 3.1, then

a functor ∪n C−→ CAT is just a sequence C0 → C1 → C2 → · · · of categories.
Show that the geometric realization of the category L = (∪n)

∫
C of Example 3.3.2

is homotopy equivalent to BC, where C is the colimit of the Cn. In particular, this
shows that BL ≃ limn→∞BCn. Hint: Cn ≃ n

∫
C.

3.6 Suppose that F :C → D is pre-cofibered (Definition 3.7.3).
(a) Show that F op : Cop → Dop is pre-fibered. If F is cofibered, F op is fibered.
(b) Derive the dual formulation of Quillen’s theorem B, using F/d and F op.
(c) If each cobase change functor f∗ is a homotopy equivalence, show that the

geometric realization of F−1(d) −→ C
F−→ D is a homotopy fibration sequence

for each d in D, and there is a long exact sequence:

· · · → πi+1(BD)
∂−→ πiBF

−1(d) −→ πi(BC)
F−→ πi(BD)

∂−→ · · · .

3.7 Let F :C → D be a cofibered functor (3.7.3). Construct a first quadrant double
complex E0 in which E0

pq is the free abelian group on the pairs (dp → · · · → d0 →
F (c0), c0 → · · · → cq) of sequences of composable maps in C andD. By filtering the
double complex by columns, show that the homology of the total complex Tot E0

is Hq(Tot E
0) ∼= Hq(C;Z). Then show that the row filtration yields a spectral

sequence converging to H∗(C;Z) with E2
pq = Hp(D;HqF

−1), the homology of D

with coefficients in the functor d 7→ Hq(F
−1(d);Z) described in 3.5.

3.8 A lax functor M: I → CAT consists of functions assigning: (1) a category M(i)

to each object i; (2) a functor f∗:M(i) → M(j) to every map i
f−→ j in I; (3) a

natural transformation (idi)∗ ⇒ idM(i) for each i; (4) a natural transformation

(fg)∗ ⇒ f∗g∗ for every pair of composable maps in I. This data is required to be
“coherent” in the sense that the two transformations (fgh)∗ ⇒ f∗g∗h∗ agree, and
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so do the various transformations f∗ ⇒ f∗. For example, a functor is a lax functor
in which (3) and (4) are identities.

Show that the definitions of objects and morphisms in Example 3.3.2 define
a category I

∫
M, where the map φ′′ in the composition (f ′f, φ′′) of (f, φ) and

(f ′, φ′) is (f ′f)∗(x) → f ′∗f∗(x) → f ′∗(x
′) → x′′. Show that the projection functor

π: I
∫
M → I is pre-cofibered.

3.9 Subdivision. If C is a category, its Segal subdivision Sub(C) is the category
whose objects are the morphisms in C; a morphism from i : A→ B to i′ : A′ → B′

is a pair of maps (A′ −→ A,B −→ B′) so that i′ is A′ −→ A
i−→ B −→ B′.

(a) Draw the Segal subdivisions of the unit interval 2 and the 2-simplex 3.
(b) Show that the source and target functors Cop ←− Sub(C) −→ C are homotopy

equivalences. Hint: Use Quillen’s Theorem A and 3.2.2.

3.10 Given a simplicial set X, its Segal subdivision Sub(X) is the sequence of sets
X1, X3, X5, . . . , made into a simplicial set by declaring the face maps ∂′i : X2n+1 →
X2n−1 to be ∂i∂2n+1−i and σ

′
i : X2n+1 → X2n+3 to be σiσ2n+1−i (0 ≤ i ≤ n).

If X is the nerve of a category C, show that Sub(X) is the nerve of the Segal
subdivision category Sub(C) of Ex. 3.9.
3.11 (Waldhausen) Let f : X → Y be a map of simplicial sets. For y ∈ Yn, define
the simplicial set f/(n, y) to be the pullback of X and the n-simplex ∆n along
f : X → Y and the map y : ∆n → Y . Thus an m-simplex consists of a map
α : m→ n in ∆ and an x ∈ Xm such that f(x) = α∗(y). Prove that:
(A) If each f/(n, y) is contractible, then f is a homotopy equivalence;

(B) If for every m
α−→ n in ∆ and every y ∈ Yn the map f/(m,α∗y) → f/(n, y)

is a homotopy equivalence, then each |f/(n, y)| → X → Y is homotopy fibration
sequence.
Hint: Any simplicial set X determines a category ∆op

∫
X cofibered over ∆op,

by 3.3.2 and 3.7.5. Now apply Theorems A and B.

3.12 If C is a category, its arrow category C/C has the morphisms of C as its objects,
and a map (a, b) : f → f ′ in C/C is a commutative diagram in C:

A
f−−−−→ B

a

y
yb

A′
f ′

−−−−→ B′

If f : A→ B, the source s(f) = A and target t(f) = B of f define functors C/C → C.
Show that s is a fibered functor, and that t is a cofibered functor. Then show that
both s and t are homotopy equivalences.

3.13 Swallowing Lemma. If A is a subcategory of B, show that the bicategory
inclusion B ⊂ AB of 3.10.2 induces a homotopy equivalence BB ≃ B(AB). When
A = B this proves that BB ≃ B(biB). Hint: Show that B ≃ Np(A)B for all p.

3.14 Diagonal Category. (Waldhausen [Wa78]) Show that the functor from small
categories to small bicategories sending B to biB (3.10.2) has a left adjoint, sending
C to its diagonal category, and that the diagonal category of the bicategory A⊗B is
the product category A×B. Hint: both the horizontal and vertical morphisms of a
bicategory C yield morphisms, and every bimorphism yields an equivalence relation
for the composition of horizontal and vertical morphisms.
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§4. Symmetric Monoidal Categories

The geometric realization BS of a symmetric monoidal category is an H-space
with a homotopy-commutative, homotopy-associative product. To see this, recall
from definition II.5.1 that a symmetric monoidal category is a category S with
a functor �:S × S → S which has a unit object “e” and is associative and is
commutative, all up to coherent natural isomorphism. By 3.1(6) the geometric
realization of � is the “product” map (BS) × (BS) ∼= B(S × S) → BS. The
natural isomorphisms s�e ∼= s ∼= e�s imply that the vertex e is an identity up to
homotopy, i.e., that BS is an H-space. The other axioms imply that the product
on BS is homotopy commutative and homotopy associative.

In many cases e is an initial object of S, and therefore the H-space BS is con-
tractible by Example 3.2.2. For example, any additive category A is a symmetric
monoidal category (with � = ⊕), and e = 0 is an initial object, so BA is con-
tractible. Similarly, the category Setsfin of finite sets is symmetric monoidal (�
being disjoint union) by I.5.2, and e = ∅ is initial, so BSetsfin is contractible.

Here is an easy way to modify S in order to get an interesting H-space.

Definition 4.1. Let isoS denote the subcategory of isomorphisms in S. It has
the same objects as S, but its morphisms are the isomorphisms in S. Because isoS
is also symmetric monoidal, B(isoS) is an H-space.

By Lemma 3.3, the abelian monoid π0(isoS) is just the set of isomorphism classes
of objects in S — the monoid Siso considered in II.5. In fact, isoS is equivalent
to the disjoint union

∐
AutS(s) of the 1–object categories AutS(s), and B(isoS)

is homotopy equivalent to the disjoint union of the classifying spaces BAut(s),
s ∈ Siso.

Examples 4.1.1. B(isoS) is often an interesting H-space.
(a) In the category Setsfin of finite (pointed) sets, the group of automorphisms of

any n-element set is isomorphic to the permutation group Σn. Thus the subcategory
isoSetsfin is equivalent to

∐
Σn, the disjoint union of the one-object categories Σn.

Thus the classifying space B(isoSetsfin) is homotopy equivalent to the disjoint
union of the classifying spaces BΣn, n ≥ 0.

(b) The additive category P(R) of finitely generated projective R-modules has
0 as an initial object, so BP(R) is a contractible space. However, its subcategory
P = isoP(R) of isomorphisms is more interesting. The topological space BP is
equivalent to the disjoint union of the classifying spaces BAut(P ) as P runs over
the set of isomorphism classes of finitely generated projective R-modules.

(c) Fix a ring R, and let F(R) be the category
∐
GLn(R) whose objects are the

based free R-modules {0, R,R2, · · · , Rn, · · · } (these objects are distinct because the
bases have different orders; see Section I.1). There are no maps in F(R) between
Rm and Rn if m 6= n, and the self-maps of Rn form the group GLn(R). This is
a symmetric monoidal category: Rm�Rn = Rm+n by concatenation of bases; if a

and b are morphisms, a�b is the matrix
(
A
0

0
B

)
. The space BF(R) is equivalent to

the disjoint union of the classifying spaces BGLn(R).
If R satisfies the Invariant Basis Property (I.1.1), then F(R) is a full subcategory

of isoP(R). In this case, we saw in II.5.4.1 that F(R) is cofinal in isoP(R).
(d) Fix a commutative ring R, and let S = Pic(R) be the category of invertible

R-modules and their isomorphisms. This is a symmetric monoidal category in which
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� is tensor product and e is R; see II.5.2(5). In this case, S = isoS and Siso is the
Picard group Pic(R) discussed in section I.3. By Lemma I.3.3, Aut(L) = R× for
every L. Thus Pic(R) is equivalent to a disjoint union of copies of R×, and B(Pic)
is homotopy equivalent to the product Pic(R)×B(R×).

(e) If F is a field, we saw in II.5.7 that the categories SBil(F ) and Quad(F ) =
Quad+(F ) of symmetric inner product spaces and quadratic spaces are symmetric
monoidal categories. More generally, let A be any ring with involution, and ǫ = ±1.
Then the category Quadǫ(A) of nonsingular ǫ-quadratic A-modules is a symmetric
monoidal category with � = ⊕ and e = 0. See [B72, Bak] for more details.

(f) If G is a group, consider the category G-Setsfin of free G-sets X having
a finite number of orbits. This is symmetric monoidal under disjoint union (cf.
II.5.2.2). If X has n orbits, then Aut(X) is the wreath product G ≀ Σn. As in (a),
B(G-Setsfin) is equivalent to the disjoint union of the classifying spaces B(G ≀Σn).

There is a monoidal functor G-Setsfin → P(Z[G]) which sends X to the free
abelian group on the set X.

The S−1S Construction

In [GQ], Quillen gave a construction of a category S−1S such that K(S) =
B(S−1S) is a “group completion” of BS (see 4.4 below), provided that every map in
S is an isomorphism and every translation s�: AutS(t)→ AutS(s�t) is an injection.
The motivation for this construction comes from the construction of the universal
abelian group completion of an abelian monoid given in Chapter II, §1.

Definition 4.2 (S−1S). The objects of S−1S are pairs (m,n) of objects of S.
A morphism in S−1S is an equivalence class of composites

(m1,m2)
s�−−→ (s�m1, s�m2)

(f,g)−−−→ (n1, n2).

This composite is equivalent to

(m1,m2)
t�−→ (t�m1, t�m2)

(f ′,g′)−−−−→ (n1, n2)

exactly when there is an isomorphism α: s
≃−→ t in S so that composition with α�mi

sends f ′ and g′ to f and g.
A (strict) monoidal functor S → T induces a functor S−1S → T−1T .

Explanation 4.2.1. There are two basic types of morphisms in S−1S. The
first type is a pair of maps (f1, f2): (m1,m2) → (n1, n2) with fi:mi → ni in S,
arising from the inclusion of S × S in S−1S. The second type is a formal map
s�: (m,n)→ (s�m, s�n).

We shall say that translations are faithful in S if every translation Aut(s) →
Aut(s�t) in S is an injection. In this case every map in S−1S determines s, f and
g up to unique isomorphism.

Remark 4.2.2. S−1S is a symmetric monoidal category, with (m,n)�(m′, n′) =
(m�m′, n�n′), and the functor S → S−1S sending m to (m, e) is monoidal. Hence
the natural map BS → B(S−1S) is an H-space map, and π0(S) → π0(S

−1S) is a
map of abelian monoids.

In fact π0(S
−1S) is an abelian group, the inverse of (m,n) being (n,m), be-

cause of the existence of a morphism η in S−1S from (e, e) to (m,n)�(n,m) =
(m�n, n�m). Warning: η is not a natural transformation! See Ex. 4.3.
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Definition 4.3. Let S be a symmetric monoidal category in which every mor-
phism is an isomorphism. Its K-groups are the homotopy groups of B(S−1S):

K�
n (S) = πn(BS

−1S).

It is sometimes convenient to write K�(S) for the geometric realization B(S−1S),
and call it the K-theory space of S, so that K�

n (S) = πnK
�(S). By 4.2, a (strict)

monoidal functor S → T induces a map K�(S) → K�(T ) and hence homomor-
phisms K�

n (S)→ K�
n (T ).

In order to connect this definition up with the definition of K�
0 (S) given in

section II.5, we recall from 4.2.2 that the functor S → S−1S induces a map of
abelian monoids from π0(S) = Siso to π0(S

−1S).

Lemma 4.3.1. The abelian group K�
0 (S) = π0(S

−1S) is the group completion
of the abelian monoid π0(S) = Siso. Thus definition 4.3 agrees with the definition
of K�

0 (S) given in II.5.1.2.

Proof. Let A denote the group completion of π0(S), and consider the function
α(m,n) = [m] − [n] from the objects of S−1S to A. If s ∈ S and fi:mi → ni are
morphisms in S then in A we have α(m,n) = α(s�m, s�n) and α(m1,m2) = [m1]−
[m2] = [n1]− [n2] = α(n1, n2). By Lemma 3.3, α induces a set map π0(S

−1S)→ A.
By construction, α is an inverse to the universal homomorphismA→ π0(S

−1S). �

Group Completions

Group completion constructions for K-theory were developed in the early 1970’s
by topologists studying infinite loop spaces. These constructions all apply to sym-
metric monoidal categories.

Any discussion of group completions depends upon the following well-known
facts (see [Wh, III.7]). Let X be a homotopy commutative, homotopy associative
H-space. Its set of components π0X is an abelian monoid, and H0(X;Z) is the
monoid ring Z[π0(X)]. Moreover, the integral homology H∗(X;Z) is an associative
graded-commutative ring with unit.

We say that a homotopy associative H-space X is group-like if it has a homotopy
inverse; see [Wh, III.4]. Of course this implies that π0(X) is a group. When X
is a CW complex, the converse holds: if the monoid π0(X) is a group, then X is
group-like. (If π0(X) = 0 this is [Wh, X.2.2]; if π0(X) is a group, the proof in
loc. cit. still goes through as the shear map π0(X)2 → π0(X)2 is an isomorphism.)

For example, if S = isoS then π0(BS) is the abelian monoid Siso of isomorphism
classes, and H0(BS;Z) is the monoid ring Z[Siso]. In this case, the above remarks
show that BS is grouplike if and only Siso is an abelian group under �.

Definition 4.4 (Group Completion). Let X be a homotopy commutative,
homotopy associative H-space. A group completion of X is an H-space Y , together
with an H-space map X → Y , such that π0(Y ) is the group completion of the
abelian monoid π0(X) (in the sense of section I.1), and the homology ring H∗(Y ; k)
is isomorphic to the localization π0(X)−1H∗(X; k) of H∗(X; k) by the natural map,
for all commutative rings k.

If X is a CW complex (such as X = BS), we shall assume that Y is also a CW
complex. This hypothesis implies that the group completion Y is group-like.
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Lemma 4.4.1. If X is a group-like H-space then X its own group completion,
and any other group completion f : X → Y is a homotopy equivalence.

Proof. Since f is a homology isomorphism, it is an isomorphism on π0 and
π1. Therefore the map of basepoint components is a +–construction relative to the
subgroup 1 of π1(X), and Theorem 1.5 implies that X ≃ Y . �

Example 4.4.2 (Picard groups). Let R be a commutative ring, and con-
sider the symmetric monoidal category S = Pic(R) of Example II.5.2(5). Because
π0(S) is already a group, S and S−1S are homotopy equivalent (by lemma 4.4.1).
Therefore we get

K0Pic(R) = Pic(R), K1Pic(R) = U(R) and KnPic(R) = 0 for n ≥ 2.

The determinant functor from P = isoP(R) to Pic(R) constructed in section I.3
gives a map from K(R) = K(P) to KPic(R). Upon taking homotopy groups, this
yields the familiar maps det:K0(R) → Pic(R) of II.2.6 and det:K1(R) → R× of
III.1.1.1.

A phantom map φ : X → Y is a map such that, for every finite CW complex
A, every composite A → X → Y is null homotopic, i.e., φ∗ : [A,X] → [A, Y ] is
the zero map. If f : X → Y is a group completion then so is f + φ : X → Y for
every phantom map φ. Thus the group completion is not unique up to homotopy
equivalence whenever phantom maps exist.

The following result, taken from [CCMT, 1.2], shows that phantom maps are
essentially the only obstruction to uniqueness of group completions. We say that
two maps X → Y are weakly homotopic if they induce the same map on homotopy
classes [A,X] → [A, Y ]; if Y is an H-space, this means that their difference is a
phantom map.

Theorem 4.4.3. Let X be an H-space such that π0(X) is either countable or
contains a countable cofinal submonoid. If f ′ : X → X ′ and f ′′ : X → X ′′ are two
group completions, then there is a homotopy equivalence g : X ′ → X ′′, unique up
to weak homotopy, such that gf ′ and f ′′ are weak homotopy equivalent. (The map
g is also a weak H-map.)

The fact that gf ′ and f ′′ are weak homotopy equivalent implies that g is a
homology isomorphism, and hence is a homotopy equivalence by 4.4.1.

4.5. One can show directly that Z × BGL(R)+ is a group completion of BS
when S =

∐
GLn(R); see Ex. 4.9. We will see in theorem 4.8 below that the K-

theory space B(S−1S) is another group completion of BS, and then give an explicit
homotopy equivalence between B(S−1S) and Z×BGL(R)+ in 4.9. Here are some
other methods of group completion:

Segal’s ΩB Method 4.5.1.
If X is a topological monoid, such as

∐
BGLn(R) or

∐
BΣn, then we can form

BX, the geometric realization of the (one-object) topological category X (see 3.9).
In this case, ΩBX is an infinite loop space and the natural map X → ΩBX is a
group completion. For example, if X is the one-object monoid N then BN ≃ S1,
and ΩBN ≃ ΩS1 ≃ Z. That is, π0(ΩBN) is Z, and every component of ΩBN is
contractible. See [Adams] for more details.
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Machine Methods 4.5.2. (See [Adams].) If X isn’t quite a monoid, but the
homotopy associativity of its product is nice enough, then there are constructions
called “infinite loop space machines” which can construct a group completion Y of
X, and give Y the structure of an infinite loop space. All machines produce the
same infinite loop space Y (up to homotopy); see [MT]. Some typical machines are
described in [Segal], and [May74].

The realization X = BS of a symmetric monoidal category S is nice enough to
be used by infinite loop space machines. These machines produce an infinite loop
space K(S) and a map BS → K(S) which is a group completion. Most infinite
loop machines will also produce explicit deloopings of K(S) in the form of an Ω-
spectrum K(S), the K-theory spectrum of S, which is connective in the sense that
πnK(S) = 0 for n < 0. The production of K(S) is natural enough that monoidal
functors between symmetric monoidal categories induce maps of the corresponding
spectra.

Pairings and Products

A pairing of symmetric monoidal categories is a functor ⊗ : S1 × S2 → S such
that s⊗ 0 = 0⊗ s = 0, and there is a coherent natural bi-distributivity law

(a+ a′)⊗ (b+ b′) ∼= (a⊗ b)�(a⊗ b′)�(a′ ⊗ b)�(a′ ⊗ b′).

If S1 = S2 = S, we will just call this a pairing on S. Instead of making this technical
notion precise, we refer the reader to [May80, §2] and content ourselves with two
examples from 4.1.1: the product of finite sets is a pairing on Setsfin, and the
tensor product of based free modules is a pairing F(A)× F(B)→ F(A⊗ B). The
free module functor from Setsfin to F(A) preserves these pairings. The following
theorem was proven by Peter May in [May80, 1.6 and 2.1].

Theorem 4.6. A pairing S1×S2 → S of symmetric monoidal categories deter-
mines a natural pairing K(S1)∧K(S2)→ K(S) of infinite loop spaces in 4.5.2, as
well as a pairing of Ω-spectra K(S1)∧K(S2)→ K(S). This in turn induces bilinear
products Kp(S1)⊗Kq(S2)→ Kp+q(S). There is also a commutative diagram

BS1 ×BS2 −−−−→ BS1 ∧BS2
B⊗−−−−→ BS

y
y

y

K(S1)×K(S2) −−−−→ K(S1) ∧K(S2)
B⊗−−−−→ K(S).

From theorem 4.6 and the constructions in 1.10 and 4.9, repectively Ex. 1.12
and 4.9.3, we immediately deduce:

Corollary 4.6.1. When S is Setsfin or F(R), the product defined by Loday
(in 1.10) agrees with the product in Theorem 4.6.

Remark 4.6.2. If there is a pairing S×S → S which is associative up to natural
isomorphism, then K(S) can be given the structure of a ring spectrum. This is the
case when S is Setsfin or F(R) for commutative R.
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Actions on other categories

To show that B(S−1S) is a group completion of BS, we need to fit the definition
of S−1S into a more general framework.

Definition 4.7. A monoidal category S is said to act upon a category X by a
functor �:S ×X → X if there are natural isomorphisms s�(t�x) ∼= (s�t)�x and
e�x ∼= x for s, t ∈ S and x ∈ X, satisfying coherence conditions for the products
s�t�u�x and s�e�x analogous to the coherence conditions defining S.

For example, S acts on itself by �. If X is a discrete category, then S acts on
X exactly when the monoid π0(S) acts on the underlying set of objects in X.

Here is the analogue of the translation category construction (3.3.1) associated
to a monoid acting on a set.

Definition 4.7.1. If S acts uponX, the category 〈S,X〉 has the same objects as

X. A morphism from x to y in 〈S,X〉 is an equivalence class of pairs (s, s�x
φ−→ y),

where s ∈ S and φ is a morphism in X. Two pairs (s, φ) and (s′, φ′) are equivalent

in case there is an isomorphism s ∼= s′ identifying φ′ with s′�x ∼= s�x
φ−→ y.

We shall write S−1X for 〈S, S × X〉, where S acts on both factors of S × X.
Note that when X = S this definition recovers the definition of S−1S given in 4.2
above. If S is symmetric monoidal, then the formula s�(t�x) = (s�t, x) defines
an action of S on S−1X.

For example, if every arrow in S is an isomorphism, then e is an initial object of
〈S, S〉 and therefore the space S−11 = B〈S, S〉 is contractible.

We say that S acts invertibly upon X if each translation functor s�:X → X
is a homotopy equivalence. For example, S acts invertibly on S−1X (if S is sym-
metric) by the formula s�(t, x) = (s�t, x), the homotopy inverse of the translation
(t, x) 7→ (s�t, x) being the translation (t, x) 7→ (t, s�x), because of the natural
transformation (t, x) 7→ (s�t, s�x).

Now π0S is a multiplicatively closed subset of the ring H0(S) = Z[π0S], so it
acts on H∗(X) and acts invertibly upon H∗(S

−1X). Thus the functor X → S−1X
sending x to (0, x) induces a map

(4.7.2) (π0S)
−1Hq(X)→ Hq(S

−1X).

Theorem 4.8 (Quillen). If every map in S is an isomorphism and translations
are faithful in S, then the map (4.7.2) is an isomorphism for all X and q.

In particular, B(S−1S) is a group completion of the H-space BS.

