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Overview

Simple, efficient algorithm for approximate membership for broad class of

polytopes

• known as moment polytopes in math and physics

• can have exponentially many facets and vertices

• capture many natural problems accross computer science,

mathematics, and physics

In particular, one-body quantum marginal problem.
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Polytopes in the tensor scaling framework

• Marginals: marginals of joint probability distributions with

constrained supports

• Row and column sums: of row/column reweightings of a fixed

nonnegative matrix

• Horn polytope: spectra of symmetric matrices A,B,C with

A + B = C
2
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Quantum marginals, moment

polytopes, and tensor scaling



Quantum marginals

If Alice, Bob, and Carol’s qubits are jointly in a pure quantum state,

the one-body marginals are 2× 2 PSD matrices ρ(A), ρ(B), ρ(C)

joint state

ρ(C)

ρ(A)

ρ(B)

33

Figure 3.1: Borland–Dennis polytope. The solution of the one-body n-representability
problem for three fermions with local dimension six, as given by the Borland–Dennis
inequalities (3.1). The vertex (1, 1, 1) corresponds to a single Slater determinant.

Figure 3.2: Three-qubit polytope. The solution of the one-body quantum marginal
problem for pure states of three qubits, as given by the polygonal inequalities (3.2)
for n = 3.

Figure 3.3: Bravyi’s polytope, corresponding to his solution (3.3) of the one-
body quantum marginal problem for two qubits and global spectrum �AB =
(0.6, 0.3, 0.1, 0).

One body quantum marginal problem, d = 3

Input: PSD matrices PA,PB ,PC

Output: Whether there is a pure state with marginals PA,PB ,PC

Fact: the answer depends only on spec(PA), spec(PB), spec(PC ). 4
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Tensors

Now consider d parties each holding n-dimensional quantum system.

d-tensors: denoted (Cn)⊗d

n × · · · × n︸ ︷︷ ︸
d

arrays of complex numbers

d = 3, n = 2:

1 0

0 0

0 0

0 1

∈ (C2)⊗3

AKA |000〉+ |111〉

5
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Flattening and marginals

Three different ways of viewing a n × n × n tensor as an n × n2 matrix.

M(1) M(2) M(3)

Flattening

i th flattening M(i) of X is an n × nd−1 matrix

rows = slices of X orthogonal to the i th direction.

Marginal

i th marginal of X is the ni × ni matrix

ρ(i) = M(i)
(
M(i)

)†
ρ(i) AKA partial trace of |X 〉 〈X | onto i th subsystem 6
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Moment polytopes

Consider a set X of d-tensors (for example X = (Cn)⊗d);

∆(X) = {tuples of spectra of marginals of elements of X with trace 1}

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness ‘84]

For many natural X, including those in this talk, ∆(X) is a convex

polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra p, arithmetic circuit parametrizing X
Output: Whether p is in moment polytope ∆(X)

7
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Quantum marginal problem, restated

Moment polytope membership for X = (Cn)⊗d !

Quantum marginal problem

Input: p list of spectra

Output: Whether p is in the moment polytope ∆(X) for X = (Cn)⊗d .

8



Quantum marginal problem, restated

Moment polytope membership for X = (Cn)⊗d !

Quantum marginal problem

Input: p list of spectra

Output: Whether p is in the moment polytope ∆(X) for X = (Cn)⊗d .

8



Method: tensor scaling

Given X , can we locally change basis to obtain specific marginals?

• Changing basis on the i th vector space by g i changes flattening by

M(i) ← g iM
(i)

• Scaling: Simultaneous local basis change (g1, . . . , gd) · X := g · X

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals

approaching p

• say G · X : set of all scalings of X , G · X its closure

Tensor scaling is moment polytope membership for X = G · X !

Fact: Quantum marginal problem for p ⇐⇒ tensor scaling problem

for p and random X ! 9
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History, special cases, and

applications



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Applications of tensor scaling

Matrix scaling: reweighting rows and columns

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

• noncommutative rational identity testing

• Forster’s radial isotropic position

• computing the Brascamp-Lieb constant in analysis

• Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals In/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• Computing quantum functionals: information theoretic value of a state10



Approximate versions of all these questions

Approximate tensor scalings:

Produce scaling of input X with marginals ε-close to input

p

Approximate quantum marginals:

Produce tensor with marginals ε-close to input p

Approximate moment polytope membership:

Correctly output one of

p ∈ ∆(X) + B(ε) or p ∈ ∆(X)c + B(ε).

11
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Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Approximate scaling algorithms: nonuniform vs uniform

uniform nonuniform

Matrix scaling [LSW ’98] poly log(1/ε) [LSW ’98] poly log(1/ε)

Operator scaling [AGLOW ’17] poly log(1/ε) [ F’18] poly(1/ε)

Tensor scaling [BGOWW ’17] poly(1/ε) this work: poly(1/ε)

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13]

algebraic algorithm, [BCMW’17]: membership in NP ∩ coNP

12



Our results



Our results

Theorem (BFGOWW ’18, Tensor scaling)

There is a randomized poly(nd , 〈X 〉+ 〈p〉, 1/ε)-time algorithm for

approximate tensor scaling on input X ,p, ε with success probability 1/2.

