
MATH 552 NOTES – LECTURE 7

Let E/K be Galois, with finite Galois group G.

Definition 1 (Trace). The trace map tr : E → K is tr(u) =
∑

g∈G g(u).

(This is an element of K since g(tr(u)) = tr(u) for all u.) It is a linear
transformation of the underlying K-vector spaces, as tr(u+v) = tr(u)+tr(v)
and tr(au) = a tr(u) for a ∈ K.

The following result shows that tr =
∑

g is nonzero, and hence a surjec-
tion. This is clear if char(E) doesn’t divide n = [E : K], as tr(1/n) = 1.

Proposition 2. Let g1, ..., gn be distinct automorphisms of a field E. Then

the gi are linearly independent in the sense that for ai ∈ E, if
∑

ai(gi(u)) = 0
for every u ∈ E, then all the ai are zero.

Proof. If the gi were linearly dependent, pick a dependence relation with as
many 0’s as possible, say

∑m
i=1

ai(gi(u)) = 0 for all u ∈ E. Clearly m 6= 1,
and since g1 6= g2 there is a v ∈ E so g1(v) 6= g2(v). Replacing u by vu,
we get

∑

aigi(v)gi(u) = 0; subtracting g1(v)
∑

ai gi(u) = 0 we get a shorter
relation, contradicting linear dependence:

a2 [g2(v)− g1(v)] g2(u) + · · ·+ am [gm(v)− g1(v)] gm(u) = 0. �

Definition 3. We say that a sequence of vector spaces V0

i−→V1

j−→V2 is exact

if V0

ji−→V2 is zero and the image of i is ker(j). For example, if Gal(E/K) is

cyclic with generator γ then 0 → K → E
γ−1−→E is exact.

Theorem 4. Suppose that G = 〈γ〉 is a cyclic group. Then an element u ∈ E
has trace 0 iff u = v − γ(v) for some v ∈ E. There is an exact sequence

0 → K → E
γ−1−→E

tr−→K → 0.

Proof. It is clear that each of the compositions are zero, and that the se-
quence is exact except possibly at the second E. A count of dimensions

shows that the image V of E
γ−1−→E has dimK(V ) = dimK(E) − 1, and

dimK ker(E
tr−→K) = dimK(E) − 1. Hence the sequence is also exact at the

second E. �
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Corollary 5. If char(K) = p and E/K is Galois with [E : K] = p, then
E = K(u), where u is a root of tp − t− a for some a ∈ K.

Proof. Let γ generate Gal(E/K). By Theorem 4, since tr(1) = p = 0, 1 =
γ(u)−u for some u ∈ E, i.e., γ(u) = 1+u. Hence γ(up) = (1+u)p = 1+up.
So γ(up − u) = up − u, which implies that a = up − u ∈ K. Since u 6∈ K and
there are no intermediate subfields, E = K(u), and tp − t − a must be the
minimal polynomial of u. �

Definition 6 (Norm). The norm map N = NE/K : E× → K× is N(u) =
∏

g∈G g(u). Note that N(u) is in K× since g(N(u)) = N(u) for all u. The
norm is a homomorphism of abelian groups.

The prototype is the norm map C× → R× sending z = x + iy to |z|2 =

x2+y2. Similarly, N : Q(
√
d)× → Q× sends u = a+b

√
d to N(u) = a2−d b2.

The equations a2 − d b2 = 1 and more generally a2 − d b2 = c are called
Pell’s equation and were studied by Diophantus (in Greece) around 250 AD,
and by Brahmagupta (in India) around 628 AD. The following result, due
to Kummer, is usually called “Hilbert’s Theorem 90 ” since it was the 90th

theorem in Hilbert’s survey of number theory in 1897.

Theorem 7 (Hilbert’s Theorem 90). Suppose that the Galois group G = 〈γ〉
is a cyclic group. Then an element u ∈ E× has norm 1 iff u = γ(v)/v for

some v ∈ E×. There is an exact sequence

1 → K× → E× γ−1−→ E× N−→K×

(The cokernel of N is the cohomology group H2(G,E×).

Proof. Again, it is easy to check exactness everywhere except at the second
E×; since N(γ(v)/v) = 1, it suffices to suppose that N(u) = 1 and find a v
such that u = γ(v)/v.

Write x0 = uy, x1 = u(γu)(γy) and

xi = xi(y) =
{

u (γu)(γ2u) · · · (γiu)
}

γiy. i = 0, ..., n− 1.

Since N(u) = 1, xn−1 = γn−1u. For i = 0, ..., n − 2 we also have xi+1 =
u(γxi), or γ(xi) = u−1xi+1. By Proposition 2, there is a y ∈ E such that
v = x0 + x1 + · · ·+ xn−1 is nonzero. Then

γ(v) =
∑n−1

i=0
γ(xi) = u−1 (x1 + x2 + · · ·+ xn−1) + γn(y).

Since γn = 1, γn(y) = y = x0/u. Hence γ(v) = v/u, as required. �
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Corollary 8. Suppose that Gal(E/K) = 〈γ〉 is cyclic of order n, 1/n ∈ K
and µn ⊂ K×. Then E = K(u), where u has minimal polynomial tn − a for

some a ∈ K.

Proof. Let ω be a primitive nth root of unity in K. Since N(ω) = ωn = 1,
there is a v ∈ E so that ω = γ(v)/v. Then γ(v) = ωv and γ(vn) = ωnv = v.
Since a = vn is invariant under γ, it lies in K and v satisfies tn − a = 0.

Since tn−a =
∏

i(t−ωiv), K(v) is a splitting field of tn−a over K. This
is the minimal polynomial of v, because that the automorphisms I, γ, ..., γn−1

of E permute the roots of tn − a. �

Theorem 9. Let K be a field of characteristic 0, and E/K a Galois extension

with Galois group G. If G is solvable, then E can be embedded in a radical

extension of K.

Proof. We proceed by induction on [E : K]. Pick a normal subgroup H of the
solvable group G with [G : H] = p and let E1 be a splitting field of tp−1 over
E. Then E1/K is still Galois with solvable Galois group; E1 is also Galois
over K1 = K(µp). Since K1 is a radical extension of K, it suffices to show
that E1 is a radical extension of K1. In addition, Gal(E1/K1) is isomorphic
to a subgroup of G, by the map restricting an automorphism g of E1 to its
restriction to E. (If g fixes E and µp, it fixes E1.) If Gal(E1/K1) 6= G, we
sre done by induction.

Thus it suffices to assume that K = K(µn) and E = E(µn). Let L = H ′

be the intermediate subfield of E1 corresponding to H. Since H ✁ G and
[L : K] = p, L/K is Galois and µp ⊂ K, so L = K(u) with the minimal
polynomial of u of the form tp − a. (See Corollary 3 of the Lecture 5 notes.)
By induction on [E : K], E can be embedded in a radical extension of K
which, as we have seen, is a radical extension of K. �

Exercises:
1) If E/K is Galois, and [E : K] < ∞, show that tr : E → K is onto.
2) Let K be a field of characteristic p > 0. Prove that tp − t − a is either
irreducible or factors completely in K. Hint: Consider g(t) = t+ 1.
3) Prove Hilbert’s Theorem 90 when E/K is normal but not Galois.