Proof. (See [GQ, p. 221].) By Ex. 4.5, the projection functor ρ:S−1X → 〈S, S〉
is cofibered with fiber X. By Ex. 3.7 there is an associated spectral sequence E2

pq =

Hp(〈S, S〉;Hq(X)) ⇒ Hp+q(S
−1X). Localizing this at the multiplicatively closed

subset π0S of H0(S) is exact, and π0S already acts invertibly on H∗(S
−1X) by

Ex. 3.7, so there is also a spectral sequence E2
pq = Hp(〈S, S〉;Mq)⇒ Hp+q(S

−1X),

where Mq = (π0S)
−1Hq(X). But the functors Mq are morphism-inverting, so by

Ex. 3.1 and the contractibility of 〈S, S〉, the group Hp(〈S, S〉;Mq) is zero for p 6= 0,
and equals Mq for p = 0. Thus the spectral sequence degenerates to the claimed
isomorphism (4.7.2).
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The final assertion is immediate from this and definition 4.4, given Remark 4.2.2
and Lemma 4.3.1. �

Bass gave a classical definition of K1(S) and K2(S) in [B72, p. 197]; we gave
them implicitly in III.1.6.3 and III.5.6. We can now state these classical definitions,
and show that they coincide with the K-groups defined in this section.

Corollary 4.8.1. If S = isoS and translations are faithful in S, then:

K1(S) = lim−→
s∈S

H1(Aut(s);Z),

K2(S) = lim−→
s∈S

H2([Aut(s),Aut(s)];Z).

Proof. ([We-Az]) The localization of Hq(BS) = ⊕s∈SHq(Aut(s)) at π0(X) =
Siso is the direct limit of the groups Hq(Aut(s)), taken over the translation category
of all s ∈ S. Since π1(X) = H1(X;Z) for every H-space X, this gives the formula
for K1(S) = π1B(S−1S).

For K2 we observe that any monoidal category S is the filtered colimit of its
monoidal subcategories having countably many objects. Since K2(S) and Bass’ H2

definition commute with filtered colimits, we may assume that S has countably
many objects. In this case the proof is relegated to exercise 4.10. �

Relation to the +–construction

Let S = F(R) =
∐
GLn(R) be the monoidal category of based free R-modules,

as in example 4.1.1(c). In this section, we shall establish the following result, iden-
tifying the +–construction on BGL(R) with the basepoint component of K(S) =
B(S−1S).

Theorem 4.9. When S is
∐
GLn(R), K(S) = B(S−1S) is the group comple-

tion of BS =
∐
BGLn(R), and

B(S−1S) ≃ Z×BGL(R)+.

As theorems 4.8 and 1.8 suggest, we first need to find an acyclic map from
BGL(R) to the connected basepoint component of B(S−1S). This is done by the
following “mapping telescope” construction (illustrated in Figure 4.9.1).
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Figure 4.9.1. The mapping telescope of BGL(R) and B(S−1S).
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Any group map η from GLn(R) to AutS−1S(R
n, Rn) gives a map from BGLn(R)

to B(S−1S). For the specific maps η = ηn defined by ηn(g) = (g, 1), the diagram

GLn(R)
η−−−−→ Aut(Rn, Rn)

�R

y �(R,R)

y

GLn+1(R)
η−−−−→ Aut(Rn+1, Rn+1)

commutes, i.e., there is a natural transformation from η to η(�R). The resulting
homotopy of maps η ≃ η(�R) : BGLn(R) → B(S−1S) gives the map from the
“mapping telescope” construction of BGL(R) to B(S−1S); see Ex. 3.5. In fact,
this map lands in the connected component YS of the identity in B(S−1S). Since
B(S−1S) is an H-space, so is the connected component YS of the identity.

Proof of Theorem 4.9. (Quillen) We shall show that the map BGL(R) →
YS is an isomorphism on homology with coefficients Z. By the remark following
Theorem 1.8, this will induce a homotopy equivalence BGL(R)+ → YS .

Let e ∈ π0BS be the class of R. By theorem 4.8, H∗B(S−1S) is the localiza-
tion of the ring H∗(BS) at π0(S) = {en}. But this localization is the colimit of
the maps H∗(BS) → H∗(BS) coming from the translation ⊕R : S → S. Hence
H∗B(S−1S) ∼= H∗(YS) ⊗ Z[e, e−1], where YS denotes the basepoint component of
B(S−1S), and H∗(YS) ∼= colimH∗(BGLn(R)) = H∗(BGL(R)). This means that
the map BGL(R)→ YS is a homology isomorphism, as required. �

Example 4.9.2. (Segal) Consider the symmetric monoidal category S =
∐

Σn,
equivalent to the category Setsfin of example 4.1.1(a). The infinite symmetric group
Σ∞ is the union of the symmetric groups Σn along the inclusions �1 from Σn to
Σn+1, and these inclusions assemble to give a map from the mapping telescope
construction of BΣ∞ to B(S−1S), just as they did for GL(R) (see Figure 4.9.1).
Moreover the proof of theorem 4.9 formally goes through to prove that B(S−1S) ≃
K(Setsfin) is homotopy equivalent to Z × BΣ+

∞. This is the equivalence of parts
(a) and (b) in the following result. We refer the reader to [BP71] and [Adams, §4.2]
for the equivalence of parts (b) and (c).

The Barratt-Priddy-Quillen-Segal Theorem 4.9.3. The following three
infinite loop spaces are the same:

(a) the group completion K(Setsfin) of BSetsfin;

(b) Z×BΣ+
∞, where Σ∞ is the union of the symmetric groups Σn; and

(c) The infinite loop space Ω∞S∞ = limn→∞ ΩnSn.

Hence the groups Kn(Setsfin) are the stable homotopy groups of spheres, πsn.

More generally, suppose that S has a countable sequence of objects s1, . . . such
that sn+1 = sn�an for some an ∈ S, and satisfying the cofinality condition that
for every s ∈ S there is an s′ and an n so that s�s′ ∼= sn. In this case we can form
the group Aut(S) = colimn→∞AutS(sn).

Theorem 4.10. Let S = isoS be a symmetric monoidal category whose trans-
lations are faithful, and suppose the above condition is satisfied, so that the group
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Aut(S) exists. Then the commutator subgroup E of Aut(S) is a perfect normal sub-
group, K1(S) = Aut(S)/E, and the +–construction on BAut(S) is the connected
component of the identity in the group completion K(S). Thus

K(S) ≃ K0(S)×BAut(S)+.

Proof. ([We-Az]) The assertions about E are essentially on p. 355 of [Bass].
On the other hand, the mapping telescope construction mentioned above gives an
acyclic map from BAut(S) to the basepoint component of B(S−1S), and such a
map is by definition a +–construction. �

Example 4.10.1. Consider the subcategory
∐
G ≀Σn of the category G-Setsfin

of free G sets introduced in 4.1.1(f). The group Aut(S) is the (small) infinite wreath
product G ≀ Σ∞ = ∪G ≀ Σn, so we have K(G-Setsfin) ≃ Z × B(G ≀ Σ∞)+. On the
other hand, the Barratt-Priddy theorem [BP71] identifies this with the infinite loop
space Ω∞S∞(BG+) associated to the disjoint union BG+ of BG and a point.

The monoidal functor G-Setsfin → P(Z[G]) of 4.1.1(f) induces a group homo-
morphism G ≀ Σ∞ → GL(Z[G]) and hence maps B(G ≀ Σ∞)+ → BGL(Z[G])+ and
Ω∞S∞(BG+) ≃ K(G-Setsfin)→ K(Z[G]).

This map is a version of the “assembly map” in the following sense. If R is any
ring, there is a product map K(R) ∧K(Z[G]) → K(R[G]); see 1.10 and 4.6. This
yields a map from K(R)∧Ω∞S∞(BG+) to K(R[G]). Now the space K(R)∧BG is
included as a direct factor in K(R) ∧ Ω∞S∞(BG+) (split by the “Snaith split-
ting”). Since the homotopy groups of the first space give the generalized ho-
mology of BG with coefficients in K(R), Hn(BG;K(R)), we get homomorphisms
Hn(BG;K(R)) → K(R[G]). It is not known if K(R) ∧ BG has a complementary
factor which maps trivially.

Cofinality

A monoidal functor f : S → T is called cofinal if for every t in T there is a t′ and
an s in S so that t�t′ ∼= f(s); cf. II.5.3. For example, the functor F(R) → P(R)
of example 4.1.1(c) is cofinal, because every projective module is a summand of a
free one. For Pic(R), the one-object subcategory R× is cofinal.

Cofinality Theorem 4.11. Suppose that f : S → T is cofinal. Then
(a) If T acts on X then S acts on X via f , and S−1X ≃ T−1X.
(b) If AutS(s) ∼= AutT (fs) for all s ∈ S then the basepoint components of K(S)

and K(T ) are homotopy equivalent. Thus Kn(S) ∼= Kn(T ) for all n ≥ 1.

Proof. By cofinality, S acts invertibly on X if and only if T acts invertibly on
X. Hence Ex. 4.6 yields

S−1X
≃−→ T−1(S−1X) ∼= S−1(T−1X)

≃←− T−1X.
An alternate proof of part (a) is sketched in Ex. 4.8.

For part (b), let YS and YT denote the connected components of B(S−1S) and
B(T−1T ). Writing the subscript s ∈ S to indicate a colimit over the translation
category 3.3.1 of π0(S), and similarly for the subscript t ∈ T , theorem 4.8 yields:

H∗(YS) = colims∈S H∗(BAut(s)) = colims∈S H∗(BAut(fs))

∼= colimt∈T H∗(BAut(t)) = H∗(YT ).
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Hence the connected H-spaces YS and YT have the same homology, and this implies
that they are homotopy equivalent. �

Note that K0(F(R)) = Z is not the same as K0(P(R)) = K0(R) in general,
although Kn(F) ∼= Kn(P) for n ≥ 1 by the Cofinality Theorem 4.11(b). By Theo-
rem 4.9 this establishes the following important result.

Corollary 4.11.1. Let S = isoP(R) be the category of finitely generated pro-
jective R-modules and their isomorphisms. Then

B(S−1S) ≃ K0(R)×BGL(R)+.

Remark 4.11.2. Consider the 0-connected cover K(R)〈0〉 of K(R), the spec-
trum constructed by an infinite loop space machine from isoP(R), as in 4.5.2.
By 4.8 and 4.11.1, BGL(R)+ is the 0th space of the spectrum K(R)〈0〉. In partic-
ular, it provides a canonical way to view BGL(R)+ as an infinite loop space.

4.12. Let’s conclude with a look back at the other motivating examples in 4.1.1.
In each of these examples, every morphism is an isomorphism and the translations
are faithful, so the classifying space of S−1S is a group completion of BS.

Example 4.12.1 (Stable homotopy). The “free R-module” on a finite set
determines a functor from Setsfin to P(R), or from the subcategory

∐
Σn of Setsfin

to
∐
GLn(R). This functor identifies the symmetric group Σn with the permutation

matrices in GLn(R). Applying group completions, theorem 4.9 and 4.9.3 show that
this gives a map from Ω∞S∞ to K(R), hence maps πsn → Kn(R).

Example 4.12.2 (L-theory). Let S = Quadǫ(A) denote the category of non-
singular ǫ-quadratic A-modules, where ǫ = ±1 and A is any ring with involution
[B72, Bak]. The K-groups of this category are the L-groups ǫLn(A) of Karoubi
and others. For this category, the sequence of hyperbolic spaces Hn is cofinal (by
Ex. II.5.11), and the automorphism group of Hn is the orthogonal group ǫOn. The
infinite orthogonal group ǫO = ǫO(A), which is the direct limit of the groups ǫOn,
is the group Aut(S) in this case. By theorem 4.10, we have

K(Quadǫ(A)) ≃ ǫL0(A)×BǫO+.

When A = R, the classical orthogonal group O is +1O. When A = C and the
involution is complex conjugation, the classical unitary group U is +1O(C). For
more bells and whistles, and classical details, we refer the reader to [Bak].

Example 4.12.3. When R is a topological ring (such as R or C), we can think
of P(R) as a topological symmetric monoidal category. Infinite loop space ma-
chines (4.5.2) also accept topological symmetric monoidal categories, and we write
K(Rtop) for K(P(R)top). The change-of-topology functor P(R) → P(R)top in-
duces natural infinite loop space maps from K(R) to K(Rtop). The naturality of
these maps allows us to utilize infinite loop space machinery. As an example of the
usefulness, we remark that

K(Rtop) ≃ Z×BO and K(Ctop) ≃ Z×BU.
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EXERCISES

4.1 Let N be the additive monoid {0, 1, ...}, considered as a symmetric monoidal
category with one object. Show that 〈N,N〉 is the union ∪n of the ordered categories
n, and that N−1N is a poset, each component being isomorphic to ∪n.
4.2 Show that a sequence X0 → X1 → · · · of categories determines an action of N
on the disjoint union X =

∐
Xn, and that 〈N, X〉 is the mapping telescope category

∪n
∫
X of Ex. 3.5.

4.3 (Thomason) Let S be symmetric monoidal, and let ι:S−1S → S−1S be the
functor sending (m,n) to (n,m) and (f1, f2) to (f2, f1). Show that there is no
natural transformation 0⇒ id�ι. Hint: The obvious candidate is given in 4.2.2.

Thomason has shown that Bι is the homotopy inverse for the H-space structure
on B(S−1S), but for subtle reasons.

4.4 If S is a symmetrical monoidal category, so is its opposite category Sop. Show
that the group completions K(S) and K(Sop) are homotopy equivalent.

4.5 (Quillen) Suppose that S = isoS, and that translations in S are faithful (4.2.1).

Show that the projection S−1X
ρ−→ 〈S, S〉 is cofibered, where ρ(s, x) = s.

4.6 Let S = isoS be a monoidal category whose translations are faithful (4.2.1).
Suppose that S acts invertibly upon a category X. Show that the functors X →
S−1X (x 7→ (s, x)) are homotopy equivalences for every s in S. If S acts upon a
category Y , then S always acts invertibly upon S−1Y , so this shows that S−1Y ≃
S−1(S−1Y ). Hint: Use exercises 3.6 and 4.5, and the contractibility of 〈S, S〉.

4.7 Suppose that every map in X is monic, and that each translation AutS(s)
�x−−→

AutX(s�x) is an injection. Show that the sequence S−1S
�x−−→ S−1X

π−→ 〈S,X〉
is a homotopy fibration for each x in X, where π is projection onto the second

factor. In particular, if 〈S,X〉 is contractible, this proves that S−1S �x−−→ S−1X is
a homotopy equivalence. Hint: Show that π and S−1π:S−1(S−1X) → 〈S,X〉 are
cofibered, and use the previous exercise.

4.8 Use exercises 4.5 and 4.6 to give another proof of the Cofinality Theorem
4.11(b).

4.9 Fix a ring R and set S =
∐
GLn(R). The maps BGLn(R) → BGL(R) →

{n}×BGL(R)+ assemble to give a map from BS to Z×BGL(R)+. Use Ex. 1.11 to
show that it is an H-space map. Then show directly that this makes Z×BGL(R)+
into a group completion of BS.

4.10 Let S be a symmetric monoidal category with countably many objects, so
that the group Aut(S) exists and its commutator subgroup E is perfect, as in 4.10.
Let F denote the homotopy fiber of the H-space map BAut(S)+ → B(K1S).

(a) Show that π1(F ) = 0 and H2(F ;Z) ∼= π2(F ) ∼= K2(S).

(b) ([We-Az]) Show that the natural map BE → F induces H∗(BE) ∼= H∗(F ),
so that F = BE+. Hint: Show that K1S acts trivially upon the homology of
BE and F , and apply the comparison theorem for spectral sequences.

(c) Conclude that K2(S) ∼= H2(E) ∼= lim−→s∈S H2([Aut(s),Aut(s)];Z).
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4.11 If f : X → Y is a functor, we say that an action of S on X is fiberwise if

S ×X �−→ X
f−→ Y equals the projection S ×X → X followed by f .

(a) Show that a fiberwise action on X restricts to an action of S on each fiber
category Xy = f−1(y), and that f induces a functor S−1X → Y whose fibers are
the categories S−1(Xy).

(b) If f is a fibered functor (3.7.3), we say that a fiberwise action is cartesian if
the base change maps commute with the action of S on the fibers. Show that in
this case S−1X → Y is a fibered functor.

4.12 Let G be a group, and G-Setsfin as in 4.1.1(f).
(a) Using 4.10.1, show that K1(G-Setsfin) ∼= G/[G,G]× {±1}.
(b) Using Exercise II.5.9, show that the groups Kn(Z[G]) are modules over the
Burnside ring A(G) = K0G-Setsfin.
(c) If G is abelian, show that the product of G-sets defines a pairing in the sense of
Theorem 4.6. Conclude that K∗G-Setsfin is a ring. Using the free module functor,
show that K∗G-Setsfin → K∗(Z[G]) is a ring homomorphism.

4.13 (a) Show that the idempotent completion Ŝ (II.7.3) of a symmetric monoidal

category S is also symmetric monoidal, and that S → Ŝ is a cofinal monoidal
functor. Conclude that the basepoint components of K(S) and K(Ŝ) are homotopy
equivalent.

(b) Show that a pairing S1 × S2 → S induces a pairing Ŝ1 × Ŝ2 → Ŝ and hence

(by 4.6) a pairing of spectra K(Ŝ1) ∧K(Ŝ2)→ K(Ŝ).
(c) By (b), for every pair of rings A,B there is a pairing K(A)∧K(B)→ K(A⊗B).
Using 4.6.1, deduce that the induced product agrees with the extension of Loday’s
product 1.10 described in Ex. 1.14.

4.14 Construct a morphism of spectra S1 → K(Z[x, x−1]) which, as in 1.10.2,
represents [x] ∈ K1(Z[x, x

−1]). Using the previous exercise, show that it induces a
product map ∪x : K(R)→ ΩK(R[x, x−1]), natural in the ring R.

§5. λ-operations in higher K-theory

Let A be a commutative ring. In Chapter II.4 we introduced the operations λk :
K0(A)→ K0(A) and showed that they endow K0(A) with the structure of a special
λ-ring (II.4.3.1). The purpose of this section is to extend this structure to operations
λk : Kn(A)→ Kn(A) for all n. Although many constructions of λ-operations have
been proposed in more exotic settings, we shall restrict our attention in this section
to operations defined using the +-construction.

We shall begin with a general construction, which produces the operations ∧k as
a special case. Fix an arbitrary group G. If ρ : G→ Aut(P ) is any representation
of G in a finitely generated projective A-module P , any isomorphism P ⊕Q ∼= AN

gives a map q(ρ) : BG → BAut(P ) → BGLN (A) → BGL(A)+. A different
embedding of P in AN will give a map which is homotopic to the first, because the
two maps only differ by conjugation and BGL(A)+ is an H-space. (The action of
π1(H) on [X,H] is trivial for any H-space H and any space X; see [Wh, III.4.18]).
Hence the map q(ρ) is well-defined up to homotopy.

Example 5.1. Recall from I.3 that the kth exterior power ∧k(P ) of a finitely

generated projective A-module P is also a projective module, of rank
(
rankP
k

)
.
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Because ∧k is a functor, it determines a group map ∧kP : Aut(P )→ Aut(∧kP ), i.e.,
a representation, for each P . We write ΛkP for q(∧k). Note that Λ0

P = ∗.
Now any connected H-space, such as BGL(A)+, has a multiplicative inverse (up

to homotopy). Given a map f : X → H, this allows us to construct maps −f , and
to take formal Z-linear combinations of maps.

Definition 5.2. If P has rank n, we define λkP : BAut(P )→ BGL(A)+ to be
the map

λkP =

k−1∑

i=0

(−1)i
(
n+ i− 1

i

)
Λk−iP .

One can show directly that the maps λkP are compatible with the inclusions of P
in P⊕Q, up to homotopy of course, giving the desired operations λk : BGL(A)+ →
BGL(A)+ (see Ex. 5.1). However, it is more useful to encode this bookkeeping in
the Representation Ring RA(G), an approach which is due to Quillen.

Recall from II, Ex. 4.2, that the representation ring RA(G) is the Grothendieck
group of the representations of G in finitely generated projective A-modules. We
saw in loc. cit. that RA(G) is a special λ-ring.

Proposition 5.3. If 0 → (P ′, ρ′) → (P, ρ) → (P ′′, ρ′′) → 0 is a short exact
sequence of representations of G, then q(ρ) = q(ρ′) + q(ρ′′) in [BG,BGL(A)+].

Hence there is a natural map q : RA(G)→ [BG,BGL(A)+].

Proof. It is clear from the H-space structure on BGL(A)+ that q(ρ ⊕ ρ′) =
q(ρ) + q(ρ′). By the above remarks, we may suppose that P ′ and P ′′ are free
modules, of ranks m and n respectively. By universality, it suffices to consider the
case in which G = Gm,n is the automorphism group of the sequence, i.e., the upper

triangular group

(
Aut(P ′) Hom(P ′′, P ′)

0 Aut(P ′′)

)
. Quillen proved in [Q76] that in the

limit, the inclusions i : Aut(P ′)×Aut(P ′′) →֒ Gm,n induce a homology isomorphism

lim−→H∗(Gm,n) ∼= H∗(GL(A)×GL(A)).

It follows that for any connected H-space H we have [lim−→BGm,n, H] ∼= [BGL(A)×
BGL(A), H]. Taking H = BGL(A)+ yields the result. �

Example 5.3.1. If ρ is a representation on a rank n module P , the elements
[ρ] − n and λk([ρ] − n) of RA(G) determine maps BG → BGL(A)+. When G =
Aut(P ) and ρ = idP is the tautological representation, it follows from the formula
of Ex. II.4.2 that λk([idP ]− n) is the map ΛkP of 5.1.

We can now define the operations λk on [BGL(A)+, BGL(A)+]. As n varies,
the representations idn of GLn(A) are related by the relation i∗nidn+1 = idn ⊕ 1,
where in : GLn(A) →֒ GLn+1(A) is the inclusion. Hence the virtual characters
ρn = idn − n · 1 satisfy ρn = i∗nρn+1. Since i∗ : RA(GLnA) → RA(GLn+1A) is
a homomorphism of λ-rings, we also have λkρn = i∗(λkρn+1). Hence we get a
compatible family of homotopy classes λkn ∈ [BGLn(A), BGL(A)

+].
Because each BGLn(A) → BGLn+1(A) is a closed cofibration, it is possible

to inductively construct maps λkn : BGLn(A) → BGL(A)+ which are strictly
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compatible, so that by passing to the limit they determine a continuous map
λk∞ : BGL(A)→ BGL(A)+ and even

λk : BGL(A)+ → BGL(A)+.

The construction in Example 5.3.1 clearly applies to any compatible family of
elements in the rings RA(GLn(A)). Indeed, we have a map

(5.3.2) lim←−RA(GLn(A))→ lim←−[BGLn(A), BGL(A)
+] = [BGL(A)+, BGL(A)+].

For example, the operations ψk and γk may be defined in this way; see Ex. 5.2.

Definition 5.4. If X is any based space, and f : X → BGL(A)+ any map,
we define λkf : X → BGL(A)+ to be the composition of f and λk. This defines
operations on [X,BGL(A)+] which we also refer to as λk. When X = Sn, we get
operations λk : Kn(A)→ Kn(A).

Example 5.4.1. When n = 1 and a ∈ A× is regarded as an element of K1(A),
the formulas λk(a) = a and ψk(a) = ak are immediate from the formula 5.2 for λkA.