The algorithm requires O
(
dn2d 〈X 〉+〈p〉+d log dn

ε2

)
iterations, each

dominated by computing a Cholesky decomposition of some n× n matrix.

Corollary (BFGOWW ’18, Quantum marginals)

There is a randomized poly(〈p〉, 1/ε)-time algorithm for approximate

quantum marginals on input p, ε with success probability 1/2.

Corollary (BFGOWW ’18, Approximate moment polytope

membership)

There is a randomized algorithm for approximate moment polytope

membership running in time poly(nd , 〈parameterization of X〉,p, 1/ε)
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Actual membership oracle?

Theorem (BFGOWW ’18)

If the spectra of marginals of X are ε = exp(−O(dnd+1)〈p〉)-close to

p, then p ∈ ∆(X).

Unfortunately, doesn’t result in poly time algorithm for membership!

Need poly(log(1/ε)).
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Algorithm



Vague tensor scaling algorithm

Algorithm

Input: X ,p with integer coordinates, ε.

Output: scaling of X s.t. spectra of marginals ε-close to p, or

OUTSIDE POLYTOPE

• Repeat T times:

• If done, output X .

• Else, change basis in a single vector space to FIX the worst marginal

of X .

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Not this simple.
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Actual tensor scaling algorithm

Algorithm

Input: X ,p with integer coordinates, ε.

Output: scaling Y s.t. spectra of marginals ε-close to p, or OUTSIDE

POLYTOPE

• Choose g0 randomly, set Y = g0 · X .
• Repeat T times:

• If done, output Y .

• Else, scale in single factor to CAREFULLY FIX worst marginal of Y .

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Theorem

For T ≥ O
(
dn2d 〈Y 〉+〈p〉+d log dn

ε2

)
, this is algorithm succeeds with

probability at least 1/2.
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Fixing a marginal

Easy to fix an individual marginal;

Solve simple matrix factorization problem for g i

g iρ
(i)g †i = diag(pi )

WARNING: not every choice works.

The correct way is to fix the marginal using only lower triangular

scalings gi
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Analysis



Typical analysis

• Define potential function f with f (g0) = 1

• Show f decreases by Ω(ε2) in each iteration of the algorithm if

marginals off by at least ε

• Establish lower bound for f

However, triangular scaling algorithm can fail without randomization!

Must establish lower bounds for f that hold w.h.p over

randomization

18
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Lower bounds: highest weights

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on (Cn)⊗d) that are eigenfunctions for the

action of the lower triangular matrices;

P(g · Y ) = scalar(g ,p)P(Y )

scalar(g ,p) is just the eigenvalue.

Potential function: fY (g) = log
‖g · Y ‖

scalar(g ,p)

There’s a fairly easy weak duality here: very roughly,

inf
g
fY (g) ≥ sup

P highest weight
P(Y )

19
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Last ingredient: moment polytope and highest weights

p∈∆(G ·X )

33

Figure 3.1: Borland–Dennis polytope. The solution of the one-body n-representability
problem for three fermions with local dimension six, as given by the Borland–Dennis
inequalities (3.1). The vertex (1, 1, 1) corresponds to a single Slater determinant.

Figure 3.2: Three-qubit polytope. The solution of the one-body quantum marginal
problem for pure states of three qubits, as given by the polygonal inequalities (3.2)
for n = 3.

Figure 3.3: Bravyi’s polytope, corresponding to his solution (3.3) of the one-
body quantum marginal problem for two qubits and global spectrum �AB =
(0.6, 0.3, 0.1, 0).

infg
“potential”

fY (g) > 1
poly

supP hwv P(Y ) > 1
poly

Want for randomY

weak duality

Ness−Mumford ‘84
+Derksen‘01

+Lemma
for random Y
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Open problems



Open problems

• Is the tensor scaling decision problem in NP? Is it in coNP?

• Is it in RP? A poly log(1/ε) algorithm would prove it! In P?

• Can tensor scaling be done in poly log(1/ε) for a random tensor?

Would put quantum marginal problem in RP!

• Approximately scale for other group actions, without alternating

minimization (in progress).

• Obtain similar algorithms for multi-body quantum marginals.

• Develop separation oracles for moment polytopes.

21
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Thank you!
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Moment polytope and representation theory

p∈∆(G ·X )

33

Figure 3.1: Borland–Dennis polytope. The solution of the one-body n-representability
problem for three fermions with local dimension six, as given by the Borland–Dennis
inequalities (3.1). The vertex (1, 1, 1) corresponds to a single Slater determinant.

Figure 3.2: Three-qubit polytope. The solution of the one-body quantum marginal
problem for pure states of three qubits, as given by the polygonal inequalities (3.2)
for n = 3.

Figure 3.3: Bravyi’s polytope, corresponding to his solution (3.3) of the one-
body quantum marginal problem for two qubits and global spectrum �AB =
(0.6, 0.3, 0.1, 0).
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