
MATH 552 NOTES – LECTURE 3

Splitting fields: If K is a field and f ∈ K[t] is monic, a splitting field of
f over K is an extension field F such that (i) in F [x], f(t) is a product of
linear terms t− ri, and (ii) F is generated over K by the roots ri of f .

For example, f(t) = t3−1 is the product (t−1)(t−ω)(t−ω2) in C[t], and
F = Q(ω) is a splitting field of f over Q. However, F3 is already a splitting
field for t3 − 1 over F3, because f(t) = (t− 1)3 in F3[t].

Proposition 1. Every monic polynomial f in K[t] has a splitting field F ,
and [F : K] ≤ n!, n = deg(f).

Proof. We proceed by induction on d = deg(f), the case d = 1 being clear.
Factor f as a product of irreducible polynomials fi, and form the field E =
K[t]/(f1), with r1 the image of t. The monic polynomial g(t) = f(t)/(t− r1)
has degree (d − 1) so there is a splitting field F of g over E. Then g =
∏d

2
(t − ri) in F [t] so f = (t − r1)g is a product of linear terms. Finally,

[F : K] = [F : E][E : K] ≤ deg(f1) deg(g) ≤ deg(f)!. �

We now consider the following situation. Let K
η

−→K ′ be a field isomor-
phism; it induces a ring isomorphism K[t] → K ′[t] sending f(t) =

∑
ait

i to
f ′(t) =

∑
η(ai)t

i. The following Lemma is elementary. (why?)

Lemma 2. Let F and F ′ be field extensions of K and K ′, respectively. If r ∈
F is algebraic over K, with minimum polynomial f(t), then the extensions
of η to a field map K(r) → F ′ are in 1–1 correspondence with the roots of
f ′(t) in F ′. In particular, an extension exists if and only if f ′(t) has a root
in F ′.

K //

∼=η

��

K(r) //

∃

��

F

K ′ // K ′(r′) // F ′
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Theorem 3. Let K
η

−→K ′ be a field isomorphism, F a splitting field of a
monic polynomial f(t) ∈ K[t], and F ′ a splitting field of the corresponding
monic polynomial f ′(t) ∈ K ′[t]. Then η can be extended to an isomophism

F
∼=

−→F ′ between the respective splitting fields F and F ′.

Proof. We proceed by induction on [F : K]. If F = K, f =
∏
(t− ri) in K[t]

and f ′ =
∏
(t− η(ri), so F ′ = K ′ and F ∼= F ′ is just η. Otherwise, f has an

irreducible monic factor g(t) of degree ≥ 2, and f ′ has an irreducible monic
factor g′(t). By assumption, all the roots ri of f are in F , and all the roots
si of f

′ are in F ′. By re-indexing the roots, g is the minimal polynomial of
r1 in K[t] and g′ is the minimal polynomial of s1 in K[t].

Set E = K(r1) and E ′ = K ′(s1). Then [E : K] is the number of roots
of f in F , and [E ′ : K ′] is the number of roots of f ′ in F ′. By definition, F
is a splitting field of f over E, and F ′ is a splitting field of f ′ over E ′. By

induction, E
∼=

−→E ′ extends to an isomorphism F
∼=

−→F ′. �

Porism. If all the roots of f in F are distinct, then the number of extensions
of η to an isomorphism F ∼= F ′ is [F : K], and is at most deg(f)!. (why?)
A careful study of the induction step in the proof shows that the number of
extensions is at most the number of roots of f .

Corollary 4. If F is a splitting field of f over K, then Gal(F/K) has at
most [F : K] elements. If the roots of f are distinct and f is irreducible,
then |Gal(F/K)| = [F : K].

Proof. Take K = K ′, F = F ′, and use the Porism. �

Example 5. (i) C is the splitting field of t8 − 1 over R, and [C : R] = 2.
This shows that |Gal(F/K)| can be less than deg(f).
(ii) If char(K) = p and f(t) = tp − 1 = (t− 1)p, then F = K.

Separable and inseparable extensions: The previous porism and exam-
ple show that multiple roots are problematic.

Definition 6. A monic polynomial f(t) is separable (overK) if it has distinct
roots in some (hence any) splitting field. An element u in some finite exension
of K is separable over K if its minimal polynomial is separable. We say F/K
is separable if every element of F is separable over K.

If f(t) =
∑

ait
i, the derivative f ′(t) =

∑
iait

i−1 makes sense and satisies
the usual product rule. If (t − a)2 divides f then (t − a) also divides f ′(t).
Conversely, if (t− a) divides both f and f ′ then (t− a)2 divides f . (why?)
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Theorem 7. Let f(t) ∈ K[t] be irreducible and F its splitting field. Then
the following are equivalent:
1) f is separable over K;
2) f factors into distinct linear factors in F [t]
3) f ′ 6= 0 in K[x].

Proof. That 1) is equivalent to 2) is a tautology. If f ′ = 0 and a is a root
of f , then f(a) = f ′(a) = 0 so t − a divides f and f ′. Hence 2) implies 3).
To see that 3) implies 2), notice that, because f is irreducible, if f ′ 6= 0 then
deg(f ′) < deg(f) and hence gcd(f, f ′) = 1. Thus (t− a)2 cannot divide f in
F [t]; otherwise (t− a) would divide both f and f ′. �

Remark 8. If char(K) = 0, every field extension is separable, because f ′ is
never zero (unless f is constant). If char(K) = p, f ′ = 0 iff f(t) = g(tp) for
some polynomial g(t). Thus inseparability is only a problem in characteristic
p > 0.

Perfect fields: A field K is said to be perfect if every polynomial in K[t] is
separable. Every field of characteristic 0 is perfect.

Lemma 9. A field K of characteristic p > 0 is perfect iff the Frobenius
ϕ : K → K is an isomorphism.

Proof. If a 6∈ ϕ(K) then f(t) = tp − a is irreducible (why?), and inseparable
because f ′ = 0, so K is not perfect. If ϕ is an isomorphism and f(t) ∈ K[t]
is irreducible and inseparable then f(t) =

∑
ant

np; but an = ϕ(bn) for some
bn ∈ K and hence f(t) = (

∑
bnt

n)p, a contradiction. �

Corollary 10. Every finite field K is perfect.

Indeed, ϕ : K → K is an injection, hence a bijection.

Example 11. Since K is obtained from Kp by adjoining all pth roots of
elements, it makes sense to write Kp−1

for the field obtained from K by
adjoining all pth roots of elements. Thus K ⊆ Kp−1

, and the Frobenius is an

isomorphism Kp−1 ℘
−→K.

The perfect closure of K is the union Kp−∞

of the sequence of fields

K ⊆ Kp−1

⊆ Kp−2

⊆ · · · ⊆ Kp−n

⊆ · · ·

By construction, Kp−∞

is a perfect field.