The abelian group [X,BGL(A)+] inherits an associative multiplication from the

product on BGL(A)+ described in 1.10: one uses the composition X
∆−→ X ∧X →

BGL(A)+ ∧BGL(A)+. If X = Sn for n > 0 (or if X is any suspension), this is the
zero product because then the map X → X ∧X is homotopic to 0.

Now recall from II.4 that a λ-ring must satisfy λ0(x) = 1, which requires an
identity. In contrast, our λ0 is zero. To fix this, we extend the operations to
K0(A)× [X,BGL(A)+] by

λk(a, x) = (λk(a), λk(x) + a · λk−1(x) + · · ·+ λi(a)λk−i(x) + · · ·+ λk−1(a)x.

Thus λ0(a, x) = (λ0(a), λ0(x)) = (1, 0), as required.

Theorem 5.5. For any based space X, the λk make K0(A) × [X,BGL(A)+]
into a special λ-ring

Proof. It suffices to consider the universal case X = BGL(A)+. Since π1(X) =
K1(A), we have a map RA(K1A)→ [X,X]. Via the transformation q of 5.3, we are
reduced to checking identities in the rings RA(GLn(A)) by (5.3.2). For example,
the formula λk(x+ y) =

∑
λi(x)λk−i(y) comes from the identity

λk ◦ ⊕ =
∑

λi ⊗ λk−i

in RA(GLm(A)×GLn(A)). Similarly, the formal identities for λk(xy) and λn(λkx),
listed in II.4.3.1 and which need to hold in special λ-rings, already hold in RA(G)
and so hold in our setting via the map q. �

Corollary 5.5.1. If n > 0 then λk : Kn(A)→ Kn(A) is additive, and we have
ψk(x) = (−1)k−1kλk.

Proof. Since the products are zero, this is immediate from the formulas in
II.4.1 and II.4.4 for λk(x+ y) and ψk(x). �

If A is an algebra over a field of characteristic p, the Frobenius endomorphism
Φ of A is defined by Φ(a) = ap. We say that A is perfect if Φ is an automorphism,
i.e., if A is reduced and for every a ∈ A there is a b ∈ A with a = bp.
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Corollary 5.5.2. If A is an algebra over a field of characteristic p, ψp is the
Frobenius Φ∗ on Kn(A), n>0, and more generally on [X,BGL(A)+] for any X.

Proof. This follows from the fact (Ex. II.4.2) that ψp = Φ∗ on the represen-
tation ring RA(G), together with the observation that q(Φ∗) : Kn(A) → Kn(A) is
induced by Φ : A→ A by naturality in A. �

Proposition 5.6. If A is a perfect algebra over a field of characteristic p, then
Kn(A) is uniquely p-divisible for all n > 0.

Proof. Since n > 0, we see from 5.5.1 that ψp(x) = (−1)p−1pλp(x) for x ∈
Kn(A). Since ψ

p = Φ∗ is an automorphism, so is multiplication by p. �

For any based space X there is a space FX homotopy equivalent to B(π1X)

and a natural map X → FX with π1(X)
∼=−→ π1(FX); if X is a simplicial space,

FX is just the 2-coskeleton of X. Composing this map with the q of 5.3 gives a
natural transformation RA(π1X) → [X,BGL(A)+] of functors from based spaces
to groups.

Proposition 5.7. The natural transformation RA(π1X)
q−→ [X,BGL(A)+] is

universal for maps to representable functors. That is, for any connected H-space
H and any natural transformation ηX : RA(π1X) → [X,H] there is a map f :
BGL(A)+ → H, unique up to homotopy, such that ηX is the composite

RA(π1X)
q−→ [X,BGL(A)+]

f−→ [X,H].

Like Theorem 1.8, this is proven by obstruction theory. Essentially, one considers
the system of spaces X = BGLn(A) and the maps BGLn(A) → H defined by
ηX(idn). See [Hiller, 2.4] for details.

Example 5.7.1. The above construction of operations works in the topological
setting, allowing us to construct λ-operations on [X,BU ] extending the operations
in II.4.1.3. It follows that [X,BGL(C)+]→ [X,BU ] commutes with the operations
λk and ψk for every X.

Example 5.8 (Finite fields). Let Fq be a finite field, and F×q → C× a ho-
momorphism. It induces a homomorphism RFq

(G) → RC(G) called the Brauer
lifting. The composition of Brauer lifting with RC(π1X) → [X,BGL(C)+] in-
duces the map BGL(Fq)

+ → BGL(C)+ → BU discussed in 1.12 above. Now
an elementary calculation with characters (which we omit) shows that the Brauer
lifting is actually a homomorphism of λ-rings. It follows from 5.7 and 5.7.1 that
[X,BGL(Fq)

+] → [X,BGL(C)+] → [X,BU ] are homomorphisms of λ-rings. This
was used in Theorem 1.12 to calculate Kn(Fq).

Compatibility with products

Theorem 5.9. The Adams operations ψk are compatible with the product on K-
theory, in the sense that ψk(x · y) = ψk(x) · ψk(y) for x ∈ Km(A) and y ∈ Kn(A).
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Proof. It suffices to show that the following diagram commutes up to weak
homotopy:

BGL(A)+ ∧BGL(A)+ −−−−→ BGL(A)+

ψk∧ψk

y
yψk

BGL(A)+ ∧BGL(A)+ −−−−→ BGL(A)+.

Via Proposition 5.7, this follows from the fact that the RA(GLm(A)×GLn(A)) are
λ-rings. �

Example 5.9.1. If F is a field then ψk = k2 on K2(F ). This is because K2(F )
is generated by Steinberg symbols {a, b} (III.6.1), and Example 5.4.1 implies that
ψk{a, b} = {ak, bk} = k2{a, b}. The same argument shows that ψk = kn on the
image of KM

n (F )→ Kn(F ); see III.7.

Example 5.9.2. For finite fields, we have ψk(x) = ki x for x ∈ K2i−1(Fq). This

follows from Example 5.8 and the fact (II.4.4.1) that ψk = ki on π2iBU = K̃U(S2i).

The γ-filtration

Consider the γ-filtration (II.4.7) on K0(A)×Kn(A); If n > 0 then F kγKn(A) is

generated by all γk
′

(x) and a · γj(x) with k′ ≥ k, a ∈ F iγK0(A), x ∈ Kn(A), i > 0
and i + j ≥ k. (There are other possible definitions, using the ring structure on
K∗(A), but they coincide up to torsion [Sou85].) For this reason, we shall ignore
torsion and deal with the γ-filtration on Kn(A)⊗Q.

Because x = γ1(x) we have Kn(A) = F 1
γKn(A) for n > 0. The next layer F 1

γ /F
2
γ

of the filtration is also small.

Proposition 5.10 (Kratzer). For all commutative A, SK1(A) = F 2
γK1(A),

and F 1
γK1(A)/F

2
γK1(A) = A×, and for n ≥ 2: Kn(A) = F 2

γKn(A).

Proof. It suffices to compute in πnBSL(A)
+, which equals SK1(A) for n = 1

and Kn(A) for n > 1 (see Ex. 1.8(a)). For G = SLN (A) the identity det(idN ) = 1
in R(G) may be written in terms of ρ = idN −N as γ1(ρ)+γ2(ρ)+ · · ·+γN (ρ) = 0.
Because γi(ρ) = 0 for i > N (Exercise 5.4), this yields the identity

∑∞
1 γi(x) = 0

for x ∈ πnBSLN (A)+. Since x = γ1(x), this shows that x ∈ F 2
γπnBSLN (A). �

Remark 5.10.1. Soulé has proven [Sou85, Thm. 1] that if A has stable range
sr(A) < ∞ (I, Ex. 1.5) then γk vanishes on Kn(A) for all k ≥ n + sr(A). This
is a useful bound because sr(R) ≤ dim(A) + 1 for noetherian A. If F is a field,
ψk = kn and γn = (−1)n−1(n− 1)! on the image of KM

n (F )→ Kn(F ), by 5.9.1, so
the bound is best possible. The proof uses Volodin’s construction of K-theory.

Theorem 5.11. For n > 0, the eigenvalues of ψk on Kn(A)⊗Q are a subset of

{1, k, k2, . . . }, and the subspace K
(i)
n (A) of eigenvectors for ψk = ki is independent

of k. Finally, the ring K∗(A)⊗Q is isomorphic to the bigraded ring ⊕n,iK(i)
n (A).

Proof. Since every element of Kn(A) comes from the K-theory of a finitely
generated subring, we may assume that sr(A) < ∞. As in the proof of II.4.10,

the linear operator
∏N

1 (ψk − ki) is trivial on each F iγ/F
i+1
γ for large N , and this

implies that Kn(A)⊗Q is the direct sum of the eigenspaces for ψk = ki, 1 ≤ i ≤ N .



52 IV. DEFINITIONS OF HIGHER K-THEORY

Since ψk and ψℓ commute, it follows by downward induction on i that they have

the same eigenspaces, i.e., K
(i)
n (A) is independent of k. Finally, the bigraded ring

structure follows from 5.9. �

Example 5.11.1. (Geller-Weibel) Let A = C[x1, . . . , xn]/(xixj = 0, i 6= j)
be the coordinate ring of the coordinate axes in Cn. Then the Loday symbol

〈〈x1, ..., xn〉〉 of Ex. 1.22 projects nontrivially into K
(i)
n (A) for all i in the range

2 ≤ i ≤ n. In particular, K
(i)
n (A) 6= 0 for each of these i. As sr(A) = 2, these are

the only values of i allowed by Soulé’s bound in 5.10.1.

The ring of Example 5.11.1 is not regular. In contrast, it is widely believed that
the following conjecture is true for all regular rings; it may be considered to be the
outstanding problem in algebraic K-theory.

Vanishing Conjecture 5.12 (Beilinson-Soulé). If i < n/2 and A is regular
then Kn(A) = F iγKn(A). (See Ex.VI.3.6 for the connection to motivic cohomol-
ogy.)

EXERCISES

5.1 Show that the composition of the cofibration BAut(P )→ BAut(P ⊕Q) with
λkP⊕Q is homotopic to the map λkP . By modifying λkP⊕Q, we can make the com-

position equal to λkP . Using the free modules An and induction, conclude that we
have maps λk : BGL(A)→ BGL(A)+ and hence operations λk on BGL(A)+, well
defined up to homotopy.

One could use 4.1.1(c), 4.10 and 4.11.1 to consider the limit over Aut(P ) for all
projective modules P ; the same construction will work except that there will be
more bookkeeping.

5.2 Modify the construction of 5.3.2 to construct operations ψk and γk on the ring
K0(A)× [X,BGL(A)+] for all X. (See II.4.4 and II.4.5.)

5.3 Show that the λ-operations are compatible with K1(A[t, 1/t])
∂−→ K0(A), the

map in the Fundamental Theorem III.3.6, in the sense that for every x ∈ K0(A),
t · x ∈ K1(A[t, 1/t]) satisfies ∂λ

k(t · x) = (−1)k−1ψk(x).
5.4 (γ-dimension) Consider the γ-filtration (II.4.7) on K0(A) ×Kn(A), and show
that every element of Kn(A) has finite γ-dimension (II.4.5). Hint: Because Sn is
a finite complex, each x ∈ Kn(A) comes from some πnBGLN (A)+. If i > N , show
that γi kills the representation [idN ]−N and apply the map q.

5.5 For any commutative ring A, show that the ring structure on RA(G) induces a
ring structure on [X,K0(A)×BGL(A)+].
5.6 Suppose that a commutative A-algebra B is finitely generated and projective
as an A-module. Use 5.3 to show that the restriction of scalars map RB(G) →
RA(G) induces a “transfer” map BGL(B)+ → BGL(A)+. Show that it agrees on
homotopy groups with the transfer maps for K1 and K2 in III.1.7.1 and III.5.6.3,
respectively. We will encounter other constructions of the transfer in 6.3.2.

5.7 Use Ex. 5.3 to give an example of a regular ring A such that K
(2)
3 (A) and

K
(3)
3 (A) are both nonzero.
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§6. Quillen’s Q-construction for exact categories

The higher K-theory groups of a small exact category A are defined to be the
homotopy groups Kn(A) = πn+1(BQA) of the geometric realization of a certain
auxiliary category QA, which we now define. This category has the same objects
as A, but morphisms are harder to describe. Here is the formal definition; we refer
the reader to exercise 6.1 for a more intuitive interpretation of morphisms in terms
of subquotients.

Definition 6.1. Let A be an exact category. A morphism from A to B in QA
is an equivalence class of diagrams

(6.1.1) A
j
և B2

i
֌ B

where j is an admissible epimorphism and i is an admissible monomorphism in A.
Two such diagrams are equivalent if there is an isomorphism between them which is
the identity on A and B. The composition of the above morphism with a morphism
B և C2 ֌ C is Aև C1 ֌ C, where C1 = B2 ×B C2.

C1 ֌ C2 ֌ C
↓↓ ↓↓

A և B2 ֌ B

Two distinguished types of morphisms play a special role in QA: the admissible
monics A ֌ B (take B2 = A) and the oppositely oriented admissible epis A և B
(take B2 = B). Both types are closed under composition, and the composition of
A և B2 with B2 ֌ B is the morphism (6.1.1). In fact, every morphism in QA
factors as such a composition in a way that is unique up to isomorphism.

Subobjects 6.1.2. Recall from [Mac] that (in any category) a subobject of an
object B is an equivalence class of monics B2 ֌ B, two monics being equivalent
if they factor through each other. In an exact category A, we call a subobject
admissible if any (hence every) representative B2 ֌ B is an admissible monic.

By definition, every morphism from A toB inQA determines a unique admissible
subobject of B in A. If we fix a representative B2 ֌ B for each subobject in A,
then a morphism in QA from A to B is a pair consisting of an admissible subobject
B2 of B and an admissible epi B2 ։ A.

In particular, this shows that morphisms from 0 to B in QA are in 1-1 corre-
spondence with admissible subobjects of B.

Isomorphisms in QA are in 1–1 correspondence with isomorphisms in A. To see
this, note that every isomorphism i:A ∼= B in A gives rise to an isomorphism in

QA, represented either by A
i
֌ B or by A

i−1

և B. Conversely, since the subobject

determined by an isomorphism in QA must be the maximal subobject B
=
֌ B,

every isomorphism in QA arises in this way.

Remark 6.1.3. Some set-theoretic restriction is necessary for QA to be a cate-
gory in our universe. It suffices for A to be well-powered, i.e., for each object of A
to have a set of subobjects. We shall tacitly assume this, since we will soon need
the stronger assumption that A is a small category.
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We now consider the geometric realization BQA as a based topological space,
the basepoint being the vertex corresponding to the object 0. In fact, BQA is a
connected CW complex, because the morphisms 0 ֌ A in QA give paths in BQA
from the basepoint 0 to every vertex A. (See Lemma 3.3.) The morphisms 0 և A
also give paths from 0 to A in QA.

Proposition 6.2. The geometric realization BQA is a connected CW complex
with π1(BQA) ∼= K0(A). The element of π1(BQA) corresponding to [A] ∈ K0(A)
is represented by the based loop composed of the two edges from 0 to A:

(6.2.1) 0 ֌ A։ 0.

Proof. Let T denote the family of all morphisms 0 ֌ A in QA. Since each
nonzero vertex occurs exactly once, T is a maximal tree. By Lemma 3.4, π1(BQA)
has the following presentation: it is generated by the morphisms in QA, modulo
the relations that [0 ֌ A] = 1 and [f ] · [g] = [f ◦ g] for every pair of composable
arrows in QA. Moreover, the element of π1(BQA) corresponding to a morphism
from A to B is the based loop following the edges 0 ֌ A→ B ֋ 0.

Since the composition 0 ֌ B2 ֌ B is in T , this shows that [B2 ֌ B] = 1
in π1(BQA). Therefore [A և B2 ֌ B] = [A և B2]. Similarly, the composition
0 և A և B yields the relation [A և B][0 և A] = [0 և B]. Since every morphism
(6.1.1) factors, this shows that π1(BQA) is generated by the morphisms [0 և A].

If A֌ B ։ C is an exact sequence in A, then the composition 0 ֌ C և B in
QA is 0 և A֌ B. This yields the additivity relation

(6.2.2) [0 և B] = [C և B][0 և C] = [0 և A][0 և C]

in π1(BQA), represented by the following picture in BQA:

0 ֌ A ֌ B
↓↓ ր ↓↓ ցց
0 ֌ C ։ 0

Since every relation [f ] · [g] = [f ◦ g] may be rewritten in terms of the additivity
relation, π1(BQA) is generated by the [0 և A] with (6.2.2) as the only relation.
Therefore K0(A) ∼= π1(BQA). �

Example 6.2.3. The presentation for π1(BQA) in the above proof yields a
function from morphisms in QA to K0(A). It sends [Aև B2 ֌ B] to [B1], where
B1 is the kernel of B2 ։ A.

Definition 6.3. Let A be a small exact category. Then KA denotes the space
ΩBQA, and we set

Kn(A) = πnKA = πn+1(BQA) for n ≥ 0.

Proposition 6.2 shows that this definition of K0(A) agrees with the one given in
chapter II. Note that any exact functor F :A → B induces a functor QA → QB,
hence maps BQA → BQB and Kn(A) → Kn(B). Thus the space KA = Ω BQA
and all the groups Kn(A) are functors from exact categories and exact functors to
spaces and abelian groups, respectively. Moreover, isomorphic functors induce the
same map on K-groups, because they induce isomorphic functors QA → QA′.
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Remark 6.3.1. If an exact category A is not small but has a set of isomor-
phism classes of objects then we define Kn(A) to be Kn(A′), where A′ is a small
subcategory equivalent to A. By Ex. 6.2 this is independent of the choice of A′.
From now on, whenever we talk about the K-theory of a large exact category A we
will use this device, assuming tacitly that we have replaced it by a small A′. For
example, this is the case in the following definitions.

Definition 6.3.2. Let R be a ring with unit, and let P(R) denote the exact
category of finitely generated projective R-modules. We set K(R) = KP(R) and
define the K-groups of R by Kn(R) = KnP(R). For n = 0, lemma 6.2 shows that
this agrees with the definition of K0(R) in chapter II. For n ≥ 1, agreement with
the (nonfunctorial) +–construction definition 1.1.1 of K(R) will have to wait until
section 7.

Let f : R → S be a ring homomorphism such that S is finitely generated and
projective as an R-module. Then there is a forgetful functor P(S) → P(R) and
hence a “transfer” functor f∗ : K∗(S)→ K∗(R).

Definition 6.3.3. If R is noetherian, let M(R) denote the category of finitely
generated R-modules. Otherwise, M(R) is the category of pseudo-coherent modules
defined in II.7.1.4. We set G(R) = KM(R) and define the G-groups of R by
Gn(R) = KnM(R). For n = 0, this also agrees with the definition in chapter II.

Let f : R→ S be a ring map. When S is finitely generated as an R-module (and
S is in M(R)), there is a contravariant “transfer” map f∗ : G(S)→ G(R), induced
by the forgetful functor f∗ : M(S)→M(R), as in II.6.2.

On the other hand, if S is flat as an R-module, the exact base change functor
⊗RS : M(R)→M(S) induces a covariant map f∗ : G(R)→ G(S) hence maps f∗ :
Gn(R) → Gn(S) for all n. This generalizes the base change map G0(R) → G0(S)
of II.6.2. We will see in V.3.5 that the base change map is also defined when S has
finite flat dimension over R.

Definition 6.3.4. Similarly, if X is a scheme which is quasi-projective (over a
commutative ring), we define K(X) = KVB(X) and Kn(X) = KnVB(X). If X
is noetherian, we define G(X) = KM(X) and Gn(X) = KnM(X). For n = 0, this
agrees with the definition of K0(X) and G0(X) in chapter II.

Morita Invariance 6.3.5. Recall from II.2.7 that if two rings R and S are
Morita equivalent then there are equivalences P(R) ∼= P(S) and M(R) ∼= M(S).
It follows that Kn(R) ∼= Kn(S) and Gn(R) ∼= Gn(S) for all n.

Elementary Properties 6.4. Here are some elementary properties of the
above definition.

If Aop denotes the opposite category of A, then Q(Aop) is isomorphic to QA by
Ex 6.3, so we have Kn(Aop) = Kn(A). For example, if R is a ring then P(Rop) ∼=
P(R)op by P 7→ HomR(P,R), so we have Kn(R) ∼= Kn(R

op).
The product or direct sum A ⊕ A′ of two exact categories is exact by Ex-

ample II.7.1.6, and Q(A ⊕ A′) = QA × QA′. Since the geometric realization
preserves products by 3.1(4), we have BQ(A ⊕ A′) = BQA × BQA′ and hence
Kn(A ⊕ A′) ∼= Kn(A) ⊕ Kn(A′). For example, if R1 and R2 are rings then
P(R1 × R2) ∼= P(R1) ⊕ P(R2) and we have Kn(R1 × R2) ∼= Kn(R1) ⊕ Kn(R2).
(Cf. Ex. 1.7.) Similarly, if a quasi-projective scheme X is the disjoint union
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of two components Xi, then VB(X) is the sum of the VB(Xi) and we have
Kn(X) ∼= Kn(X1)⊕Kn(X2).

The direct sum ⊕ : A×A → A is an exact functor, and its restriction to either
factor is an isomorphism. It follows that B⊕ : BQA×BQA → BQA endows BQA
with the structure of a homotopy-commutative H-space. (It is actually an infinite
loop space; see 6.5.1).

Finally, suppose that i 7→ Ai is a functor from some small filtering category
I to exact categories and exact functors. Then the filtered colimit A = lim−→Ai
is an exact category (Ex. II.7.9), and QA = lim−→QAi. Since geometric realization
preserves filtered colimits by 3.1(3), we have BQA = lim−→BQAi and henceKn(A) =
lim−→Kn(Ai). The K0 version of this result was given in chapter II, as 6.2.7 and 7.1.7.

For example, if a ring R is the filtered union of subrings Ri we have Kn(R) ∼=
lim−→Kn(Ri). However, i 7→ P(Ri) is not a functor. One way to fix this is to replace
the category P(Ri) by the equivalent category P′(Ri) whose objects are idempotent
matrices over Ri; P(R) is equivalent to the category P′(R) = lim−→Pi. Alternatively
one could use the Kleisli rectification, which is described in Ex. 6.5.

Cofinality 6.4.1. Let B be an exact subcategory of A which is closed under
extensions in A, and which is cofinal in the sense that for every A in A there is an
A′ in A so that A⊕A′ is in B. Then BQB is homotopy equivalent to the covering
space of BQA corresponding to the subgroup K0(B) of K0(A) = π1(BQA). In
particular, Kn(B) ∼= Kn(A) for all n > 0.

A special case of this is sketched in Exercise 6.6; the general case follows from
this case using the version 8.9.1 of Waldhausen Cofinality below. Note that K0(B)
is a subgroup of K0(A) by II.7.2.

Waldhausen constructed a delooping of BQA in [Wa78, p. 194], using the “QQ”
construction. This in turn provides a context for products.

Definition 6.5. When A is a small exact category, QQA is the bicategory
whose bimorphisms are equivalence classes of commutative diagrams in A of the
form

· և · ֌ ·
↑↑ ↑↑ ↑↑
· և · ֌ ·
∨↓ ∨↓ ∨↓
· և · ֌ ·

in which the four little squares can be embedded in a 3 × 3 diagram with short
exact rows and columns. Two such diagrams are equivalent if they are isomorphic
by an isomorphism which restricts to the identity on each corner object.

