MATH 552 NOTES – LECTURE 3

Splitting fields: If K is a field and $f \in K[t]$ is monic, a *splitting field* of f over K is an extension field F such that (i) in F[x], f(t) is a product of linear terms $t - r_i$, and (ii) F is generated over K by the roots r_i of f.

For example, $f(t) = t^3 - 1$ is the product $(t-1)(t-\omega)(t-\omega^2)$ in $\mathbb{C}[t]$, and $F = \mathbb{Q}(\omega)$ is a splitting field of f over \mathbb{Q} . However, \mathbb{F}_3 is already a splitting field for $t^3 - 1$ over \mathbb{F}_3 , because $f(t) = (t-1)^3$ in $\mathbb{F}_3[t]$.

Proposition 1. Every monic polynomial f in K[t] has a splitting field F, and $[F:K] \leq n!$, $n = \deg(f)$.

Proof. We proceed by induction on $d = \deg(f)$, the case d = 1 being clear. Factor f as a product of irreducible polynomials f_i , and form the field $E = K[t]/(f_1)$, with r_1 the image of t. The monic polynomial $g(t) = f(t)/(t-r_1)$ has degree (d-1) so there is a splitting field F of g over E. Then $g = \prod_2^d (t-r_i)$ in F[t] so $f = (t-r_1)g$ is a product of linear terms. Finally, $[F:K] = [F:E][E:K] \leq \deg(f_1) \deg(g) \leq \deg(f)!$. \Box

We now consider the following situation. Let $K \xrightarrow{\eta} K'$ be a field isomorphism; it induces a ring isomorphism $K[t] \to K'[t]$ sending $f(t) = \sum a_i t^i$ to $f'(t) = \sum \eta(a_i)t^i$. The following Lemma is elementary. (why?)

Lemma 2. Let F and F' be field extensions of K and K', respectively. If $r \in F$ is algebraic over K, with minimum polynomial f(t), then the extensions of η to a field map $K(r) \to F'$ are in 1–1 correspondence with the roots of f'(t) in F'. In particular, an extension exists if and only if f'(t) has a root in F'.

$$\begin{array}{ccc} K \longrightarrow K(r) \longrightarrow F \\ \eta \bigg| \cong & \bigg| \exists \\ K' \longrightarrow K'(r') \longrightarrow F' \end{array}$$

Date: Feb. 4, 2025.

Theorem 3. Let $K \xrightarrow{\eta} K'$ be a field isomorphism, F a splitting field of a monic polynomial $f(t) \in K[t]$, and F' a splitting field of the corresponding monic polynomial $f'(t) \in K'[t]$. Then η can be extended to an isomophism $F \xrightarrow{\cong} F'$ between the respective splitting fields F and F'.

Proof. We proceed by induction on [F:K]. If F = K, $f = \prod(t-r_i)$ in K[t]and $f' = \prod(t - \eta(r_i), \text{ so } F' = K' \text{ and } F \cong F' \text{ is just } \eta$. Otherwise, f has an irreducible monic factor g(t) of degree ≥ 2 , and f' has an irreducible monic factor g'(t). By assumption, all the roots r_i of f are in F, and all the roots s_i of f' are in F'. By re-indexing the roots, g is the minimal polynomial of r_1 in K[t] and g' is the minimal polynomial of s_1 in K[t].

Set $E = K(r_1)$ and $E' = K'(s_1)$. Then [E : K] is the number of roots of f in F, and [E' : K'] is the number of roots of f' in F'. By definition, Fis a splitting field of f over E, and F' is a splitting field of f' over E'. By induction, $E \xrightarrow{\cong} E'$ extends to an isomorphism $F \xrightarrow{\cong} F'$.

Porism. If all the roots of f in F are distinct, then the number of extensions of η to an isomorphism $F \cong F'$ is [F:K], and is at most deg(f)!. (why?) A careful study of the induction step in the proof shows that the number of extensions is at most the number of roots of f.

