MATH 552 NOTES - LECTURE 3

Splitting fields: If K is a field and f € K[t] is monic, a splitting field of
f over K is an extension field F' such that (i) in Flz], f(t) is a product of
linear terms ¢t — r;, and (ii) F' is generated over K by the roots r; of f.

For example, f(t) = t3—1 is the product (t —1)(t—w)(t —w?) in C[t], and
F = Q(w) is a splitting field of f over Q. However, [F3 is already a splitting
field for 3> — 1 over Fs3, because f(t) = (t — 1)? in F3[t].

Proposition 1. Every monic polynomial f in K[t] has a splitting field F,
and [F: K| <nl, n = deg(f).

Proof. We proceed by induction on d = deg(f), the case d = 1 being clear.
Factor f as a product of irreducible polynomials f;, and form the field £ =
K[t]/(f1), with 1 the image of ¢. The monic polynomial g(t) = f(t)/(t —r1)
has degree (d — 1) so there is a splitting field F' of g over E. Then g =
[15(t = 7;) in F[t] so f = (t —r1)g is a product of linear terms. Finally,
[F': K] = [F: EJ[E: K] < deg(f1) deg(g) < deg(f)". O

We now consider the following situation. Let K ——K’ be a field isomor-
phism; it induces a ring isomorphism K[t] — K'[t] sending f(t) = >_ a;t" to
f(t) = > n(a;)t". The following Lemma is elementary. (why?)

Lemma 2. Let F' and F' be field extensions of K and K’, respectively. Ifr €
F' is algebraic over K, with minimum polynomial f(t), then the extensions
of n to a field map K(r) — F' are in 1-1 correspondence with the roots of
f'(t) in F'. In particular, an extension exists if and only if f'(t) has a root
in F'.
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Theorem 3. Let K—5K' be a field isomorphism, F a splitting field of a
monic polynomial f(t) € K[t|, and F' a splitting field of the corresponding
monic polynomial f'(t) € K'[t]. Then n can be extended to an isomophism
F-—=3F' between the respective splitting fields F' and F'.

Proof. We proceed by induction on [F': K|. If F = K, f =[](t—r;) in K]t]
and f' =[[(t —n(r;), so I/ = K’ and F = F’ is just 1. Otherwise, f has an
irreducible monic factor g(t) of degree > 2, and f’ has an irreducible monic
factor ¢'(t). By assumption, all the roots r; of f are in F', and all the roots
s; of f" are in F’. By re-indexing the roots, ¢g is the minimal polynomial of
r1 in K[t] and ¢’ is the minimal polynomial of s; in KTt].

Set £ = K(r1) and E' = K'(s1). Then [E : K] is the number of roots
of fin F, and [E' : K'] is the number of roots of f’ in F’. By definition, F'
is a splitting field of f over F, and F’ is a splitting field of f’ over E’. By
induction, F =4 E' extends to an isomorphism F =iyl O

Porism. If all the roots of f in F' are distinct, then the number of extensions
of n to an isomorphism F' = F’ is [F' : K], and is at most deg(f)!. (why?)
A careful study of the induction step in the proof shows that the number of
extensions is at most the number of roots of f.

Corollary 4. If F is a splitting field of f over K, then Gal(F/K) has at
most [F : K| elements. If the roots of f are distinct and f is irreducible,
then | Gal(F/K)| = [F : K].

Proof. Take K = K’', F = F’, and use the Porism. O

Example 5. (i) C is the splitting field of t* — 1 over R, and [C : R] = 2.
This shows that | Gal(F#'/K)| can be less than deg(f).
(ii) If char(K) =p and f(t) =t — 1 = (t — 1)?, then ' = K.

Separable and inseparable extensions: The previous porism and exam-
ple show that multiple roots are problematic.

Definition 6. A monic polynomial f(t) is separable (over K) if it has distinct
roots in some (hence any) splitting field. An element u in some finite exension
of K is separable over K if its minimal polynomial is separable. We say F'/K
is separable if every element of F' is separable over K.

If f(t) =3 a;t’, the derwative f'(t) = > ia;t""! makes sense and satisies
the usual product rule. If (¢t — a)? divides f then (t — a) also divides f’(¢).
Conversely, if (t — a) divides both f and f’ then (¢ — a)? divides f. (why?)
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Theorem 7. Let f(t) € KJt] be irreducible and F its splitting field. Then
the following are equivalent:

1) f is separable over K ;

2) f factors into distinct linear factors in F[t]

3) f' 40 in K[a].

Proof. That 1) is equivalent to 2) is a tautology. If f/ = 0 and a is a root
of f, then f(a) = f'(a) =0 so t — a divides f and f’. Hence 2) implies 3).
To see that 3) implies 2), notice that, because f is irreducible, if ' # 0 then
deg(f") < deg(f) and hence ged(f, /) = 1. Thus (¢ — a)? cannot divide f in
F[t]; otherwise (t — a) would divide both f and f. O

Remark 8. If char(K) = 0, every field extension is separable, because f’ is
never zero (unless f is constant). If char(K) = p, f' = 0 iff f(t) = g(t?) for
some polynomial ¢(t). Thus inseparability is only a problem in characteristic
p > 0.

Perfect fields: A field K is said to be perfect if every polynomial in Kt| is
separable. Every field of characteristic 0 is perfect.

Lemma 9. A field K of characteristic p > 0 1is perfect iff the Frobenius
v : K — K 1is an isomorphism.

Proof. 1f a € p(K) then f(t) = t? — a is irreducible (why?), and inseparable
because " =0, so K is not perfect. If ¢ is an isomorphism and f(t) € K[t]

is irreducible and inseparable then f(t) = > a,t"?; but a,, = ¢(b,) for some
b, € K and hence f(t) = (D> b,t")?, a contradiction. d

Corollary 10. Fvery finite field K is perfect.
Indeed, ¢ : K — K is an injection, hence a bijection.

Example 11. Since K is obtained from K? by adjoining all p'* roots of
elements, it makes sense to write K? ' for the field obtained from K by
adjoining all p** roots of elements. Thus K C K »~' and the Frobenius is an
isomorphism K? -2 K.

The perfect closure of K is the union KP ~ of the sequence of fields

1 2 n

KCK'"' CK"'C--.CK'""C--

By construction, K? ° is a perfect field.