Waldhausen proved that the loop space ΩQQA is homotopy equivalent to BQA
(see [Wa78, p. 196] and Ex. 6.8). Thus we haveKn(A) = πn+1BQA ∼= πn+2BQQA.

Remark 6.5.1. There are also n-fold categories QnA, defined exactly as in 6.5,
with ΩBQn+1A ≃ BQnA. The sequence of the BQnA (using ΩBQA if n = 0)
forms an Ω-spectrum K(A), making K(A) into an infinite loop space.
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Products

Definition 6.6. If A, B and C are exact categories, a functor ⊗ : A×B → C is
called biexact if (i) each partial functor A⊗ – : B → C and –⊗B : A → C is exact,
and (ii) A⊗ 0 = 0⊗B = 0 for the distinguished zero objects of A, B and C.

This is the same as the definition of biexact functor in §II.7. Note that condition
(ii) can always be arranged by replacing A, B and C by equivalent exact categories.

Given such a biexact functor, the bicategory map QA⊗QB → bi(QC) of 3.10.2
factors through the forgetful functorQQC → bi(QC). The functorQA⊗QB → QQC
sends a pair of morphisms A0 և A1 ֌ A2, B0 և B1 ֌ B2 to the bimorphism

(6.6.1)

A0 ⊗B0 և A1 ⊗B0 ֌ A2 ⊗B0

↑↑ ↑↑ ↑↑
A0 ⊗B1 և A1 ⊗B1 ֌ A2 ⊗B1
∨↓ ∨↓ ∨↓

A0 ⊗B2 և A1 ⊗B2 ֌ A2 ⊗B2

Now the geometric realization 3.6 of the bifunctor ⊗ : QA ⊗ QB → QQC is a
map BQA × BQB → BQQC by 3.10.1. Since ⊗ sends QA ⊗ 0 and 0 ⊗ QB to 0,
by the technical condition (ii), B⊗ sends BQA× 0 and 0×BQB to the basepoint,
and hence factors through a map

(6.6.2) BQA ∧BQB → BQQC,
and in fact a pairing K(A) ∧ K(B) → K(C) of spectra; see [Gillet, 7.12]. The
reduced join operation [Wh, p. 480] yields bilinear maps

(6.6.3) Ki(A)⊗Kj(B) = πi+1(BQA)⊗ πj+1(BQB)→
πi+j+2(BQA ∧BQB)→ πi+j+2(BQC) ∼= Ki+j(C).

Remarks 6.6.4. We say that A acts upon B if there is a biexact A × B →
B. If there is an object A0 of A so that A0 ⊗ – is the identity on B, the map
S1 = B(0 ⇉ 1) → BQA given by the diagram 0 ֌ A0 ։ 0 of 6.2 induces a map
S1∧BQA → B

(
QA⊗QB

)
→ BQQB. Its adjoint BQA → ΩBQQA is the natural

map of 6.5 (see Ex. 6.8).
When there is an associative pairing A×A → A, K∗(A) becomes a graded ring;

it has a unit [A0] ∈ K0(A) if A0 ⊗ – = –⊗A0 = idA, by the preceeding paragraph,
and K(A) is a ring spectrum. When K(A) acts on K(B) and the two evident
functors A×A×B → B agree up to natural isomorphism, the pairing makes K∗(B)
into a left K∗(A)-module.

Example 6.6.5. These remarks apply in particular to the category A = P(R)
over a commutative ring R, and VB(X) over a scheme X. Tensor product makes
K∗(R) = K∗P(R) and K∗(X) = K∗VB(X) into graded-commutative rings with
unit. For every R-algebra A, K∗(A) and G∗(A) are 2-sided graded K∗(R)-modules,
and G∗(X) is a graded K∗(X)-module.

If f : A → B is an R-algebra map, and B is finite over A, the finite transfer
f∗ : G(B) → G(A) is a K∗(R)-module homomorphism: f∗(x · y) = f∗(x) · y for
x ∈ G∗(B) and y ∈ K∗(R). This fact is sometimes referred to as the projection
formula, and holds because f∗(x ·y) and x ·f∗(y) arise from the isomorphic functors
M ⊗B (B ⊗R P ) ∼=M ⊗A (A⊗R P ) of functors M(B)×P(R)→M(A).
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The W (R)-module NK∗(A)

6.7. Let k be a commutative ring. We saw in II.7.4.3 that the exact endomorphism
category End(k) of pairs (P, α) has an associative, symmetric biexact pairing with
itself, given by ⊗k. This makes K∗End(k) into a graded-commutative ring. As in
loc. cit., the functors P(k)→ End(k)→ P(k) decompose this ring as a product of
K∗(k) and another graded-commutative ring which we call End∗(k).

If R is an k-algebra, End(k) acts associatively by ⊗k on the exact category
Nil(R) of nilpotent endomorphisms (II.7.4.4), and on its subcategories FmNil(R)
(Ex. II.7.17). As Nil(R) is their union, we see that K∗Nil(R) = colimK∗FmNil(R)
is a filtered K∗End(k)-module.

Let Nil(R) denote the fiber of the forgetful functor KNil(R)→ K(R); since this
is split, we have KNil(R) ≃ K(R) × Nil(R) and K∗Nil(R) ∼= K∗(R) × Nil∗(R),
where Nil∗(R) = π∗Nil(R) is a graded End∗(k)-module.

By Almkvist’s Theorem II.4.3, End0(k) is isomorphic to the subgroup ofW (k) =
(1+tk[[t]])× consisting of all quotients f(t)/g(t) of polynomials in 1+tR[t]. Stienstra
observed in [St85] (cf. [St82]) that the End0(k)-module structure extended to a
W (k)-module structure by the following device. There are exact functors Fm, Vm :
Nil(R)→ Nil(R) defined by Fm(P, ν) = (P, νm) and Vm(P, ν) = (P [t]/(tm − ν), t)
(see Ex. II.7.16). Stienstra proved in [St82] that (Vmα) · ν = Vm(α · Fm(ν)) for
α ∈ End0(k) and ν ∈ Nil∗(R). Since Fm is zero on FmNil(R), the elements Vm(α)
act as zero on the image FmNil∗(R) of K∗FmNil(R)→ K∗Nil(R)→ Nil∗(R).

For example, the class of α = [(k, a)]− [(k, 0)]) in End0(k) ⊂W (R) is 1− at, so
Vm(α) = (1− atm) acts as zero. Stienstra also proves in [St85] that if g(t) = 1+ ...
has degree < m and f(t) is any polynomial then the element 1+tm(f/g) of End0(k)
acts as zero on FmNil∗(R). Hence the ideal End0(R) ∩ (1 + tmR[[t]]) is zero on
FmNil∗(R). Writing an element of W (k) as a formal factorization f(t) =

∏∞
i=1(1−

amt
m), the formula f · ν =

∑
(1− amtm) · ν makes sense as a finite sum.

Proposition 6.7.1. If k = Z/pZ, Nil∗(R) is a graded p-group.
If k = S−1Z, or if k is a Q-algebra, Nil∗(R) is a graded k-module.

Proof. If k = S−1Z, or if k is a Q-algebra, the map m 7→ (1−t)m defines a ring
homomorphism from k into W (k), so any W (k)-module is a k-module. If p = 0 (or

even pν = 0) in k then for each n the formal factorization of (1− t)pN involves only
(1− amtm) for m ≥ n. It follows that pN annihilates the image of K∗FnNil(R) in
Nil∗(R). Since Nil∗(R) is the union of these images, the result follows. �

We will see in chapter V.9 that there is an isomorphism NKn+1(R) ∼= Niln(R),
so what we have really seen is that NK∗(R) is a graded End∗(k)-module, with the
properties given by 6.7.1:

Corollary 6.7.2. If k = Z/pZ, each NKn(R) is a p-group.
If k = S−1Z, or if k is a Q-algebra, each NKn(R) is a k-module.

Example 6.7.3. If R is an algebra over the complex numbers C, then each
NKn(R) has the structure of a C-vector space. As an abelian group, it is either
zero or else uniquely divisible and uncountable.

The endofunctor Vm(P, α) = (P [t]/tm − α, t) of End(R) (Ex. II.7.16) sends
Nil(R) to itself, and FmVm(P, ν) = ⊕m1 (Pν). Hence Vm induces an endomorphism
Vm on each Niln(R), such that FmVm is multiplication by m.
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Proposition 6.7.4 (Farrell). If any NKn(R) is nonzero, it cannot be finitely
generated as an abelian group.

Proof. Since NKn(R) = colimKn−1FnNil(R), every element is killed by all
sufficiently large Fm. If NKn(R) were finitely generated, there would be an in-
teger M so that the entire group is killed by Fm for all m > M . Pick β 6= 0 in
NKn(R) and choose m > M so that mβ 6= 0. But Fm(Vmβ) = mβ is nonzero, a
contradiction. �

Finite generation

The following conjecture is due to Bass.

Bass’ Finiteness Conjecture 6.8. Let R be a commutative regular ring,
finitely generated as a Z-algebra. Then the groups Kn(R) are finitely generated for
all n.

Quillen used a filtration of the Q-construction to prove in [Q73] that the groups
Kn(R) are finitely generated for any Dedekind domain R such that (1) Pic(R) is
finite and (2) the homology groups Hn(Aut(P ), st(P ⊗R F )) are finitely generated.
He then verified (2) in [Q73] (number field case) and [GQ82] (affine curves). In
other words:

Theorem 6.9. (Quillen) Let R be either an integrally closed subring of a number
field F , finite over Z, or else the coordinate ring of a smooth affine curve over a
finite field. Then Kn(R) is a finitely generated group for all n.

EXERCISES

6.1 Admissible subquotients. Let B be an object in an exact category A. An
admissible layer in B is a pair of subobjects represented by a sequence B1 ֌ B2 ֌

B of admissible monics, and we call the quotient B2/B1 an admissible subquotient
of B. Show that a morphism A→ B in QA may be identified with an isomorphism
j:B2/B1

∼= A of A with an admissible subquotient of B, and that composition in
QA arises from the fact that a subquotient of a subquotient is a subquotient.

6.2 If two exact categories A and A′ are equivalent (and the equivalence respects
exactness), show that QA and QA′ are equivalent. If both are small categories,
conclude that Kn(A) ∼= Kn(A′) for all n.
6.3 If A is an exact category, so is its opposite category Aop (see Example II.7.1.5).
Show that Q(Aop) is isomorphic to QA.
6.4 Let B be an object in an exact category A. Show that the comma category
QA/B is equivalent to the poset of admissible layers of B in the sense of Ex. 6.1.
If P is an exact subcategory of A and i denotes the inclusion QP ⊂ QA, show that
i/B is equivalent to the poset of admissible layers of B with B2/B1 ∈ P.
6.5 Kleisli rectification. Let I be a filtering category, and let I → CAT be a lax
functor in the sense of Ex. 3.8. Although the family of exact categories QA(i) is
not filtering, the family of homotopy groups KnA(i) is filtering. The following trick
allows us make K-theoretic sense out of the phantom category A = lim−→A(i).

Let Ai be the category whose objects are pairs (Aj , j
f−→ i) with Aj in A(j)

and f a morphism in I. A morphism from (Aj , j
f−→ i) to (Ak, k

g−→ i) is a pair
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(j
h−→ k, θj) where f = gh in I and θj is an isomorphism h∗(Aj) ∼= Ak in A(k).

Clearly Ai is equivalent to A(i), and i 7→ Ai is a functor. Thus if A denotes lim−→Ai
we have KnA = lim−→KnA(i).
6.6 (Gersten) Suppose given a surjective homomorphism φ : K0(A) → G, and let
B denote the full subcategory of all B in A with φ[B] = 0 in G. In this exercise we
show that if B is cofinal in A then Kn(B) ∼= Kn(A) for n > 0, and K0(B) ⊂ K0(A).

(a) Show that there is a functor ψ : QA → G sending the morphism (6.1.1) of
QA to φ[B1], B1 = ker(j), where G is regarded as a category with one object ∗.
Using 6.2, show that the map π1(QA)→ π1(G) is just φ.

(b) Show that the hypotheses of Theorem B are satisfied by ψ, so that B(ψ/∗)
is the homotopy fiber of BQA → BG.

(c) Use Theorem A to show that QB → ψ−1(∗) is a homotopy equivalence.
(d) Suppose in addition that B is cofinal in A (II.5.3), so that K0(B) is the

subgroup ker(φ) of K0(A) by II.7.2. Use Theorem A to show that ψ−1(∗) ≃ ψ/∗.
This proves that BQB → BQA → BG is a homotopy fibration. Conclude that
Kn(B) ∼= Kn(A) for all n ≥ 1.

6.7 (Waldhausen) If A is an exact category, let qA denote the bicategory (3.10)
with the same objects as A, admissible monomorphisms and epimorphisms as the
horizontal and vertical morphisms, respectively; the bimorphisms in qA are those
bicartesian squares in A whose horizontal edges are admissible monomorphisms,
and whose vertical edges are admissible epimorphisms.

A11 ֌ A10

↓↓ ↓↓
A01 ֌ A00

Show that the diagonal category (Ex. 3.14) of qA is the category QA.
6.8 (Waldhausen) Since the realization of the two-object category 0 ⇉ 1 is S1,
the realization of the bicategory (0 ⇉ 1) ⊗ A is S1 × BA. Given a morphism
A0 և A1 ֌ A2 show that the pair of bimorphisms in QQA

A0 և A1 ֌ A2

↓↓ ↓↓ ↓↓
0 և 0 ֌ 0,

A0 և A1 ֌ A2

↑∧ ↑∧ ↑∧
0 և 0 ֌ 0

describe a map S1 ∧BQA → BQQA. Waldhausen observed in [Wa78, p. 197] that
this map is adjoint to the homotopy equivalence BQA ≃ ΩBQQA.
6.9 For every biexact A× B → C, show that the pairing K0(A)⊗K0(B)→ K0(C)
of (6.6.3) agrees with the product of II.7.4.

6.10 Show that the functor QA⊗QB → QQC of 6.6 is a map of symmetric monoidal
categories (the operation on QQC is slotwise direct sum). Conclude that BQA ×
BQB → BQQC is an H-space map. (In fact, it is an infinite loop space map.)

6.11 Let A be the direct sum ⊕i∈IAi of exact categories. Show that Kn(A) ∼=
⊕i∈IKn(Ai).
6.12 If f : R → S is such that S is in P(R), show that the transfer map f∗ :
K0(S)→ K0(R) of 6.3.2 agrees with the transfer functor for K0 given in II.2.8.
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6.13 If f : R → S and S is in P(R), show that f∗f
∗ is multiplication by [S] ∈

K0(R), and that f∗f∗ is multiplication by [S ⊗R S] ∈ K0(S).
If f : k → ℓ is a purely inseparable field extension, show that both f∗f∗ and

f∗f
∗ are multiplication by [ℓ : k] = pr.
If f : R→ S is a Galois extension with group G, show that f∗f∗ =

∑
g∈G g.

6.14 Let C be a category with a distinguished zero object ‘0’ and a coproduct ∨.
We say that a family E of sequences of the form

0→ B
i−→ C

j−→ D → 0 (†)
is admissible if the following conditions hold (cf. Ex. II.7.8): (i) Any sequence in C
isomorphic to a sequence in E is in E ; (ii) If (†) is a sequence in E then i is a kernel
for j (resp. j is a cokernel for i) in C; (iii) the class E contains all of the sequences
0 → B → B ∨ D → D → 0; (iv) the class of admissible epimorphisms is closed
under composition and pullback along admissible monics; (v) the class of admissible
monics is closed under composition and pullback along admissible epimorphisms.

A quasi-exact category is a pair (C, E), where E is admissible in the above sense.
If C is small, show that there is a category QC, defined exactly as in 6.1, and that
π1(BQC) is the group K0(C) defined exactly as in II.7.1: the group generated by
the objects of C subject to the relations [C] = [B] + [D] arising from the admissible
exact sequences. (This formulation is due to Deitmar.)

6.15 (Waldhausen) Show that the category Setsfin of finite pointed sets is quasi-
exact, where E is the collection of split sequences 0→ B → B ∨D → D → 0, and
that K0(Setsfin) = Z, exacty as in II.5.2.1. The opposite category Sets

op
fin is not

quasi-exact, because 0→ B → B ∧D → D → 0 is not in Eop.
6.16 A monoid M with identity 1 is pointed if it has an element 0 with 0 · m =
m · 0 = 0 for all m ∈M . A pointed M -set is a pointed set X on which M acts and
0 ·x = ∗ for all x ∈ X. Show that the category of finitely generated pointedM -sets,
and its subcategory of free pointed M -sets, are quasi-exact. Here a sequence (†) is
admissible if i is an injection and j identifies D with C/B.

§7. The “+ = Q” Theorem

Suppose that A is an additive category. One way to define the K-theory of A
is to consider the symmetric monoidal category S = isoA (where � = ⊕) and use
the S−1S construction: K⊕n A = πnB(S−1S) and K⊕A = K(S) = B(S−1S).

Another way is to suppose that A has the structure of an exact category and
form the Q-construction on A with the S−1S construction on S. Comparing the
definitions of K⊕0 A and K0A in II.5.1.2 and II.7.1, we see that the K0 groups are
not isomorphic in general, unless perhaps every exact sequence splits in A, i.e.,
unless A is a split exact category in the sense of II.7.1.2.

Here is the main theorem of this section.

Theorem 7.1 (Quillen). If A is a split exact category and S = isoA, then
ΩBQA ≃ B(S−1S). Hence Kn(A) ∼= Kn(S) for all n ≥ 0.

In fact, B(S−1S) is the group completion of BS by theorem 4.8 and exercise 7.1.
In some circumstances (see 4.9, 4.10 and 4.11.1), the S−1S construction is a +–
construction. In these cases, theorem 7.1 shows that the Q–construction is also a
+–construction. For A = P(R), this yields the “+ = Q” theorem:
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Corollary 7.2 (+ = Q). For every ring R,

ΩBQP(R) ≃ K0(R)×BGL(R)+.

Hence Kn(R) ∼= KnP(R) for all n ≥ 0.

Definition 7.3. Given an exact category A, we define the category EA as
follows. The objects of EA are admissible exact sequences in A. A morphism from
E′ : (A′ ֌ B′ ։ C ′) to E : (A ֌ B ։ C) is an equivalence class of diagrams of
the following form, where the rows are exact sequences in A:

(7.3.1)

E′ : A′ ֌ B′ ։ C ′

α↑∧ || ↑↑
↓ A ֌ B′ ։ C ′′

|| ∨↓β ∨↓
E : A ֌ B ։ C.

Two such diagrams are equivalent if there is an isomorphism between them which
is the identity at all vertices except for the C ′′ vertex.

Notice that the right column in (7.3.1) is just a morphism ϕ in QA from C ′ to
C, so the target C is a functor t : EA → QA: t(A ֌ B ։ C) = C. In order to
improve legibility, it is useful to write EC for the fiber category t−1(C).

Fiber categories 7.4. If we fix ϕ as the identity map of C = C ′, we see
that the fiber category EC = t−1(C) of exact sequences with target C has for its
morphisms all pairs (α, β) of isomorphisms fitting into a commutative diagram:

A′ ֌ B′ ։ C
α ↑∼= ∼=↓ β ||
A ֌ B ։ C.

In particular, every morphism in EC is an isomorphism.

Example 7.4.1. The fiber category E0 = t−1(0) is homotopy equivalent to
S = isoA. To see this, consider the functor from isoA to E0 sending A to the

trivial sequence A
id
֌A ։ 0. This functor is a full embedding. Moreover, every

object of E0 is naturally isomorphic to such a trivial sequence, whence the claim.

Lemma 7.5. For any C in A, EC is a symmetric monoidal category, and there
is a faithful monoidal functor ηC : S → EC sending A to A֌ A⊕ C ։ C.

Proof. Given Ei = (Ai ֌ Bi ։ C) in EC , set E1 ∗ E2 equal to

(7.5.1) A1 ⊕A2 ֌ (B1 ×C B2) ։ C.

This defines a symmetric product on EC with identity e : 0 ֌ C ։ C. It is now
routine to check that S → EC is a monoidal functor, and that it is faithful. �

Remark 7.5.2. If A is split exact then every object of EC is isomorphic to one
coming from S. In particular, the category 〈S, EC〉 of 4.7.1 is connected. This fails
if A has a non-split exact sequence.
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Proposition 7.6. If A is split exact, each S−1S → S−1EC is a homotopy
equivalence.

Proof. By Ex. 4.7 and Ex. 7.1, S−1S → S−1EC → 〈S, EC〉 is a fibration, so it
suffices to prove that L = 〈S, EC〉 is contractible. First, observe that the monoidal
product on EC induces a monoidal product on L, so BL is an H-space (as in 4.1).
We remarked in 7.5.2 that L is connected. By [Wh, X.2.2], BL is group-like, i.e.,
has a homotopy inverse.

For every exact sequence E, there is a natural transformation δE : E → E ∗E in
L, where ∗ is defined by (7.5.1), given by the diagonal.

E : A ֌ B ։ C
↓ ↓ ↓ ||

E ∗ E : A⊕A ֌ B ×C B ։ C

Now δ induces a homotopy between the identity on BL and muliplication by 2.
Using the homotopy inverse to subtract the identity, this gives a homotopy between
zero and the identity of BL. Hence BL is contractible. �

We also need a description of how EC varies with C.

Lemma 7.7. For each morphism ϕ : C ′ → C in QA, there is a canonical func-
tor ϕ∗ : EC → EC′ and a natural transformation ηE : ϕ∗(E) → E from ϕ∗ to the
inclusion of EC in EA.

In fact, t : EA → QA is a fibered functor with base change ϕ∗ (Ex. 7.2). It
follows (from 3.7.5) that C 7→ EC is a contravariant functor from QA to CAT .

Proof. Choose a representative C ′ և C ′′ ֌ C for ϕ and choose a pullback B′

of B and C ′′ along C. This yields an exact sequence A֌ B′ ։ C ′′ in A. (Why?)
The composite B′ ։ C ′′ ։ C ′ is admissible; if A′ is its kernel then set

ϕ∗(A֌ B ։ C) = (A′ ֌ B′ ։ C ′).

Since every morphism in EC is an isomorphism, it is easy to see that ϕ∗ is a functor,
independent (up to isomorphism) of the choices made. Moreover, the construction
yields a diagram (7.3.1), natural in E; the map β is an admissible monic because

A֌ B′
β−→ B′ is. Hence (7.3.1) constitutes the natural map ηE : E → ϕ∗(E). �

Now the direct sum of sequences defines an operation ⊕ on EA, and S acts on
EA via the inclusion of S in EA given by 7.4.1. That is, A′�(A ֌ B ։ C) is the
sequence A′ ⊕ A ֌ A′ ⊕ B ։ C. Since t(A′�E) = t(E) we have an induced map
T = S−1t : S−1EA → QA. This is also a fibered functor (Ex. 7.2).

Theorem 7.8. If A is a split exact category and S = isoA, then the sequence

S−1S → S−1EA T−→ QA is a homotopy fibration.