Corollary 4. If F is a splitting field of f over K, then $\operatorname{Gal}(F/K)$ has at most [F : K] elements. If the roots of f are distinct and f is irreducible, then $|\operatorname{Gal}(F/K)| = [F : K]$.

Proof. Take K = K', F = F', and use the Porism.

Example 5. (i) \mathbb{C} is the splitting field of $t^8 - 1$ over \mathbb{R} , and $[\mathbb{C} : \mathbb{R}] = 2$. This shows that $|\operatorname{Gal}(F/K)|$ can be less than $\operatorname{deg}(f)$. (ii) If $\operatorname{char}(K) = p$ and $f(t) = t^p - 1 = (t-1)^p$, then F = K.

Separable and inseparable extensions: The previous porism and example show that multiple roots are problematic.

Definition 6. A monic polynomial f(t) is *separable* (over K) if it has distinct roots in some (hence any) splitting field. An element u in some finite exension of K is *separable* over K if its minimal polynomial is separable. We say F/K is separable if every element of F is separable over K.

If $f(t) = \sum a_i t^i$, the *derivative* $f'(t) = \sum i a_i t^{i-1}$ makes sense and satisfies the usual product rule. If $(t-a)^2$ divides f then (t-a) also divides f'(t). Conversely, if (t-a) divides both f and f' then $(t-a)^2$ divides f. (why?) **Theorem 7.** Let $f(t) \in K[t]$ be irreducible and F its splitting field. Then the following are equivalent: 1) f is separable over K; 2) f factors into distinct linear factors in F[t]

- 3) $f' \neq 0$ in K[x].

Proof. That 1) is equivalent to 2) is a tautology. If f' = 0 and a is a root of f, then f(a) = f'(a) = 0 so t - a divides f and f'. Hence 2) implies 3). To see that 3) implies 2), notice that, because f is irreducible, if $f' \neq 0$ then $\deg(f') < \deg(f)$ and hence $\gcd(f, f') = 1$. Thus $(t - a)^2$ cannot divide f in F[t]; otherwise (t - a) would divide both f and f'.

Remark 8. If char(K) = 0, every field extension is separable, because f' is never zero (unless f is constant). If char(K) = p, f' = 0 iff $f(t) = g(t^p)$ for some polynomial g(t). Thus inseparability is only a problem in characteristic p > 0.

Perfect fields: A field K is said to be *perfect* if every polynomial in K[t] is separable. Every field of characteristic 0 is perfect.

Lemma 9. A field K of characteristic p > 0 is perfect iff the Frobenius $\varphi: K \to K$ is an isomorphism.

Proof. If $a \notin \varphi(K)$ then $f(t) = t^p - a$ is irreducible (**why**?), and inseparable because f' = 0, so K is not perfect. If φ is an isomorphism and $f(t) \in K[t]$ is irreducible and inseparable then $f(t) = \sum a_n t^{np}$; but $a_n = \varphi(b_n)$ for some $b_n \in K$ and hence $f(t) = (\sum b_n t^n)^p$, a contradiction. \Box

Corollary 10. Every finite field K is perfect.

Indeed, $\varphi: K \to K$ is an injection, hence a bijection.

Example 11. Since K is obtained from K^p by adjoining all p^{th} roots of elements, it makes sense to write $K^{p^{-1}}$ for the field obtained from K by adjoining all p^{th} roots of elements. Thus $K \subseteq K^{p^{-1}}$, and the Frobenius is an isomorphism $K^{p^{-1}} \xrightarrow{\wp} K$.

The *perfect closure* of K is the union $K^{p^{-\infty}}$ of the sequence of fields

$$K \subseteq K^{p^{-1}} \subseteq K^{p^{-2}} \subseteq \dots \subseteq K^{p^{-n}} \subseteq \dots$$

By construction, $K^{p^{-\infty}}$ is a perfect field.