Proof. We have to show that Quillen’s Theorem B applies, i.e., that the base
changes ϕ∗ of 7.7 are homotopy equivalences. It suffices to consider ϕ of the form
0 ֌ C and 0 և C. If ϕ is 0 ֌ C, the composition of the equivalence S−1S →
S−1EC of 7.6 with ϕ∗ is the identity by Ex. 7.5, so ϕ∗ is a homotopy equivalence.
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Now suppose that ϕ is 0 և C. The composition of the equivalence S−1S →
S−1EC of 7.6 with ϕ∗ sends A to A ⊕ C by Ex. 7.5. Since there is a natural
transformation A → A ⊕ C in S−1S, this composition is a homotopy equivalence.
Hence ϕ∗ is a homotopy equivalence. �

Proof of theorem 7.1. This will follow from theorem 7.8, once we show
that S−1EA is contractible. By Ex. 7.3, EA is contractible. Any action of S
on a contractible category must be invertible (4.7.1). By Ex. 4.6 and Ex. 7.1,
EA → S−1EA is a homotopy equivalence, and therefore S−1EA is contractible. �

Agreement of Product Structures

Any biexact pairing A1 × A2
⊗−→ A3 of split exact categories (6.6) induces a

pairing S1 × S2
�−→ S of symmetric monoidal categories, where Si = isoAi. We

now compare the resulting pairings K(A1) ∧K(A2)→ K(A3) of 6.6 and K(S1) ∧
K(S2) → K(S3) of 4.6. Waldhausen’s Lemma [Wa78, 9.2.6] implies the following
result; the details of the implication are given in [We81, 4.3]:

Theorem 7.9. The homotopy equivalences B(S−1i Si)→ ΩBQAi of theorem 7.1
fit into a diagram which commutes up to basepoint-preserving homotopy:

B(S−11 S1) ∧B(S−12 S2)
�−−−−→ B(S−13 S3)

≃

y
y≃

(ΩBQA1) ∧ (ΩBQA2)
γ−−−−→ (ΩBQA3)

≃

y
y≃

Ω2(BQA1 ∧BQA2)
Ω2⊗−−−−→ Ω2(BQQA3).

Hence there are commutative diagrams:

Kp(S1)⊗Kq(S2)
�−−−−→ Kp+q(S3)

∼=

y
y∼=

Kp(A1)⊗Kq(A2)
⊗−−−−→ Kp+q(A3).

The middle map γ is induced from the H-space map ⊗ : ΩBQA1 × ΩBQA2 →
Ω2BQA3 of Ex. 6.10, since it sends x⊗ 0 and 0⊗ y to 0.

EXERCISES

7.1 If A is an additive category, S = isoA is equivalent to the disjoint union of
one-object categories Aut(A), one for every isomorphism class in A. Show that the
translations Aut(A)→ Aut(A⊕B) are injections. Then conclude using theorem 4.8
that B(S−1S) is the group completion of the H-space BS =

∐
Aut(A).

7.2 Show that the target functor t : EA → QA is a fibered functor in the sense of
Definition 3.7.3, with base change ϕ∗ given by 7.7. Then show that the action of
S on EA is cartesian (Ex. 4.11), so that the induced functor S−1EA → QA is also
fibered, with fiber S−1S over 0.
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7.3 Let iQA denote the subcategory of QA whose objects are those of A but whose
morphisms are admissible monomorphisms. Show that the category EA of 7.3 is
equivalent to the subdivision category Sub(iQA) of Ex. 3.9. Conclude that the
category EA is contractible.
7.4 Show that Quillen’s Theorem B can not apply to EA → QA unless A ∼= 0.
Hint: Compare π0S to K0A.
7.5 If ϕ is the map 0 ֌ C, resp. 0 և C, show that ϕ∗ : EC → E0 ∼= S sends
A֌ B ։ C to A, resp. to B.
7.6 Describe E ′A = (EA)op, which is cofibered over (QA)op by Ex. 3.6 and 7.2.
Use E ′A to prove the + = Q Theorem 7.1. Hint: There is a new action of S. Use
pushout instead of pullback in (7.5.1) to prove the analogue of proposition 7.6.
7.7 Finite Sets. Let Setsfin denote the category of finite pointed sets, and form
the category QSetsfin by copying the Q-construction 6.1 as in Ex. 6.15.
(a) Show that there is an extension category E ′Setsfin, defined as in Ex. 7.6, which
is cofibered over (QSetsfin)

op with S = isoSetsfin as the fiber over the basepoint.
(b) Modify the proof of the + = Q theorem to prove that ΩBQSetsfin ≃ S−1S.
(c) If G is a group, let F be the category of finitely generated free pointed G-
sets, and QF as in Ex. 6.16. Using 4.10.1, show that ΩBQF ≃ S−1S ≃ Z ×
Ω∞S∞(BG+).
7.8 (π1BQA) Given an object A in A, lift the morphisms (6.2.1) in QA to mor-
phisms in EA, 0 → ηA(0) ← η0(A). Conclude that the isomorphism between
K0(A) = π1BQA and K0(S) = π0(S

−1S) of theorem 7.1 is the canonical isomor-
phism of II.7.1.2, identifying [A] with [A].
7.9 (π2BQA) Given an automorphism α of an object A in A, consider the contin-
uous map [0, 1]2 → BQA given by the commutative diagram:

0 ֌ A ։ 0
‖ α ↓ ‖
0 ֌ A ։ 0.

Identifying the top and bottom edges to each other, the fact that the left and
right edges map to the basepoint (0) means that we have a continuous function
S2 → BQA, i.e., an element [α] of K1(A) = π2(BQA).

(a) Show that [α] + [α′] = [αα′] for every pair of composable automorphisms.
Conclude that α 7→ [α] is a homomorphism Aut(A)→ K1(A).

(b) If β ∈ Aut(B), show that the automorphism α⊕β of A⊕B maps to [α]+[β].
Using 4.8.1, this given a map from K1(isoA) to K1(A).

(c) Finally, lift this diagram to EA using Ex. 7.8, representing a map I2 →
BEA, and conclude that the isomorphism between K1(A) = π2BQA and
K1(S) = π1(S

−1S) of theorem 7.1 identifies [α] with the class of α given
by III.1.6.3 and 4.8.1.

7.10 (Canonical involution) Let R be a commutative ring. The isomorphism
P(R) → P(R)op sending P to HomR(P,R) induces an involution on QP(R) and
hence K∗(R) by 6.4; it is called the canonical involution. Show that the involution
is a ring automorphism.

On the other hand, the “transpose inverse” involution of GL(R) (g 7→ tg−1)
induces a homotopy involution on BGL(R)+ and an involution on Kn(R) for n > 0.
Show that these two involutions agree via the ‘+ = Q’ theorem 7.2.
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§8. Waldhausen’s wS. construction

Our last construction of K-theory applies to Waldhausen categories, i.e., “cate-
gories with cofibrations and weak equivalences.” Unfortunately, this will occur only
after a lengthy list of definitions, and we ask the reader to be forgiving.

Recall from chapter II, section 9 that a category with cofibrations is a category
C with a distinguished zero object ‘0’ and a subcategory co(C) of morphisms in C
called “cofibrations” (indicated with feathered arrows ֌). Every isomorphism in C
is to be a cofibration, and so are the unique arrows 0 ֌ A for every object A in C.
In addition, the pushout C ֌ B ∪A C of any cofibration A ֌ B is a cofibration.
(See Definition II.9.1 for more precise statements.) These axioms imply that two
constructions make sense: the coproduct B ∐ C = B ∪0 C of any two objects, and
every cofibration A ֌ B fits into a cofibration sequence A ֌ B ։ B/A, where
B/A is the cokernel of A֌ B. The following is a restatement of Definition II.9.1.1:

Definition 8.1. A Waldhausen category C is a category with cofibrations, to-
gether with a family w(C) of morphisms in C called “weak equivalences” (indicated

with decorated arrows
∼−→). Every isomorphism in C is to be a weak equivalence,

and weak equivalences are to be closed under composition (so we may regard w(C)
as a subcategory of C). In addition, the “Glueing axiom” (W3) must be satisfied,
which says that the pushout of weak equivalences is a weak equivalence (see II.9.1).

A functor f : A → C between two Waldhausen categories is called an exact func-
tor if it preserves all the relevant structure: zero, cofibrations, weak equivalences
and the pushouts along a cofibration.

A Waldhausen subcategory A of a Waldhausen category C is a subcategory which
is also a Waldhausen category in such a way that: (i) the inclusion A ⊆ C is an
exact functor, (ii) the cofibrations in A are the maps in A which are cofibrations in
C and whose cokernel lies in A, and (iii) the weak equivalences in A are the weak
equivalences of C which lie in A.

In order to describe Waldhausen’s wS. construction for K-theory, we need a
sequence of Waldhausen categories SnC. S0C is the zero category, and S1C is the
category C, but whose objects A are thought of as the cofibrations 0 ֌ A. The
category S2C is the extension category E of II.9.3. For convenience, we repeat its
definition here.

Extension Categories 8.2. The objects of the extension category S2C are
the cofibration sequences A1 ֌ A2 ։ A12 in C. A morphism E → E′ in S2C is a
commutative diagram:

E : A1 ֌ A2 ։ A12y
yu1

yu2

yu3

E′ : A′1 ֌ A′2 ։ A′12

We make S2C into a Waldhausen category as follows. A morphism E → E′ in S2C
is a cofibration if A1 → A′1, A12 → A′12 and A′1 ∪A1

A2 → A′2 are cofibrations in
C. A morphism in S2C is a weak equivalence if its component maps ui : Ai → A′i
(i = 1, 2, 12) are weak equivalences in C.

A Waldhausen category C is called extensional if it satisfies the following tech-
nically convenient axiom: weak equivalences are “closed under extensions.”
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Extension axiom 8.2.1. Suppose that f : E → E′ is a map between cofibration
sequences, as in 8.2. If the source and quotient maps of f (A → A′ and C → C ′)
are weak equivalences, so is the total map of f (B → B′).

Definition 8.3. (S.C) If C is a category with cofibrations, let SnC be the cate-
gory whose objects A. are sequences of n cofibrations in C:

A. : 0 = A0 ֌ A1 ֌ A2 ֌ · · ·֌ An

together with a choice of every subquotient Aij = Aj/Ai (0 < i < j ≤ n). These
choices are to be compatible in the sense that there is a commutative diagram:

(8.3.0)

An−1,n
↑↑
· · ·

A23 ֌ · · ·֌ A2n
↑↑ ↑↑

A12 ֌ A13 ֌ · · ·֌ A1n
↑↑ ↑↑ ↑↑

A1 ֌ A2 ֌ A3 ֌ · · ·֌ An

The conventions A0j = Aj and Ajj = 0 will be convenient at times. A morphism
A.→ B. in SnC is a natural transformation of sequences.

If we forget the choices of the subquotients Aij we obtain the higher extension
category En(C) constructed in II.9.3.2. Since we can always make such choices, it
follows that the categories SnC and En(C) are equivalent. By Ex. II.9.4, when C is a
Waldhausen category, so is En(C) and hence SnC. Here are the relevant definitions
for Sn, translated from the definitions II.9.3.2 for En.

A weak equivalence in SnC is a map A. → B. such that each Ai → Bi (hence,
each Aij → Bij) is a weak equivalence in C. A map A.→ B. is a cofibration when
for every 0 ≤ i < j < k ≤ n the map of cofibration sequences

Aij ֌ Aik ։ Ajk
↓ ↓ ↓
Bij ֌ Bik ։ Bjk

is a cofibration in S2C.
The reason for including choices in the definition of the categories SnC is that

we can form a simplicial Waldhausen category. The maps ∂0, ∂1 from C = S1C to
0 = S0C are trivial; the maps ∂0, ∂1, ∂2 from S2C to C are q∗, t∗ and s∗, respectively.

Definition 8.3.1. For each n ≥ 0, the exact functor ∂0 : SnC → Sn−1C is
defined by deletion of the bottom row of (8.3.0). That is, ∂0 is defined by the
formula

∂0(A.) : 0 = A11 ֌ A12 ֌ A13 ֌ · · ·֌ A1n

together with the choices ∂0(A.)ij = Ai+1,j+1. By Ex. 8.1, ∂0(A.) is in Sn−1C.
For 0 < i ≤ n we define the exact functors ∂i : SnC → Sn−1C by omitting the

row Ai∗ and the column containing Ai in (8.3.0), and reindexing the Ajk as needed.
Similarly, we define the exact functors si : SnC → Sn+1C by duplicating Ai, and
reindexing with the normalization Ai,i+1 = 0. (Exactness is checked in Ex. 8.2.)
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By Ex. 8.2, the SnC fit together to form a simplicial Waldhausen category S.(C),
and the subcategories wSnC of weak equivalences fit together to form a simplicial
category wS.C. Hence their geometric realizations B(wSnC) fit together to form
a simplicial topological space BwS.C, and we write |wS.C| for the realization of
BwS.C. Since S0C is trivial, |wS.C| is a connected space.

Remark 8.3.2. In the realization of BwS.C, the spaces B(wSnC)×∆n are glued
together along the face maps. In particular, the suspension ΣB(wC) is a subspace
of |wS.C|; the adjoint map is B(wC)→ Ω|wS.C|. In this way, each object of C yields
an element of π1|wS.C|, and each weak equivalence A ≃ A in C yields an element
of π2|wS.C|.

Recall from chapter II, 9.1.2, that K0(C) is defined as the group generated by
the set of weak equivalence classes [A] of objects of C with the relations that [B] =
[A] + [B/A] for every cofibration sequence

A֌ B ։ B/A.

Proposition 8.4. If C is a Waldhausen category then π1|wS.C| ∼= K0(C).
Proof. If X. is any simplicial space with X0 a point, then |X.| is connected

and π1|X.| is the free group on π0(X1) modulo the relations ∂1(x) = ∂2(x)∂0(x)
for every x ∈ π0(X2). For X. = BwS.C, π0(BwS1C) is the set of weak equivalence
classes of objects in C, π0(BwS2C) is the set of equivalence classes of cofibration
sequences, and the maps ∂i : S2C → S1C of 8.3.1 send A ֌ B ։ B/A to B/A, B
and A, respectively. �

Definition 8.5. If C is a small Waldhausen category, its algebraic K-theory
space K(C) = K(C, w) is the loop space

K(C) = Ω|wS.C|.

The K-groups of C are defined to be its homotopy groups:

Ki(C) = πiK(C) = πi+1|wS.C| if i ≥ 0.

We saw in Remark 8.3.2, there is a canonical map B(wC)→ K(C).
Remark 8.5.1. Since the subcategory wC is closed under coproducts in C by

axiom (W3), the coproduct gives an H-space structure to |wS.C| via the map

|wS.C| × |wS.C| ∼= |wS.C × wS.C| ∐−→ |wS.C|.

Simplicial Model 8.5.2. Suppose that C is a small Waldhausen category in
which the isomorphisms iC are the weak equivalences. Let snC denote the set of
objects of SnC; as n varies, we have a simplicial set s.C. Waldhausen proved in
[W1126, 1.4] that the inclusion |s.C| → |iS.C| is a homotopy equivalence. Therefore
Ω|s.C| is a simplicial model for the space K(C).



IV. DEFINITIONS OF HIGHER K-THEORY 69

Relative K-theory spaces 8.5.3. If f : B → C is an exact functor, let Snf
denote the category SnB ×SnC Sn+1C whose objects are pairs

(B∗, C∗) = (B1 ֌ · · ·֌ Bn, C0 ֌ · · ·֌ Cn)

such that f(B∗) is ∂0C∗ : C1/C0 ֌ · · · ֌ Cn/C0. Each Snf is a Waldhausen
category in a natural way, containing C as the (Waldhausen) subcategory of all
(0, C = · · · = C), and the projection Snf → SnB is exact. We can apply the S.
(and wS.) construction degreewise to the sequence C → S.f → S.B of simplicial
Waldhausen categories, obtaining a sequence of bisimplicial Waldhausen categories
S.C → S.(S.f) → S.(S.B), and a sequence wS.C → wS.(S.f) → wS.(S.B) of
bisimplicial categories. We will see in V.1.7 (using 8.5.4) that the realization of the
bisimplicial category sequence

wS.B → wS.C → wS.(S.f)→ wS.(S.B),

is a homotopy fibration sequence. Thus we may regard K(f) = Ω2|wS.(S.f)| as a
relative K-theory space; the groups Kn(f) = πnK(f) fit into a long exact sequence
involving f∗ : Kn(B)→ Kn(C), ending K0(B)→ K0(C)→ K−1(f)→ 0 (Ex. 8.11).

Lemma 8.5.4. If f : C → C is the identity, wS.f is contractible.

Proof. In this case the simplicial category S.f is just the simplicial path space
construction of S.C, and wS.S.f is the simplicial path space construction of wS.S.C
(see [WHomo, 8.3.14]). These are contractible since S0f = 0 and wS.S0f are. �

Infinite Loop Structure 8.5.5. Lemma 8.5.4 implies that there are natural
homotopy equivalences |wS.C| ≃ Ω|wS.S.C|, and of course K(C) ≃ Ω2|wS.S.C|. In
fact K(C) is an infinite loop space.

To see this we just iterate the construction, forming the multisimplicial Wald-
hausen categories S.nC = S.S. · · ·S.C and the multisimplicial categories wS.nC of
their weak equivalences. By 8.5.4, we see that |wS.nC| is the loop space of |wS.n+1C|,
and that the sequence of spaces

Ω|wS.C|, |wS.C|, |wS.S.C|, . . . ,Ω|wS.nC|, . . .

forms a connective Ω-spectrum KC, called the K-theory spectrum of C. Many
authors think of the K-theory of C in terms of this spectrum. This does not affect
the K-groups, because:

πi(KC) = πiK(C) = Ki(C), i ≥ 0.

An exact functor f induces a map f∗ : K(B)→ K(C) of spaces, and spectra, and
of their homotopy groups Ki(B)→ Ki(C).

Exact Categories 8.6. We saw in II.9.1.3 that any exact category A becomes
a Waldhausen category in which the cofibration sequences are just the admissi-
ble exact sequences, and the weak equivalences are just the isomorphisms. We
write i(A) for the family of isomorphisms, so that we can form the K-theory space
K(A) = Ω|iS.A|. Waldhausen proved in [W1126, 1.9] that there is a homotopy
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equivalence between |iS.A| and BQA, so that this definition is consistent with the
definition of K(A) in definition 6.3. His proof is given in exercises 8.5 and 8.6
below.

Another important example of a Waldhausen category is Rf (X), introduced in
II.9.1 and Ex. II.9.1. The so-called K-theory of spaces refers to the corresponding
K-theory spaces A(X), and their homotopy groups An(X) = πnA(X).

Example 8.7
(
A(∗)

)
. Recall from II.9.1.4 that the category Rf = Rf (∗) of

finite based CW complexes is a Waldhausen category in which the family hRf of
weak equivalences is the family of weak homotopy equivalences. This category is
saturated (II.9.1.1) and satisfies the extension axiom 8.2.1. Following Waldhausen
[W1126], we write A(∗) for the space K(Rf ) = Ω|hS.Rf |. We have A0(∗) =
K0Rf = Z by II.9.1.5.

Example 8.7.1
(
A(X)

)
. More generally, let X be a CW complex. The cate-

gory R(X) of CW complexes Y obtained from X by attaching cells, and having X
as a retract, is a Waldhausen category in which cofibrations are cellular inclusions
(fixing X) and weak equivalences are homotopy equivalences (see Ex. II.9.1). Con-
sider the Waldhausen subcategory Rf (X) of those Y obtained by attaching only
finitely many cells. Following Waldhausen [W1126], we write A(X) for the space
K(Rf (X)) = Ω|hS.Rf (X)|. Thus A0(X) = K0Rf (X) is Z by Ex. II.9.1.

Similarly, we can form the Waldhausen subcategory Rfd(X) of those Y which
are finitely dominated. We write Afd(X) for K(Rfd(X)) = Ω|hS.Rfd(X)|. Note

that Afd0 (X) = K0Rfd(X) is Z[π1(X)] by Ex. II.9.1.

Cylinder Functors

When working with Waldhausen categories, it is often technically convenient to
have mapping cylinders. Recall from Ex. 3.12 that the category C/C of arrows in
C has the morphisms of C as its objects, and a map (a, b) : f → f ′ in C/C is a
commutative diagram in C:

(8.8.0)

A
f−−−−→ B

a

y
yb

A′
f ′

−−−−→ B′

The source s(f) = A and target t(f) = B of f define functors s, t : C/C → C.
Definition 8.8 (Cylinders). Let C be a Waldhausen category. A (mapping)

cylinder functor on C is a functor T from the category C/C of arrows in C to
the category C, together with natural transformations j1 : s ⇒ T , j2 : t ⇒ T and
p : T ⇒ t so that for every f : A→ B the diagram

A
j1−→ T (f)

j2←− B
f ց ↓ p ւ=

B

commutes in C. The following conditions must also hold:
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(i) T (0 ֌ A) = A, with p and j2 the identity map, for all A ∈ C.
(ii) j1 ∐ j2 : A∐B ֌ T (f) is a cofibration for all f : A→ B.

(iii) Given a map (a, b) : f → f ′ in C/C, i.e., a commutative square (8.8.0), if a
and b are weak equivalences in C then so is T (f)→ T (f ′).

(iv) Given a map (a, b) : f → f ′ in C/C, if a and b are cofibrations in C, then so
is T (f) → T (f ′), and the following map, induced by condition (ii), is also a
cofibration in C.

A′ ∐A T (f)∐B B′ → T (f ′)

We often impose the following extra axiom on the weak equivalences of C.

Cylinder Axiom 8.8.1. All maps p : T (f)→ B are weak equivalences in C.

Suppose C has a cylinder functor T . The cone of an object A is cone(A) = T (A։

0), and the suspension of A is ΣA = cone(A)/A. The cylinder axiom implies that

cone(A)
∼−→ 0 is a weak equivalence. Since A ֌ cone(A) ։ ΣA is a cofibration

sequence it follows from the description of K0(C) in II.9.1.2 that [ΣA] = −[A] in
K0(C). (Cf. Lemma II.9.2.1.) In fact, the Additivity Theorem (see V.1.2 below)
implies that the map Σ: K(C) → K(C) is a homotopy inverse with respect to the
H-space structure on K(C), because Σ∗ + 1 = cone∗ = 0.

The name ‘cylinder functor’ comes from the following two paradigms.

Example 8.8.2. The Waldhausen categories Rf (∗) and Rf (X) of examples 8.7
and 8.7.1 have a cylinder functor: T (f) is the usual (based) mapping cylinder of f .
By construction, the mapping cylinder satisfies the cylinder axiom 8.8.1. Because
of this paradigm, j1 and j2 are sometimes called the front and back inclusions.

Example 8.8.3. Let Ch be the Waldhausen category of chain complexes and
quasi-isomorphisms constructed from an abelian (or exact) category C; see II.9.2.
The mapping cylinder of f : A.→ B. is the usual mapping cylinder chain complex
[WHomo, 1.5.5], in which

T (f)n = An ⊕An−1 ⊕Bn.

The suspension functor Σ(A.) = A.[−1] here is the shift operator: Σ(A.)n = An−1.

Example 8.8.4. Exact categories usually do not have cylinder functors. This is
reflected by the fact that for some A ∈ A there may be no B such that [A⊕B] = 0

in K0(A). However, the Waldhausen category Chb(A) of bounded chain complexes

does have a cylinder functor, and we used it to prove that K0(A) ∼= K0Chb(A) in
II.9.2.2. In fact, K(A) ≃ K(Chb(A)) by the Gillet-Waldhausen theorem presented
in V.2.2. Thus many results requiring mapping cylinders in Waldhausen K-theory
can be translated into results for Quillen K-theory.
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Cofinality

A Waldhausen subcategory B of C is said to be cofinal if for all C in C there is a C ′

in C so that C ∐C ′ is in B. The K0 version of the following theorem was proven in
II.9.4. We will prove a stronger cofinality result in chapter V.

Waldhausen Cofinality 8.9. If B is a cofinal Waldhausen subcategory of C,
closed under extensions, and such that K0(B) = K0(C). Then wS.B → wS.C and
K(B)→ K(C) are homotopy equivalences. In particular, Kn(B) ∼= Kn(C) for all n.

Remark 8.9.1. By Grayson’s Trick (Ex. II.9.14), the assumption that K0(B) =
K0(C) is equivalent to saying that B is strictly cofinal in C, meaning that for every
C in C there is a B in B so that B

∐
C is in B.

Proof. By 8.5.3, it suffices to show that the “relative” bisimplicial category
wS.(S.f) is contractible, where f : B → C is the inclusion. For this it suffices to
show that each wSn(S.f) is contractible. Switching simplicial directions, we can
rewrite wSn(Smf) as wSm(Snfn), where fn : SnB → SnC and Snfn is defined
in 8.5.3. Since SnB is equivalent to En(C) (see 8.3), we see from Ex. II.9.4 that
K0(SnB) ∼= K0(SnC). Hence the hypothesis also applies to fn. Replacing f by fn,
we have a second reduction: it suffices to show that the simplicial category wS.f is
contractible.

Let B(m,w) denote the category of diagrams B0
≃−→ · · · ≃−→ Bm in B whose maps

are weak equivalences, and f(m,w) the inclusion of B(m,w) in C(m,w). Then the
bidegree (m,n) part wmSnf of wS.f is the set snf(m,w) of objects of Snf(m,w).
Working with the nerve degreewise, it suffices to show that each wmS.f = s.f(m,w)

is contractible. Since B is strictly cofinal in C (by Grayson’s trick), this implies
that f(m,w) is also strictly cofinal by Ex. 8.12(b). The theorem now follows from
Lemma 8.9.2 below. �

Lemma 8.9.2. If f : B → C is strictly cofinal then s.f is contractible, where the
elements of snf are the objects of Snf .

Proof. Strict cofinality implies that for each finite set X of objects (Bi∗, C
i
∗) of

Sni
f , there is an object B′ of B such that each (B′ ∐ Bi∗, B′ ∐ Ci∗) is in Sni

idB,
because each B′ ∐ Cij is in B.

We saw in 8.5.4 that s.idB is the simplicial path space construction of s.B, and
is contractible because s0B is a point. We will show that s.f is contractible by
showing that it is homotopy equivalent to s.idB. For this we need to show that for
any finite subcomplex L of s.f there is a simplicial homotopy h (in the sense of
[WHomo, 8.3.11]) from the inclusion L ⊂ s.f to a map L→ s.idB ⊂ s.f , such that
each component of h sends L ∩ s.idB into s.idB.

If X is the set of nondegenerate elements of L, we saw above that there is a B′

so that B′ ∐X (and hence B′ ∐ L) is in s.idB. The desired simplicial homotopy is
given by the restriction of the maps hi : snf → sn+1f , sending (B∗, C∗) to

(· · ·֌ Bj ֌ B′∐Bj ֌ · · ·֌ B′∐Bn, · · ·֌ Cj ֌ B′∐Cj ֌ · · ·֌ B′∐Cn). �

Question 8.9.3. If B is a cofinal Waldhausen subcategory of C, but is not closed
under extensions, is K(B) ≃ K(C)? Using Ex. 8.12(a), the above proof shows that
this is true if B is strictly cofinal in C.



IV. DEFINITIONS OF HIGHER K-THEORY 73

At the other extreme of cofinality, we have the following theorem of Thomason,
which shows that by changing the weak equivalences in A we can force all the
higher K-groups to vanish. Let (A, co) be any category with cofibrations; recall
from II.9.1.3 that the group K0(A) = K0(isoA) is defined in this context.

Suppose we are given a surjective homomorphism π : K0(A) → G. Let w(A)
denote the family of morphisms A → A′ in A such that π[A] = π[A′] in G. As
observed in II.9.6.2, (A, w) is a Waldhausen category with K0(A, w) = G.

Theorem 8.10. There is a homotopy equivalence wS.(A, w) → BG. Hence
K(A) is homotopic to the discrete set G, and Kn(A, w) = 0 for all n 6= 0.

Proof. (Thomason) By construction of w, the category wA is the disjoint union
of the full subcategories π−1(g) on the objects A with π[A] = g. For each g, fix an
object Ag with π[Ag] = g. For n > 1, consider the function π : wsnA → Gn sending
the object A1 ֌ A2 ֌ · · ·֌ An of wSnA to (π[A1], π[A12], π[A23], . . . , π[An−1,n]).
By the construction of w, it induces a decomposition of wSnA into the disjoint
union (indexed by Gn) of the full subcategories π−1(g1, ..., gn) of objects mapping
to (g1, ..., gn). We will show that each of these components is contractible.

Given g = (g1, ..., gn), π
−1(g) is not empty because it contains the object

Ag : Ag1 ֌ (Ag1 ∐Ag2) ֌ (Ag1 ∐Ag2 ∐Ag3) ֌ · · ·֌ (∐ni=1Agi)

of wSnA. The subcategory π−1(0) is contractible because it has initial object
0. For other g, there is a natural transformation from the identity of π−1(g)
to the functor F (B) = Ag ∐ A−g ∐ B, given by the coproduct with the weak
equivalence 0 → Ag ∐ A−g. But F is null-homotopic because it factors as the
composite of F ′ : π−1(g) → π−1(0), F ′(B) = A−g ∐ B, and F ′′ : π−1(0) → π−1g,
F ′′(C) = Ag ∐ C. It follows that π−1(g) is contractible, as desired. �

Products

8.11 Our discussion in 6.6 about products in exact categories carries over to the
Waldhausen setting. The following construction is taken from [Wa1126, just after
1.5.3]. Let A, B and C be Waldhausen categories; recall from II.9.5.2 that a functor
F :A × B → C is biexact if each F (A,−) and F (−, B) is exact, and the following
condition is satisfied:

For every pair of cofibrations (A֌ A′ in A, B ֌ B′ in B) the following map
is a cofibration in C:

F (A′, B) ∪F (A,B) F (A,B
′) ֌ F (A′, B′).

We saw in II.9.5.1 that a biexact functor induces a bilinear map K0(A)⊗K0(B)→
K0(C). It also induces a morphism of bisimplicial bicategories

wS.A× wS.B → wwS.S.C

which resembles (6.6.1). Upon passage to geometric realization, this factors

K(A) ∧K(B)→ K(C).
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EXERCISES

8.1 Show that for every 0 ≤ i < j < k ≤ n the diagram Aij ֌ Aik ։ Ajk is a
cofibration sequence, and that this gives an exact functor from SnC to S2C.
8.2 Show that each functor ∂i : SnC → Sn−1C is exact in 8.3.1. Then show that
S.C is a simplicial category.

8.3 Let f, f ′ : A → B be exact functors. A natural transformation η : f → f ′ is
called a weak equivalence if each f(A)

∼−→ f ′(A) is a weak equivalence in B. Show
that a weak equivalence induces a homotopy between the two maps K(A)→ K(B).
Hint: Show that the maps wSnA → wSnB are homotopic in a compatible way.

8.4 We saw in 8.3.2 that there is a canonical map from Bw(C) to K(C), and hence
maps πiB(wC)→ Ki(C). The map π0B(wC)→ K0(C) is described in 8.4.

(a) Every weak self-equivalence α : A
∼−→ A determines an element [α] of K1(C), by

3.4. If β is a weak self-equivalence of B, show that [α] + [β] = [α ∨ β]. If A = B,
show that [α] + [β] = [βα]
(b) If A is an exact category, considered as a Waldhausen category, show that the
map B(isoA)→ K(A) induces a map from the group K⊕1 A of 4.8.1 to K1(A).
(c) In the notation of 8.2, show that a weak equivalence in S2C with Ai = A′i
determines a relation [u1]− [u2] + [u12] = 0 in K1(C).
(d) Show that every pair of cofibration sequences A ֌ B ։ C (with the same
objects) determines an element of K2(C).
8.5 (Waldhausen) Let A be a small exact category. In this exercise we produce a
map from |iS.A| ≃ |s.A| to BQA, where s.A is defined in 8.5.2.
(a) Show that an object A. of iS3A determines a morphism in QA from A12 to A3.
(b) Show that an object A. of iS5A determines a sequence A23 → A14 → A5 of row
morphisms in QA.
(c) Recall from Ex. 3.10 that the Segal subdivision Sub(s.A) is homotopy equiva-
lent to s.A. Show that (a) and (b) determine a simplicial map Sub(s.A) → QA.
Composing with |iS.A| ≃ Sub(s.A), this yields a map from |iS.A| to BQA.
8.6 We now show that the map |iS.A| → BQA constructed in the previous exercise
is a homotopy equivalence. Let iQnA denote the category whose objects are the
degree n elements of the nerve of QA, i.e., sequences A0 → · · · → An in QA, and
whose morphisms are isomorphisms.
(a) Show that iQ.A is a simplicial category, and that the nerve of QA is the sim-
plicial set of objects. Waldhausen proved in [W1126, 1.6.5] that BQA → |iQ.A| is
a homotopy equivalence.
(b) Show that for each n there is an equivalence of categories Sub(iSnA) ∼−→ iQnA,
where Sub(iSnA) is the Segal subdivision category of Ex. 3.9. Then show that the
equivalences form a map of simplicial categories Sub(iS.A) → iQ.A. This map
must be a homotopy equivalence, because it is a homotopy equivalence in each
degree. Hint: The typical case Sub(iS3A)→ iQ3A is illustrated in [W1126, 1.9].
(c) Show that the map of the previous exercise fits into a diagram

|s.A| ≃←−−−− |Sub(s.A)| −−−−→ BQA
≃

y ≃

y ≃

y

|iS.A| ≃←−−−− |Sub(iS.A)| ≃−−−−→ |iQ.A|.
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Conclude that the map |iS.A| → BQA of Ex. 8.5 is a homotopy equivalence.

8.7 Recall from 8.5.2 that K1(A) ∼= π2|s.A| for any exact category A. Given an
automorphism α of an object A in A, show that the two 2-cells in |s.A| correspond-
ing to the extensions 0 ֌ A

α
։A and A

α
֌A ։ 0 fit together to define an element

of π2|s.A|. Then show that the map of Ex. 8.5 identifies it with the element [α] of
π2BQA described in Ex. 7.8.

8.8 Finite Sets. Show that the category Setsfin of finite pointed sets is a Wald-
hausen category, where the cofibrations are the injections and the weak equivalences
are the isomorphisms. Then mimick Exercises 8.5 and 8.6 to show that the space
BQSetsfin of Ex. 6.15 is homotopy equivalent to the Waldhausen space iS.Setsfin.
Using Theorem 4.9.3 and Ex. 7.7, conclude that the Waldhausen K-theory space
K(Setsfin) is Z×(BΣ∞)+≃ Ω∞S∞. Thus Kn(Setsfin) ∼= πsn for all n.

8.9 G-Sets. If G is a group, show that the category G−Sets+ of finitely gen-
erated pointed G-sets, and its subcategory F of free pointed G-sets, are Wald-
hausen categories. Then mimick Exercises 8.5 and 8.6 to show that the spaces
BQ(G−Sets+) and BQF of Ex. 6.16 are homotopy equivalent to the Waldhausen
spaces iS.(G−Sets+) and iS.F . Using Ex. 7.7, conclude that the Waldhausen
K-theory space K(F) is homotopy equivalent to Ω∞S∞(BG+).

8.10 Given a category with cofibrations C, let E = E(C) denote the category of
extensions in C (see II.9.3), and s.C the simplicial set of 8.5.2. In this exercise we
show that the source and quotient functors s, q : E → C induce s.E ≃ s.C × s.C.
(a) Recall from Ex. 3.11 that for A in snC the simplicial set s/(n,A) is the pullback
of s.E and ∆n along s and A : ∆n → s.C. Show that s/(0, 0) is equivalent to s.C.
(b) For every vertex α of ∆n and every A in snC that the map s/(0, 0)→ s/(n,A)
of Ex. 3.11 is a homotopy equivalence.
(c) Use (b) to show that s : s.E → s.C satisfies the hypothesis of Ex. 3.11(B).
(d) Use Ex. 3.11(B) to show that there is a homotopy fibration s.C → s.E → s.C
Conclude that s× q : s.E → s.C × s.C is a homotopy equivalence.

8.11 Given an exact functor f : B → C, mimick the proof of 8.4 to show that the
group K−1(f) = π1(wS.S.f) of 8.5.3 is the cokernel of K0(B)→ K0(C).
8.12 Suppose that B is a strictly cofinal Waldhausen subcategory of C.
(a) Show that SnB is strictly cofinal in Sn(C).
(b) Show that B(w,m) is strictly cofinal in C(w,m).

8.13 Any exact category A is cofinal in its idempotent completion Â, by definition
(see II.7.3). Let A′ be the subcategory of Â consisting of all B in Â such that [B]

lies in the subgroup K0(A) of K0(Â). Show that A′ is an exact category, closed

under admissible epimorphisms in Â, and that A is strictly cofinal in A′. Hence
K(A) ≃ K(A′).
8.14 Let Ch(C) be the Waldhausen category of chain complexes in an exact cat-

egory C, as in 8.8.3. Show that Ch(C) and Chb(C) are saturated and satisfy the
Extension axiom 8.2.1, and the Cylinder Axiom 8.8.1.
8.15 If (C, co, w) is a saturated Waldhausen category with a cylinder functor, sat-
isfying the cylinder axiom, show that the category cowC of “trivial cofibrations”
(cofibrations which are weak equivalences) is homotopy equivalent to wC. Hint:
Use the cylinder to show that each i/C is contractible, and apply Theorem A.
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§9. The Gillet-Grayson construction

Let A be an exact category. Following Grayson and Gillet [GG], we define a
simplicial set G. = G.A as follows.

Definition 9.1. If A is a small exact category, G. is the simplicial set defined
as follows. The set G0 of vertices consists of all pairs of objects (A,B) in A. The
set G1 of edges consists of all pairs of short exact sequences with the same cokernel:

(9.1.0) A0 ֌ A1 ։ A01, B0 ֌ B1 ։ A01.

The degeneracy maps G1 → G0 send (9.1.0) to (A1, B1) and (A0, B0), respectively.
The set Gn consists of all pairs of triangular commutative diagrams in A of the

form

(9.1.1)

An−1,n
↑↑
· · ·

A12 ֌ · · ·֌ A1n
↑↑ ↑↑

A01 ֌ A02 ֌ · · ·֌ A0n
↑↑ ↑↑ ↑↑

A0 ֌ A1 ֌ A2 ֌ · · ·֌ An

An−1,n
↑↑
· · ·

A12 ֌ · · ·֌ A1n
↑↑ ↑↑

A01 ֌ A02 ֌ · · ·֌ A0n
↑↑ ↑↑ ↑↑

B0 ֌ B1 ֌ B2 ֌ · · ·֌ Bn

so that each sequence Ai ֌ Aj ։ Aij and Bi ֌ Bj ։ Aij is exact. As in the
definition of S.A (8.3.1), the face maps ∂i : Gn → Gn−1 are obtained by deleting
the row Ai∗ and the columns containing Ai and Bi, while the degeneracy maps
σi : Gn → Gn+1 are obtained by duplicating Ai and Bi, and reindexing.

Suppressing the choices Aij for the cokernels, we can abbreviate (9.1.1) as:

(9.1.2)
A0 ֌ A1 ֌ A2 ֌ · · ·֌ An
B0 ֌ B1 ֌ B2 ֌ · · ·֌ Bn .

Remark 9.1.3. |G.| is a homotopy commutative and associative H-space. Its
product |G.| × |G.| → |G.| arises from the simplicial map G. × G. → G. whose
components Gn ×Gn → Gn are termwise ⊕.

Note that for each isomorphism A ∼= A′ in A there is an edge in G1 from (0, 0)
to (A,A′), represented by (0 ֌ A ։ A, 0 ֌ A′ ։ A). Hence (A,A′) represents
zero in the group π0|G.|.

Lemma 9.2. There is a group isomorphism π0|G.| ∼= K0(A).
Proof. As in 3.3, π0|G.| is presented as the set of elements (A,B) of G0, modulo

the equivalence relation that for each edge (9.1.0) we have

(A1, B1) = (A0, B0).

It is an abelian group by 9.1.3, with operation (A,B)⊕ (A′, B′) = (A⊕A′, B⊕B′).
Since (A⊕B,B⊕A) represents zero in π0|G.|, it follows that (B,A) is the inverse of
(A,B). From this presentation, we see that there is a map K0(A)→ π0|G.| sending
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[A] to (A, 0), and a map π0|G.| → K0(A), sending (A,B) to [A]− [B]. These maps
are inverses to each other. �

(9.3) We now compare G. with the loop space of the simplicial set s.A of 8.5.2. If
we forget the bottom row of either of the two triangular diagrams in (9.1.1), we get
a triangular commutative diagram of the form (8.3.0), i.e., an element of snA. The
resulting set maps Gn → snA fit together to form a simplicial map ∂0 : G.→ s.A.

Path Spaces 9.3.1. Recall from [WHomo, 8.3.14] that the path space PX. of a
simplicial set X. has PXn = Xn+1, its ith face operator is the ∂i+1 of X., and its ith
degeneracy operator is the σi+1 of X.. The forgotten face maps ∂0 : Xn+1 → Xn

form a simplicial map PX. → X., and π0(PX.) ∼= X0. In fact, σ0 induces a
canonical simplicial homotopy equivalence from PX. to the constant simplicial set
X0; see [WHomo, Ex. 9.3.7]. Thus PX. is contractible exactly when X0 is a point.

Now there are two maps Gn → sn+1A, obtained by forgetting one of the two
triangular diagrams (9.1.1) giving an element of Gn. The face and degeneracy maps
of G. are defined so that these yield two simplicial maps from G. to the path space
P. = P (s.A). Clearly, either composition with the canonical map P. → s.A yields
the map ∂0 : G.→ s.A. Thus we have a commutative diagram

(9.3.2)

G. −−−−→ P.
y

y

P. −−−−→ s.A.

Since s0A is a point, the path space |P.| is canonically contractible. Therefore this
diagram yields a canonical map |G.| → Ω|s.A|. On the other hand, we saw in 8.6
that |s.A| ≃ BQA, so Ω|s.A| ≃ ΩBQA = K(A).

We cite the following result from [GG, 3.1]. Its proof uses simplicial analogues
of Quillen’s theorems A and B.

Theorem 9.4. (Gillet-Grayson) Let A be a small exact category. Then the map
of (9.3) is a homotopy equivalence:

|G.| ≃ Ω|s.A| ≃ K(A).

Hence πi|G.| = Ki(A) for all i ≥ 0.

Example 9.5. A double s.e.s. in A is a pair ℓ of short exact sequences in A on
the same objects:

ℓ : A
f
֌ B

g
։ C, A

f ′

֌ B
g′

։ C.

Thus ℓ is an edge (in G1) from (A,A) to (B,B). To ℓ we attach the element [ℓ] of
K1(A) = π1|G.| given by the following 3-edged loop.

(A,A)
ℓ−→ (B,B)

eA տ ր eB
(0, 0)

where eA denotes the canonical double s.e.s. (0 ֌ A։ A, 0 ֌ A։ A).
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The following theorem was proven by A. Nenashev in [Nen].

Nenashev’s Theorem 9.6. K1(A) may be described as follows.
(a) Every element of K1(A) is represented by the loop [ℓ] of a double s.e.s.;
(b) K1(A) is presented as the abelian group with generators the double s.e.s. in A,
subject to two relations:

(i) If E is a short exact sequence, the loop of the double s.e.s. (E,E) is zero;
(ii) for any diagram of six double s.e.s. (9.6.1) such that the “first” diagram
commutes, and the “second” diagram commutes, then

[r0]− [r1] + [r2] = [c0]− [c1] + [c2],

where ri is the ith row and ci is the ith column of (9.6.1).

(9.6.1)

A′ ⇉ A ⇉ A′′

↓↓ ↓↓ ↓↓
B′ ⇉ B ⇉ B′′

↓↓ ↓↓ ↓↓
C ′ ⇉ C ⇉ C ′′.

Example 9.6.2. If α is an automorphism of A, the class [α] ∈ K1(A) is the

class of the double s.e.s. (0 ֌ A
α
։ A, 0 ֌ A

=
։ A).

If β is another automorphism of A, the relation [αβ] = [α] + [β] comes from
relation (ii) for

0 ⇉ 0 ⇉ 0
↓↓ ↓↓ ↓↓
0 ⇉ A

α

⇉
1

A

↓↓ 1 ↓↓ 1 β ↓↓ 1
0 ⇉ A

αβ

⇉
1

A.

EXERCISES

9.1 Verify that condition 9.6(i) holds in π1|G.|.
9.2 Show that omitting the choice of quotients Aij from the definition of G.A yields
a homotopy equivalent simplicial set G′.A. An element of G′nA is a diagram (9.1.2)
together with a compatible family of isomorphisms Aj/Ai ∼= Bj/Bi.

9.3 Consider the involution on G. which interchanges the two diagrams in (9.1.1).
We saw in 9.2 that it induces multiplication by −1 on K0(A). Show that this
involution is an additive inverse map for the H-space structure 9.1.3 on |G.|.
9.4 If α : A ∼= A is an isomorphism, use relation (ii) in Nenashev’s presentation 9.6
to show that [α−1] ∈ K1(A) is represented by the loop of the double s.e.s.:

A
α→ A

A→
=
A

9.5 If A is a split exact category, use Nenashev’s presentation 9.6 to show that
K1(A) is generated by automorphisms (9.6.2).
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§10. Non-connective spectra for algebraic K-theory

In III.4 we introduced the negative K-groups of a ring using Bass’ Fundamental
Theorem for K0(R[t, t

−1]), III.3.7. For many applications, it is useful to have a
spectrum-level version of this construction, viz., a non-connective “Bass K-theory
spectrum” KB(R) with πnK

B(R) = Kn(R) for all n < 0. In this section we
constuct such a non-connective spectrum starting from any one of the functorial
models of a connective K-theory spectrum K(R). (See 1.9(iii), 4.5.2 and 8.5.5.)

Let E be a functor from rings to spectra. Since the inclusions of E(R) in E(R[x])
and E(R[x−1]) split, the homotopy pushout E(R[x]) ∨E(R) E(R[x−1]) is the wedge
of E(R) and these two complementary factors.

Definition 10.1. Write LE(R) for the spectrum homotopy cofiber of the map
f0 from this homotopy pushout to E(R[x, x−1]), and ΛE(R) for its desuspension
ΩLE(R).

Since the mapping cone is natural, LE and ΛE are functors and there is a
cofibration sequence, natural in E and R:

ΛE(R)→ E(R[x]) ∨E(R) E(R[x−1])
f0−→ E(R[x, x−1])→ LE(R).

The algebraic version of the Fundamental Theorem of higher K-theory, estab-
lished in V.6.2 and V.8.2, states that there is a split exact sequence

0→ Kn(R)→ Kn(R[x])⊕Kn(R[x
−1])→ Kn(R[x, x

−1])
←−→ Kn−1(R)→ 0,

in which the splitting is multiplication by x ∈ K1(Z[x, x
−1]). Applying πn to the

case E = K of Definition 10.1 shows that πnLK(R) ∼= Kn−1(R) for all n > 0. The
Fundamental Theorems for K1 and K0 (III, 3.6 and 3.7) imply that π0ΛK(R) =
K0(R), π−1ΛK(R) = K−1(R) and that πnΛK(R) = 0 for n < −1.

We will need the following topological version of the Fundamental Theorem,
also established in the next chapter (in V.8.4). Fix a map S1 → K(Z[x, x−1]),
represented by the element x ∈ K1(Z[x, x

−1]). Recall from 1.10.2 and Ex. 4.14 that

this map induces a product map K(R)
∪x−−→ ΩK(R[x, x−1]), natural in the ring R.

Composing with ΩK(R[x, x−1]) → ΩLK(R)
≃←− ΛK(R) yields a map of spectra

K(R)→ ΛK(R).

Fundamental Theorem 10.2. For any ring R, the map K(R) → ΛK(R)
induces a homotopy equivalence between K(R) and the (−1)-connective cover of the
spectrum ΛK(R). In particular, Kn(R) ∼= πnΛK(R) for all n ≥ 0.

By induction on k, we have natural maps

Λk−1K(R)
∪x−−→ Λk−1ΩK(R[x, x−1])→ Λk−1ΩLK(R)

≃←− ΛkK(R).

Corollary 10.3. For k > 0 the map Λk−1K(R) → ΛkK(R) induces a homo-
topy equivalence between Λk−1K(R) and the (−k)-connective cover of ΛkK(R), with
Kn(R) ∼= πnΛ

k−1K(R) ∼= πnΛ
kK(R) for n > −k, and K−k(R) ∼= π−kΛ

kK(R).
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Proof. We proceed by induction on k, the case k = 1 being Theorem 10.2. Set
E = Λk−1K; we have a natural isomorphism Kn(R) ∼= πnE(R) for n > −k, such
that ∪x : Kn(R) → Kn+1(R[x, x

−1]) agrees with πn of E(R) → ΩE(R[x, x−1]) up
to isomorphism. The map πnE(R[x])∨E(R) E(R[x−1])→ πnE(R[x, x−1]) in 10.1 is

an injection for all n, being either the injection fromKn(R[x])⊕Kn(R[x
−1])/Kn(R)

toKn(R[x, x
−1]) of III.4.1.2 and 10.2 (for n > −k) or 0→ 0 (for n ≤ −k). It follows

from III.4.1.2 that for n > −k the maps Kn(R) ∼= πnΛ
k−1K(R)→ πnΛ

kK(R) are
isomorphisms, and that the composite

K−k(R)
∪x−−→ K1−k(R[x, x

−1]) ∼= π1−kΛ
k−1K(R[x, x−1])→ π−kΛ

kK(R)

is an isomorphism. Since Λk−1K(R) is (−k)-connected, it is the (−k)-connected
cover of ΛkK(R). It is also clear from 10.1 that πnΛ

kK(R) = 0 for n < −k. �

Definition 10.4. We define KB(R) to be the homotopy colimit of the diagram

K(R)→ΩLK(R)
≃←− ΛK(R)→ · · ·Λk−1K(R)→Λk−1ΩLK(R)

≃←−ΛkK(R)→ · · ·

(The homotopy colimit may be obtained by inductively replacing each portion

· ≃←− · → · by a pushout and then taking the direct limit of the resulting sequence
of spectra.)

By 10.3, the canonical map K(R) → KB(R) induces isomorphisms Kn(R) ∼=
πnK

B(R) for n ≥ 0, and Kn(R) ∼= πnK
B(R) for all n ≤ 0 as well.

Variant 10.4.1. The “suspension ring” S(R) of R provides an alternative way
of constructing a non-connective spectrum for K-theory. Recall from III, Ex. 1.15,
that S(R) is defined to be C(R)/M(R). In III, Ex. 4.10, we saw that there are
isomorphisms Kn(R) ∼= K0S

|n|(R) for n ≤ 0. In fact, Gersten and Wagoner proved
that K0(R)×BGL(R)+ ≃ ΩBGL(S(R))+ so that Kn(R) ∼= Kn+1S(R) for all n ≥
0. It follows that the sequence of spaces KGW (R)i = K0(S

i(R)) × BGL(Si(R))+
form a nonconnective spectrum with πnK

GW (R) ∼= Kn(R) for all n. We leave it as
an exercise to show that a homotopy equivalence between the 0th space ofK(R) and
K0(R)×BGL(R)+ induces a homotopy equivalence of spectra KB(R) ≃ KGW (R).

We now introduce a delooping of Quillen’s space K(A) = ΩBQA (or spectrum)
associated to an exact category A, as K(SA) for a different exact category SA.
Iterating this yields a non-connective spectrum with connective cover K(A), which
agrees with the construction of Definition 10.1 when A = P(R).

Big vector bundles 10.5. Many constructions require that K(X) be strictly
functorial in X. For this we introduce the notion of big vector bundles, which I
learned from Thomason; see Ex. 10.3. Let V be a small category of schemes over a
fixed scheme X. By a big vector bundle over X we will mean the choice of a vector
bundle EY on Y for each morphism Y → X in V, equipped with an isomorphism
f∗EY → EZ for every f : Z → Y over X such that: (i) to the identity on Y we

associate the identity on EY , and (ii) for each composition W
g−→ Z

f−→ Y , the map
(fg)∗ is the compoition g∗f∗EY → g∗EZ → EW . Let VBV(X) denote the category
of big vector bundles over X. The obvious forgetful functor VBV(X)→ VB(X) is
an equivalence of categories, and X 7→ VBV(X) is clearly a contravariant functor
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from V to exact categories. Since K-theory is a functor on exact categories, X 7→
KVBV(X) is a presheaf of spectra on V.

If V is a small category of noetherian schemes and flat maps, a big coherent
module overX for V is the choice of a coherent OY -module F on Y for each Y → X,
equipped with a natural isomorphism f∗FY → FZ for every (flat) f : Z → Y over
X, subject to the usual conditions on identity maps and compositions. Let MV(X)
denote the category of big coherent modules over X. The obvious forgetful functor
MV(X) → M(X) is an equivalence of categories, and X 7→ MV(X) is clearly a
contravariant functor from V to exact categories. Since K-theory is a functor on
exact categories, X 7→ KMV(X) is a presheaf of spectra on V.

Non-connective K-theory of schemes 10.6. Let V be a small category
of quasi-projective schemes such that whenever X is in V then so are X × A1

and X × Spec(Z[x, x−1]). Using big vector bundles on V, we may arrange that
X 7→ K(X) is a functor from V to spectra. In this way, Construction 10.1 may be
made functorial in X.

There is also a Fundamental Theorem like 10.2 for the algebraic K-theory of a
quasi-projective scheme X (and even for quasi-compact, quasi-separated schemes),
due to Thomason and Trobaugh [TT, 6.1]. Using this and functoriality of ΛkK(X),
the proof of 10.3 goes through, and we define KB(X) to be the homotopy colimit
of the ΛkK(X). If X = Spec(R) then K(X) is homotopy equivalent to K(R)
and hence KB(X) is homotopy equivalent to KB(R). As for rings, the canonical
map K(X) → KB(X) induces isomorphisms Kn(X) ∼= πnK

B(X) for n ≥ 0, and
Kn(X) ∼= πnK

B(X) for all n ≤ 0 as well.

EXERCISES

10.1 Let I be an ideal in a ring R, and write KB(R, I) for the homotopy fiber
of KB(R) → KB(R/I). Let K≤0(R, I) denote the homotopy cofiber of the 0-
connected cover KB(R, I)〈0〉 → KB(R, I), as in 4.11.2. Thus πnK

≤0(R, I) =
0 for n > 0, and π0K

≤0(R, I) ∼= K0(I) by Ex. 1.15. Use III.2.3 to show that
πnK

≤0(R, I) ∼= Kn(I) for all n < 0.

10.2 Let A be the category VB(X). Use the method of 10.4.1 to produce a non-
connective spectrum with connective cover K(X).

10.3 Let V be a small category of schemes, so that X 7→ VB(X) is a contravariant
lax functor on V. Recall the Kleisli rectification of VBX in Exercise 6.5, whose

objects are pairs (Y → X, EY ), and whose morphisms are pairs (Z
h−→ Y, h∗(EY ) ∼=

EZ). Given a morphism f : T → X in V, use the natural isomorphism h∗f∗ ∼=
f∗h∗ to construct an exact functor f∗ : VBX → VBT . Compare this with the
construction of big vector bundles in 10.5.
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§11. Karoubi-Villamayor K-theory

Following Gersten, we say that a functor F from rings (or rings without unit)
to sets is homotopy invariant if F (R) ∼= F (R[t]) for every R. Similarly, a functor
F from rings to CW complexes (spaces) is called homotopy invariant if for every
ring R the natural map R→ R[t] induces a homotopy equivalence F (R) ≃ F (R[t]).
Note that each homotopy group πnF (R) also forms a homotopy invariant functor.

Of course, this notion may be restricted to functors defined on any subcategory
of rings which is closed under polynomial extensions and contains the evaluations
as well as the inclusion R ⊂ R[t]. For example, we saw in II, 6.5 and 7.9.3 that
G0(R) is a homotopy invariant functor defined on noetherian rings (and schemes)
and maps of finite flat dimension.

Conversely, recall from III.3.4 that R is called F -regular if F (R) ∼= F (R[t1, ..., tn])
for all n. Clearly, any functor F from rings to sets becomes homotopy invariant
when restricted to the subcategory of F -regular rings. For example, we see from
II.7.8 that K0 becomes homotopy invariant when restricted to regular rings. The
Fundamental Theorem in chapter V, 6.3 implies that the functors Kn are also
homotopy invariant when restricted to regular rings.

There is a canonical way to make F into a homotopy invariant functor.

Strict homotopization 11.1. Let F be a functor from rings to sets. Its
strict homotopization [F ] is defined as the coequalizer of the evaluations at t = 0, 1:
F (R[t]) ⇉ F (R). In fact, [F ] is a homotopy invariant functor and there is a
universal transformation F (R)→ [F ](R); see Ex. 11.1. Moreover, if F takes values
in groups then so does [F ]; see Ex. 11.3.

Example 11.1.1. Recall that a matrix is called unipotent if it has the form
1 + ν for some nilpotent matrix ν. Let Unip(R) denote the subgroup of GL(R)
generated by the unipotent matrices. This is a normal subgroup of GL(R), because
the unipotent matrices are closed under conjugation. Since every elementary matrix
eij(r) is unipotent, this contains the commutator subgroup E(R) of GL(R).

We claim that [E]R = [Unip]R = 1 for every R. Indeed, if 1 + ν is unipotent,
(1 + tν) is a matrix in Unip(R[t]) with ∂0(1 + tν) = 1 and ∂1(1 + tν) = (1 + ν).
Since Unip(R) is generated by these elements, [Unip]R must be trivial. The same
argument applies to the elementary group E(R).

We now consider GL(R) and its quotient K1(R). A priori, [GL]R→ [K1]R is a
surjection. In fact, it is an isomorphism.

Lemma 11.2. Both [GL]R and [K1]R are isomorphic to GL(R)/Unip(R).

Definition 11.2.1. For each ring R, we define KV1(R) to be GL(R)/Unip(R).
Thus KV1(R) is the strict homotopization of K1(R) = GL(R)/E(R).

Proof. The composite Unip(R) → GL(R) → [GL]R is trivial, as it factors
through [Unip]R = 1. Hence [GL]R (and [K1]R) are quotients of GL(R)/Unip(R).
By Higman’s trick III.3.5.1, if g ∈ GL(R[t]) is in the kernel of ∂0 then g ∈
Unip(R[t]) and hence ∂1(g) ∈ Unip(R). Hence ∂1(NGL(R)) = Unip(R). Hence
GL(R)/Unip(R) is a strictly homotopy invariant functor; universality implies that
the induced maps [GL]R→ [K1]R→ GL(R)/Unip(R) must be isomorphisms. �
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To define the higher Karoubi-Villamayor groups, we introduce the simplicial ring
R[∆·], and use it to define the notion of homotopization. The simplicial ring R[∆·]
also plays a critical role in the construction of higher Chow groups and motivic
cohomology, which is used in Chapter VI.

Definition 11.3. For each ring R the coordinate rings of the standard simplices
form a simplicial ring R[∆·]. It may described by the diagram

R⇇ R[t1]
←←← R[t1, t2]

⇇
⇇
· · ·R[t1, . . . , tn] · · ·

with R[∆n] = R[t0, t1, · · · , tn]/ (
∑
ti = 1) ∼= R[t1, · · · , tn]. The face maps ∂i are

given by: ∂i(ti) = 0; ∂i(tj) is tj for j < i and tj−1 for j > i. Degeneracies σi are
given by: σi(ti) = ti + ti+1; σi(tj) is tj for j < i and tj+1 for j > i.

Definition 11.4. Applying the functor GL to R[∆·] gives us a simplicial group
GL. = GL(R[∆·]). For n ≥ 1, we define the Karoubi-Villamayor groups to be
KVn(R) = πn−1(GL.) = πn(BGL.).

Since π0(GL.) is the coequalizer ofGL(R[t]) ⇉ GL(R), we see from 11.2 that def-
initions 11.2.1 and 11.4 of KV1(R) agree: KV1(R) = GL(R)/Unip(R) ∼= π0(GL.).

The proof in Ex. 1.11 that BGL(R)+ is an H-space also applies to BGL(R[∆·])
(exercise 11.9). From the universal property in theorem 1.8 we deduce the following
elementary result.

Lemma 11.4.1. The map BGL(R) → BGL(R[∆·]) factors through an H-map
BGL(R)+ → BGL(R[∆·]). Thus there are canonical maps Kn(R) → KVn(R),
n ≥ 1.

Remark 11.4.2. In fact, BGL(R[∆·])+ is an infinite loop space; it is the 0th

space of the geometric realization KV(R) of the simplicial spectrum K(R[∆·])〈0〉
of 4.11.2. (For any (−1)-connected simplicial spectrum E·, the 0th space of |E·| is
the realization of the 0th simplicial space.) Since R[∆0] = R, there is a canonical
morphism of spectra K(R) → K(R). This shows that the map BGL(R)+ →
BGL(R[∆·]) of 11.4.1 is in fact an infinite loop space map.

It is useful to put the definition of KV∗ into a more general context:

Definition 11.5 (Homotopization). Let F be a functor from rings to CW
complexes. Its homotopization Fh(R) is the geometric realization of the simplicial
space F (R[∆·]). Thus Fh is also a functor from rings to CW complexes, and there
is a canonical map F (R)→ Fh(R).

Lemma 11.5.1. Let F be a functor from rings to CW complexes. Then:

(1) Fh is a homotopy invariant functor;
(2) π0(F

h) is the strict homotopization [F0] of the functor F0(R) = π0F (R);
(3) If F is homotopy invariant then F (R) ≃ Fh(R) for all R.

Corollary 11.5.2. The abelian groups KVn(R) are homotopy invariant, i.e.,

KVn(R) ∼= KVn(R[x]) for every n ≥ 1.

Proof of 11.5.1. We claim that the inclusion R[∆·] ⊂ R[x][∆·] is a simplicial
homotopy equivalence, split by evaluation at x = 0. For this, we define ring maps
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hi : R[x][∆
n] → R[x][∆n+1] by: hi(f) = σi(f) if f ∈ R[∆n] and hi(x) = x(ti+1 +

· · ·+ tn+1). These maps define a simplicial homotopy (see [WHomo]) between the
identity map of R[x][∆·] and the composite

R[x][∆·]
x=0−−→ R[∆·] ⊂ R[x][∆·].

Applying F gives a simplicial homotopy equivalence between Fh(R[∆·]) and
Fh(R[x][∆·]). Geometric realization converts this into a topological homotopy
equivalence between Fh(R) and Fh(R[x]).

Part (2) follows from the fact that, for any simplicial spaceX., the group π0(|X.|)
is the coequalizer of ∂0, ∂1 : π0(X1) ⇉ π0(X0). In this case π0(X0) = π0F (R) and
π0(X1) = π0F (R[t]).

Finally, if F is homotopy invariant then the map from the constant simplicial
space F (R) to F (R[∆·]) is a homotopy equivalence in each degree. It follows (see
[Wa78]) that their realizations F (R) and Fh(R) are homotopy equivalent. �

It is easy to see that F → Fh is universal (up to homotopy equivalence) for
natural transformations from F to homotopy invariant functors. A proof of this
fact is left to Ex. 11.2.

Example 11.6. Suppose that G(R) is a group-valued functor. Then Gh(R) is
the realization of the simplicial group G(R[∆·]). This shows that Gh may have
higher homotopy groups even if G does not.

In fact, the groups πn(G.) of any simplicial group G. may be calculated using
the formula πp(G.) = Hn(N

∗G.), where N∗G. is the Moore complex; see [WHomo,
11.3.6] [May, 17.3]. By definition, the Moore complex of a simplicial group G. is
the chain complex of groups with N0G. = G0, N

1G. = ker(∂0 : G1 → G0) and
NnG. = ∩n−1i=0 ker(∂i) for n ≥ 1, with differential (−1)n∂n. See Ex. 11.4.

In the case that G.(R) = G(R[∆·]), N1G.(R) is the group NG(R) of III.3.3, and
NnG.(R) ⊂ G(R[t1, ..., tn]) is the nth iterate of this functor.

A related situation arises when F (R) = BG(R). Then |G(R[∆·])| is the loop
space of Fh(R), which is a connected space with πn+1F

h(R) = Hn(N
∗G(R[∆·])).

Example 11.6.1. Suppose that F (R) = |G.(R)| for some functor G. from rings
to simplicial groups. Then Fh(R) is the geometric realization of a bisimplicial group
Gpq = Gq(R[∆

p]). We can calculate the homotopy groups of any bisimplicial space
G.. using the standard spectral sequence [Q66]

E1
pq = πq(Gp·)⇒ πp+q|G..|.

As a special case, if F (R) ≃ F (R[t1, ..., tn]) for all n then Gp• ≃ G•
(R) for all p, so

the spectral sequence degenerates to yield F (R) ≃ Fh(R).
Theorem 11.7. If F (R) is any functorial model of BGL(R)+ then we also

have KVn(R) = πnF
h(R) for all n ≥ 1. Moreover, there is a first quadrant spectral

sequence (for p ≥ 0, q ≥ 1):

(11.7.1) E1
pq = Kq(R[∆

p])⇒ KVp+q(R).

Proof. (Anderson) We may assume (by Ex. 11.2) that F (R) = |G.(R)| for
a functor G. from rings to simplicial groups which is equipped with a natural
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transformation BGL → G. such that BGL(R) → |G.(R)| identifies |G.(R)| with
BGL(R)+. Such functors exist; see 1.9. The spectral sequence of 11.6.1 becomes
(11.7.1) once we show that KVn(R) = πnG.(R[∆

·]). Thus it suffices to prove that
BGLh(R) ≃ |G.(R)|h. Since BGLh(R) is an H-space (Ex. 11.9), the proof is
standard, and relegated to Exercise 11.10. �

Theorem 11.8. If R is regular, then Kp(R) ∼= KVp(R) for all p ≥ 1.

Proof. If R is regular, then each simplicial group Kp(R[∆
·]) is constant (by

the Fundamental Theorem in chapter V, 6.3). Thus the spectral sequence (11.7.1)
degenerates at E2 to yield the result. �

We now quickly develop the key points in KV -theory.

Definition 11.9. We say that a ring map f : R→ S is a GL-fibration if

GL(R[t1, ..., tn])×GL(S)→ GL(S[t1, ..., tn])

is onto for every n. Note that we do not require R and S to have a unit.

Example 11.9.1. If I is a nilpotent ideal in R, then R→ R/I is a GL-fibration.
This follows from Ex. I.1.12(iv), because each I[t1, ..., tn] is also nilpotent.

Remark 11.9.2. Any GL-fibration must be onto. That is, S ∼= R/I for some
ideal I of R. To see this, consider the (1, 2) entry α12 of a preimage of the elementary
matrix e12(st). Since f(α12) = st, evaluation at t = 1 gives an element of R
mapping to s ∈ S. However, not every surjection is a GL-fibration; see Ex. 11.6(d).

Example 11.9.3. Any ring map R→ S is homotopic to a GL-fibration. Indeed,
the inclusion of R into the graded ring R′ = R⊕xS[x] = R×S S[x] induces a homo-
topy equivalenceGL(R[∆·]) ≃ GL(R′[∆·]) by Ex. 11.5, so thatKV∗(R) ∼= KV∗(R

′).
Moreover, the map R′ → S sending x to 1 is a GL-fibration by Ex. 11.6(a,c).

The definition of KVn(I) makes sense if I is a ring without unit using the group
GL(I) of III.2: KVn(I) = πnBGL(I[∆

·]). Since GL(R ⊕ I) is the semidirect
product of GL(R) and GL(I), we clearly have KVn(R ⊕ I) ∼= KVn(R) ⊕KVn(I).
This generalizes as follows.

Theorem 11.10 (Excision). If R → R/I is a GL-fibration, there is a long
exact sequence

KVn+1(R/I) −→ KVn(I)→ KVn(R)→ KVn(R/I) −→· · ·
→ KV1(I)→ KV1(R)→ KV1(R/I)→ K0(I)→ K0(R)→ K0(R/I).

Theorem 11.10 is called an “Excision Theorem” because it says that (whenever
R→ R/I is a GL-fibration) KVn(R, I) ∼= KVn(I) for all n ≥ 1.

Proof. Let Gn ⊂ GL(R/I[∆n]) denote the image of GL(R[∆n]). Then there
is an exact sequence of simplicial groups

(11.10.1) 1→ GL(I[∆·])→ GL(R[∆·])→ G.→ 1.

Now any short exact sequence of simplicial groups is a fibration sequence, mean-
ing there is a long exact sequence of homotopy groups. Moreover, the quotient
GL(R/I[∆·])/G. is a constant simplicial group, by Ex. 11.7. It is now a simple
matter to splice the long exact sequences together to get the result. The splicing
details are left to Ex. 11.7. �
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Corollary 11.10.2. For any ring map φ : R → S, set I ′ = R ×S xS[x] =
{(r, x f(x)) ∈ R× xS[x] : φ(r) + f(1) = 0}. Then there is a long exact sequence

· · · → KVn+1(S)→ KVn(I
′)→ KVn(R)→ KVn(S) −→ · · ·

ending in KV1(I
′)→ KV1(R)→ KV1(S)→ K0(I

′).

Proof. Set R′ = R⊕xS[x] and note that R′ → S is a GL-fibration with kernel
I ′ by 11.9.3. Since R′ is graded, KVn(R) ∼= KVn(R

′) for all n ≥ 1. The desired
long exact sequence comes from Theorem 11.10. �

Remark 11.10.3. When R → R/I is a GL-fibration, then KV∗(I) ∼= KV∗(I
′),

and the long exact sequences of 11.10 and 11.10.2 coincide (with S = R/I). This
follows from the 5-lemma, since the map φ factors through R′ → R/I yielding a
morphism of long exact sequences.

Theorem 11.10 fails if R → R/I is not a GL-fibration. Not only does the
extension of Theorem 11.10 to K0 fail (as the examples Z → Z/8 and Z → Z/25
show), but we need not even have KV∗(I) ∼= KV∗(I

′), as exercise 11.14 shows.

Corollary 11.11. If I is a nilpotent ideal in a ring R, then KVn(I) = 0 and
KVn(R) ∼= KVn(R/I) for all n ≥ 1.

Proof. By 11.9.1, 11.10 and Lemma II.2.2, it suffices to show that KVn(I) =
πnGL(I[∆

·]) = 0. (A stronger result, that GL(I[∆·]) is simplicially contractible, is
relegated to Ex. 11.11.) By exercise I.1.12(iii), GLm(I[∆n]) consists of the matrices
1 + x in Mm(I[∆n]), so if T = (t0t1 · · · tn−1) then the degree n + 1 part of the
Moore complex (11.6) consists of matrices 1 + xT , and ∂n(1 + xT ) = 1 exactly
when x = tny for some matrix y. Regarding y as a matrix over I[t0, ..., tn−1], the
element 1 + yT tn in GL(I[∆n+1]) belongs to the Moore complex and ∂n+1 maps
1 + yT tn to 1 + xT . �

Theorem 11.12 (Mayer-Vietoris). Let ϕ : R→ S be a map of rings, sending
an ideal I of R isomorphically onto an ideal of S. If S → S/I is a GL-fibration,
then R → R/I is also a GL-fibration, and there is a long exact Mayer-Vietoris
sequence

· · · → KVn+1(S/I)→KVn(R)→ KVn(R/I)⊕KVn(S)→ KVn(S/I)→ · · ·
→ KV1(R/I)⊕KV1(S)→KV1(S/I)→ K0(R)→ K0(R/I)⊕K0(S).

It is compatible with the Mayer-Vietoris sequence for K1 and K0 in III.2.6.

Proof. To see that R→ R/I is a GL-fibration, fix ḡ ∈ GL(R/I[t1, ..., tn]) with
ḡ(0) = I. Since S → S/I is a GL-fibration, there is a g′ ∈ GL(S[t1, ..., tn]) which is
ϕ(ḡ) modulo I. Since R is the pullback of S and R/I, there is a g in GL(R[t1, ..., tn])
mapping to g′ and ḡ. Hence R→ R/I is a GL-fibration.

As in the proof of theorem III.5.8, there is a morphism from the (exact) chain
complex of 11.10 for (R, I) to the corresponding chain complex for (S, I). Since
every third term of this morphism is an isomorphism, the required Mayer-Vietoris
sequence follows from a diagram chase. �

Here is an application of this result. Since R[x] → R has a section, it is a GL-
fibration. By homotopy invariance, it follows that KVn(xR[x]) = 0 for all n ≥ 1.
(Another proof is given in Ex. 11.5.)
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Definition 11.13. For any ring R (with or without unit), define ΩR to be the
ideal (x2 − x)R[x] of R[x]. Iterating yields Ω2R = (x21 − x1)(x22 − x2)R[x1, x2], etc.

The following corollary of 11.10 shows that, for n ≥ 2, we can also defineKVn(R)
as KV1(Ω

n−1R), and hence in terms of K0 of the rings ΩnR and ΩnR[x].

Corollary 11.13.1. For all R, KV1(R) is isomorphic to the kernel of the map
K0(ΩR)→ K0(xR[x]), and KVn(R) ∼= KVn−1(ΩR) for all n ≥ 2.

Proof. The map xR[x]
x=1−−→ R is a GL-fibration by Ex. 11.6(c), with kernel

ΩR. The result now follows from Theorem 11.10. �

We conclude with an axiomatic treatment, due to Karoubi and Villamayor.

Definition 11.14. A positive homotopy K-theory (for rings) consists of a se-
quence of functors Kh

n , n ≥ 1, on the category of rings without unit, together with
natural connecting maps δn : K

h
n+1(R/I) → Kh

n(I) and δ0 : K
h
1 (R/I) → K0(I),

defined for every GL-fibration R→ R/I, satisfying the following axioms:

(1) The functors Kh
n are homotopy invariant;

(2) For every GL-fibration R→ R/I the resulting sequence is exact:

Kh
n+1(R/I)

δ−→ Kh
n(I)→ Kh

n(R)→ Kh
n(R/I)

δ−→ Kh
n−1(I)→

Kh
1 (R)→ Kh

1 (R/I)
δ−→ K0(I)→ K0(R)→ K0(R/I).

Theorem 11.14.1. Up to isomorphism, there is a unique positive homotopy
K-theory, namely Kh

n = KVn.

Proof. The fact that KVn form a positive homotopy K-theory is given by 11.4,
11.5.2 and 11.10. The axioms imply that any other positive homotopy K-theory
must satisfy the conclusion of 11.13.1, and so must be isomorphic toKV -theory. �

EXERCISES

11.1 Let F be a functor from rings to sets. Show that [F ] is a homotopy invari-
ant functor, and that every natural transformation F (R) → H(R) to a homotopy
invariant functor H factors uniquely through F (R)→ [F ](R).

11.2 Let F and H be functors from rings to CW complexes, and assume that
H is homotopy invariant. Show that any natural transformation F (R) → H(R)
factors through maps Fh(R)→ H(R) such that for each ring map R→ S the map
Fh(R)→ Fh(S)→ H(S) is homotopy equivalent to Fh(R)→ Fh(S)→ H(S).

11.3 If G is a functor from rings to groups, let NG(R) denote the kernel of the
map t = 0: G(R[t])→ G(R). Show that the image G0(R) of the induced map t =
1: NG(R) → G(R) is a normal subgroup of G(R), and that [G]R = G(R)/G0(R).
Thus [G]R is a group.

11.4 (Moore) If G. is a simplicial group and NnG. = ∩n−1i=0 ker(∂i) as in 11.6, show
that ∂n+1(N

n+1G.) is a normal subgroup of Gn. Conclude that πn(G.) is also a
group. Hint: conjugate elements of Nn+1G by elements of snGn.



88 IV. DEFINITIONS OF HIGHER K-THEORY

11.5 Let R = R0 ⊕ R1 ⊕ · · · be a graded ring. Show that for every homotopy
invariant functor F on rings we have F (R0) ≃ F (R). In particular, if F is defined
on rings without unit then F (xR[x]) ≃ F (0) for every R. Hint: Copy the proof
of III.3.4.1.

11.6 GL-fibrations. Let f : R→ S be a GL-fibration with kernel I. Show that:
(a) If f factors as R→ R′ → S, then R′ → S is a GL-fibration.
(b) Both xR[x]→ xS[x] and ΩR→ ΩS are GL-fibrations.
(c) The map xR[x]→ R, f(x) 7→ f(1), is a GL-fibration with kernel ΩR.
(d) Z→ Z/4 is not a GL-fibration, but GL(Z)→ GL(Z/4) is onto.
(e) If S is a regular ring (with unit), then every surjection R→ S is a GL-fibration.
Hint: K1(S) ∼= K1(S[x]) by III.3.8.

11.7 Let f : R → S be a GL-fibration with kernel I, and define G. as in the
proof of Theorem 11.10. Show that GL(S[∆·])/G. is a constant simplicial group.
Use this to show that πi(G.) = KVi+1(S) for all i > 0, but that the cokernel of
π0(G.) → π0GL(S[∆

·]) is the image of K1(S) in K0(I) under the map of III.2.3.
Combining this with the long exact sequence of homotopy groups for (11.10.1),
finish the proof of 11.10.

11.8 Consider the unit functor U on rings. The identity U(Mm(R)) = GLm(R)
implies that Uh(M(R)) = KV (R). If R is commutative, use I.3.12 to show that
Uh(R) ≃ U(Rred).

11.9 Show that BGL(R[∆·]) is an H-space. This is used to prove Lemma 11.4.1.
Hint: See Ex. 1.11; the permutation matrices lie in E(R), and E(R[∆·]) is path
connected.

11.10 (Anderson) Use exercise 11.9 to complete the proof of theorem 11.7.

11.11 If I is nilpotent, show that the simplicial sets GLm(I[∆·]) and GL(I[∆·])
have a simplicial contraction [WHomo, 8.4.6]. Hint: multiply by tn.

11.12 If R is Ki-regular for all i ≤ n, show that Ki(R) ∼= KVi(R) for all i ≤ n,
and that KVn+1(R) ∼= [Kn]R.

11.13 (Strooker) Consider the ring R = Z[x]/(x2− 4). In this exercise, we use two
different methods to show that the map K2(R)→ KV2(R) is not onto, and that its
cokernel is Z/2. Note that KV1(R) = K1(R) = R× = {±1} by Ex. III.5.13.

(a) Compare the Mayer-Vietoris sequences III.5.8 and 11.12 to show that the
natural map K2(R)→ K2(Z)

2 has cokernel Z/2, yet KV2(R) ∼= K2(Z)
2 = (Z/2)2.

(b) Use III.5.8 and Ex. III.5.15 to compute K1(R[t]) and K1(R[t1, t2]). Then
show that the sequence N2K1(R) → NK1(R) → K1(R) is not exact. Use the
spectral sequence (11.7.1) to conclude that the map K2(R)→ KV2(R) is not onto,
and that its cokernel is Z/2.

11.14 Let k be a field of characteristic 0, and set S = k[x, (x+ 1)−1]
(a) Show that K1(Z ⊕ I, I) ∼= K1(S, I). Hint: Use the obstruction described in

III, Ex. 2.6, showing that 3ψ(a dx⊗ x2) = 0.
(b) Use III, Ex. 5.14(c) to show that K1(S, I) is the cokernel of d ln : k× → Ωk,

d ln(a) = da/a.
(c) Show that KV1(I) = 0, and conclude that the sequence KV1(I)→ KV1(S)→

KV1(S/I) is not exact.
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§12. Homotopy K-theory

In order to define a truly homotopy invariant version of algebraic K-theory, we
need to include K0 and even the negative K-groups. This is most elegantly done at
the level of spectra, and that approach begins by constructing the non-connective
“Bass K-theory spectrum” KB(R) out of any one of the functorial models of a
connective K-theory spectrum K(R). (See 1.9(iii), 4.5.2 and 8.5.5.)

Let R be an associative ring with unit. By 11.3 there is a simplicial ring R[∆·]
and hence a simplicial spectrum KB(R[∆·]).

Definition 12.1. Let KH(R) denote the (fibrant) geometric realization of the
simplicial spectrum KB(R[∆·]). For n ∈ Z, we write KHn(R) for πnKH(R).

It is clear from the definition that KH(R) commutes with filtered colimits of
rings, and that there are natural transformations Kn(R)→ KHn(R) which factor
through KVn(R) when n ≥ 1. Indeed, the spectrum map K(R)〈0〉 → KB(R) →
KH(R) factors through the spectrum KV(R) = K(R[∆·])〈0〉 of 11.4.2

Theorem 12.2. Let R be a ring. Then:

(1) KH(R) ≃ KH(R[x]), i.e., KHn(R) ∼= KHn(R[x]) for all n.
(2) KH(R[x, x−1]) ≃ KH(R)× Ω−1KH(R), i.e.,

KHn(R[x, x
−1]) ∼= KHn(R)⊕KHn−1(R) for all n.

(3) If R = R0 ⊕R1 ⊕ · · · is a graded ring then KH(R) ≃ KH(R0).

Proof. Part (1) is a special case of 11.5.1. Part (2) follows from the Funda-
mental Theorem 10.2 and (1). Part (3) follows from (1) and Ex. 11.5. �

The homotopy groups of a simplicial spectrum are often calculated by means
of a standard right half-plane spectral sequence. In the case at hand, i.e., for
KH(R), the edge maps are the canonical maps Kq(R) → KHq(R), induced by
KB(R)→ KH(R), and the spectral sequence specializes to yield:

Theorem 12.3. For each ring R there is an exhaustive convergent right half-
plane spectral sequence:

E1
p,q = NpKq(R)⇒ KHp+q(R).

The edge map from E1
0,q = Kq(R) to KHq(R) identifies E

2
p,0 with the strict homo-

topization [Kp](R) of Kp(R), defined in 11.1.

The phrase “exhaustive convergent” in 12.3 means that for each n there is a
filtration 0 ⊆ F0KHn(R) ⊆ · · · ⊆ Fp−1KHn(R) ⊆ FpKHn(R) ⊆ · · · with union
KHn(R), zero for p < 0, and isomorphisms E∞p,q

∼= FpKHn(R)/Fp−1KHn(R) for
q = n− p. (A discussion of Convergence may be found in [WHomo, 5.2.11].)

As pointed out in 11.8, we will see in chapter V, 6.3 that regular rings are Kq-
regular for all q, i.e., that NpKq(R) = 0 for every q and every p > 0. For such
rings, the spectral sequence 12.3 degenerates at E1, showing that the edge maps
are isomorphisms. We record this as follows:
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Corollary 12.3.1. If R is regular noetherian, then K(R) ≃ KH(R). In par-
ticular, Kn(R) ≃ KHn(R) for all n.

For the next application, we use the fact that if R is Ki-regular for some i, then
it is Kq-regular for all q ≤ i. If i ≤ 0, this was proven in III, 4.2.3. For i = 1 it
was shown in III, Ex. 3.9. In the remaining case i > 1, the result will be proven in
chapter V.

Corollary 12.3.2. Suppose that the ring R is Ki-regular for some fixed i.
Then KHn(R) ∼= Kn(R) for all n ≤ i, and KHi+1(R) = [Ki+1]R.

If R is K0-regular then KVn(R) ∼= KHn(R) for all n ≥ 1, and KHn(R) ∼= Kn(R)
for all n ≤ 0. In this case the spectral sequences of (11.7.1) and 12.3 coincide.

Proof. In this case, the spectral sequence degenerates below the line q = i,
yielding the first assertion. If R is K0-regular, the morphism KV(R) → KH(R)
induces a morphism of spectral sequences, from (11.7.1) to 12.3, which is an iso-
morphism on E1

p,q (except when p = 0 and q ≤ 0). The comparison theorem yields
the desired isomorphism KV(R)→ KH(R)〈0〉. �

Theorem 12.3.3. If 1/ℓ ∈ R then KHn(R;Z/ℓ) ∼= Kn(R;Z/ℓ) for all n.

Proof. The proof of 12.3 goes through with finite coefficients to yield a spectral
sequence with E1

p,q = NpKq(R;Z/ℓ)⇒ KHp+q(R;Z/ℓ). When 1/ℓ ∈ R and p > 0,
the groups NpKq(R) are Z[1/ℓ]-modules (uniquely ℓ-divisible groups) by 6.7.2. By
the Universal Coefficient Sequence 2.2 we have NpKq(R;Z/ℓ) = 0, so the spectral
sequence degenerates to yield the result. �

If I is a non-unital ring, we define KH(I) to be KH(Z ⊕ I)/KH(Z) and set
KHn(I) = πnKH(I). If I is an ideal in a ring R, recall (from 1.11 or Ex. 10.1)
that KB(R, I) denotes the homotopy fiber of KB(R)→ KB(R/I); it depends upon
R. The following result, which shows that the KH-analogue does not depend upon
R, is one of the most important properties of KH-theory.

Theorem 12.4 (Excision). Let I be an ideal in a ring R. Then KH(I) →
KH(R)→ KH(R/I) is a homotopy fibration. Thus there is a long exact sequence

· · · → KHn+1(R/I) −→ KHn(I)→ KHn(R)→ KHn(R/I)→ · · ·

Proof. Let KH(R, I) denote the homotopy fiber of KH(R) → KH(R/I).
By standard simplicial homotopy theory, KH(R, I) is homotopy equivalent to
|KB(R[∆·], I[∆·])|. It suffices to prove that KH(I) → KH(R, I) is a homotopy
equivalence.

We first claim that KHn(I) → KHn(R, I) is an isomorphism for n ≤ 0. For
each p ≥ 0, let KB(R[∆p], I[∆p])〈0〉 be the 0-connected cover of KB(R[∆p], I[∆p]),
and define K≤0(R[∆p], I[∆p]) by the termwise “Postnikov” homotopy fibration:

KB(R[∆p], I[∆p])〈0〉 → KB(R[∆p], I[∆p])→ K≤0(R[∆p], I[∆p]).

Let CR denote the geometric realization of K≤0(R[∆·], I[∆·]). Comparing the
standard spectral sequence for CR and the spectral sequence of Theorem 12.3,
we see that KHn(R, I) ∼= πn(CR) for all n ≤ 0. By Exercise 10.1, the ring map
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A = Z ⊕ I → R induces πnK
≤0(A[∆p], I[∆p]) ∼= πnK

≤0(R[∆p], I[∆p]) for all n
and p. Hence we have homotopy equivalences for each p and hence a homotopy
equivalence on realizations, CA ≃ CR. The claim follows.

For n > 0, we consider the homotopy fiber sequence KV(R, I) → KH(R, I) →
CR, where KV(R, I) is the geometric realization of KB(R[∆·], I[∆·])〈0〉. Com-
paring with the spectrum KV(R) defined in 11.4.2, we see that KV(R, I) is the
0-connected cover of the homotopy fiber of KV(R)→ KV(R/I).

The theorem now follows when R → R/I is a GL-fibration, since in this case
KVn(I) ∼= KVn(R, I) for all n ≥ 1 by 11.10. Combining this with the above
paragraph, the 5-lemma shows that in this case KH(I) ≃ KH(R, I), as required.

An important GL-fibration is given by the non-unital map xR[x] → R (or the
unital Z ⊕ xR[x] → Z ⊕ R) with kernel ΩR; see Ex. 11.6(c). In the following
diagram, the bottom two rows are homotopy fibration sequences by the previous
paragraph, and the terms in the top row are defined so that the columns are ho-
motopy fibrations:

KH(Z⊕ ΩR,ΩI) −−−−→ KH(Z⊕ xR[x], xI[x]) −−−−→ KH(R, I)
y

y
y

KH(ΩR) −−−−→ KH(xR[x]) −−−−→ KH(R)
y

y
y

KH(ΩR/I) −−−−→ KH(xR/I[x]) −−−−→ KH(R/I).

Since KH(xR[x]) is contractible (by 12.2), the top middle term is contractible, and
we have a natural homotopy equivalence ΩKH(R) ≃ KH(ΩR). Since the top row
must also be a homotopy fibration, we also obtain a natural homotopy equivalence
ΩK(R, I) → KH(Z⊕ ΩR,ΩI). Applying πn yields isomorphisms KHn+1(R, I) ∼=
KHn(Z⊕ ΩR,ΩI) for all n.

Now suppose by induction on n ≥ 0 that, for all rings R′ and ideals I ′, the
canonical map I ′ → R′ induces an isomorphism KHn(I

′) ∼= KHn(R
′, I ′). In par-

ticular, ΩI → ΩR induces KHn(ΩI) ∼= KHn(Z⊕ΩR,ΩI). It follows that the map
from A = Z⊕ I to R induces a commutative diagram of isomorphisms:

KHn+1(I) = KHn+1(A, I)
≃−→ KHn(Z⊕ ΩA,ΩI)y

y≃
KHn+1(R, I)

≃−→ KHn(Z⊕ ΩR,ΩI).

This establishes the inductive step. We have proven that for all R and I, KHn(I) ∼=
KHn(R, I) for all n, and hence KH(I) ≃ KH(R, I), as required. �

Corollary 12.5. If I is a nilpotent ideal in a ring R, then the spectrum
KH(I) is contractible and KH(R) ≃ KH(R/I). In particular, KHn(I) = 0 and
KHn(R) ∼= KHn(R/I) for all integers n.

Proof. By Ex. II.2.5, I isK0-regular, andKn(I) = 0 for n ≤ 0 (see III, Ex. 4.3).
By 12.3.2 and 11.11, we have KHn(I) ∼= KVn(I) = 0 for n > 0, and KVn(I) = 0
for n ≤ 0. Since KHn(I) = 0 for all n, KH(I) is contractible. The remaining
assertions now follow from Excision 12.4. �
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Example 12.5.1. Let R be a commutative Artinian ring, with associated re-
duced ring Rred = R/nilradical(R). As Rred is regular, we see from 12.5 and 12.3.1
that KHn(R) ∼= Kn(Rred) for all n. In particular, KH0(R) = K0(R) = H0(R) and
KHn(R) = 0 for n < 0.

Example 12.5.2. Let R be a 1-dimensional commutative noetherian ring. Then
KH0(R) ∼= H0(R) ⊕ [Pic]R, KH−1(R) is torsionfree, and KHn(R) = 0 for all
n ≤ −2. This follows from 12.3.2 and Ex. III.4.4, which states that R is K−1-
regular and computes Kn(R) for n ≤ 0. An example in which KV1(R)→ KH1(R)
is not onto is given in Ex. 12.2.

If in addition R is seminormal, then R is Pic-regular by Traverso’s theorem I.3.12.
In this case we also have KH0(R) = K0(R) = H0(R) ⊕ Pic(R) and KV1(R) ∼=
KH1(R).

Corollary 12.6 (Closed Mayer-Vietoris). Let R → S be a map of com-
mutative rings, sending an ideal I of R isomorphically onto an ideal of S. Then
there is a long exact Mayer-Vietoris sequence (for all integers n):

· · · → KHn+1(S/I)→ KHn(R)→ KHn(R/I)⊕KHn(S)→ KHn(S/I)→ · · ·

Recall (10.4) that KB(R) is the homotopy colimit of a diagram of spectra
LqK(R). Since geometric realization commutes with homotopy colimits, at least
up to weak equivalence, we have KH(R) = colimq |LqK(R[∆·])|.

Definition 12.7. Let X be a scheme. Using the functorial nonconnective spec-
trum KB of 10.6, let KH(X) denote the (fibrant) geometric realization of the
simplicial spectrum KB(X ×∆·), where ∆· = Spec(R[∆·]) as in 11.3. For n ∈ Z,
we write KHn(X) for πnKH(X).

Lemma 12.8. For any quasi-projective scheme X we have:

1. KH(X) ≃ KH(X × A1).

2. KH(X × Spec(Z[x, x−1]) ≃ KH(X)× Ω−1KH(R), i.e.,

KHn(X[x, x−1]) ∼= KHn(X)⊕KHn−1(X) for all n.

3. If X is regular noetherian, then K(X) ≃ KH(X). In particular, Kn(X) ≃
KHn(X) for all n.

Proof. The proof of 11.5.1 goes through to show (1). From the Fundamental
Theorem (see 10.6), we get (2). We will see in V.6.13.2 that if X is a regular
noetherian scheme then K(X) ≃ K(X × A1) and hence KB(X) ≃ KB(X × A1).
It follows that KH(X) = KB(X × ∆·) is homotopy equivalent to the constant
simplicial spectrum KB(X). �
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EXERCISES

12.1 Dimension shifting. Fix a ring R, and let ∆d(R) denote the coordinate ring
R[t0, . . . , td]/(f), f = t0 · · · td(1 −

∑
ti) of the d-dimensional tetrahehron over R.

Show that for all n, KHn(∆
d(R)) ∼= KHn((R) ⊕ KHd+n(R). If R is regular,

conclude that KHn(∆
d(R)) ∼= Kn(R)⊕Kd+n(R), and that K0(∆

d(R)) ∼= K0(R)⊕
Kd(R). Hint: Use the Mayer-Vietoris squares of III.4.3.1, where we saw that
Kj(∆

n(R)) ∼= Kj+1(∆
n−1(R)) for j < 0. In III, Ex. 4.8 we saw that each ∆n(R)

is K0-regular if R is.

12.2 (KV1 need not map onto KH1.) Let k be a field of characteristic 0, I the
ideal of S = k[x, (x+1)−1] generated by x2, and R = k⊕ I. Show that KHn(R) ∼=
KHn(S) for all n, but that there is an exact sequence 0→ KV1(R)→ KH1(R)→
Z→ 0. Hint: Use the Mayer-Vietoris sequence for R→ S and apply I.3.12 to show
thatK0(R) = Z⊕k/Z, NK0(R) ∼= tk[t] and N2K0(R) ∼= t1t2k[t1, t2]. Alternatively,
note that KV1(I) = 0 by Ex. 11.14.

12.3 The seminormalization R+ of a reduced commutative ring R was defined in
I, Ex. 3.15. Show that KHn(R) ∼= KHn(R

+) for all n. Hint: show that KH is
invariant under subintegral extensions.


