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Simple, efficient algorithm for approximate membership for broad class of
polytopes

e known as moment polytopes in math and physics

e can have exponentially many facets and vertices

e capture many natural problems accross computer science,

mathematics, and physics

In particular, one-body quantum marginal problem.
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Polytopes in the tensor scaling framework

e Marginals: marginals of joint probability distributions with
constrained supports

e Row and column sums: of row/column reweightings of a fixed
nonnegative matrix

e Horn polytope: spectra of symmetric matrices A, B, C with
A+B=C
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Open problems



Quantum marginals, moment
polytopes, and tensor scaling
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S
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Quantum marginals

If Alice, Bob, and Carol’s qubits are jointly in a pure quantum state,
the one-body marginals are 2 x 2 PSD matrices p(*), p(B), p(€)

joint state

@ BT

(A

(B)

AL

One body quantum marginal problem, d = 3
Input: PSD matrices Py, Pg, Pc
Output: Whether there is a pure state with marginals P4, Pg, Pc

Fact: the answer depends only on spec(Pa), spec(Pg), spec(Pc¢).
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Now consider d parties each holding n-dimensional quantum system.

d-tensors: denoted (C")®9

n x --- X n arrays of complex numbers
N————

c ((C2)®3

AKA [000) + |111)



Flattening and marginals

2

Three different ways of viewing a n X n X n tensor as an n X n°~ matrix.



Flattening and marginals

2

Three different ways of viewing a n X n X n tensor as an n X n°~ matrix.




Flattening and marginals

2

Three different ways of viewing a n X n X n tensor as an n X n°~ matrix.

Flattening

ith flattening M() of X is an n x n9~1 matrix

rows = slices of X orthogonal to the it" direction.



Flattening and marginals

2

Three different ways of viewing a n X n X n tensor as an n X n°~ matrix.

Flattening

ith flattening M() of X is an n x n9~1 matrix

rows = slices of X orthogonal to the it" direction.

Marginal

jis marginal of X is the n; X n; matrix

FOIYO (M(i))*



Flattening and marginals

2

Three different ways of viewing a n X n X n tensor as an n X n°~ matrix.

Flattening

ith flattening M() of X is an n x n9~1 matrix

rows = slices of X orthogonal to the it" direction.

Marginal

jis marginal of X is the n; X n; matrix

FOIYO (M(i))*

pU) AKA partial trace of |X) (X| onto it" subsystem 6
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Moment polytopes

Consider a set X of d-tensors (for example X = (C")®9);
A(X) = {tuples of spectra of marginals of elements of X with trace 1}

e.g. ((.75,.25),(.5,.5),(.9,.1)) for 3 qubits
Amazing fact [Mumford, Ness ‘84]

For many natural X, including those in this talk, A(X) is a convex
polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership
Input: list of spectra p, arithmetic circuit parametrizing X
Output: Whether p is in moment polytope A(X)
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Quantum marginal problem, restated

Moment polytope membership for X = (C")®9!

Quantum marginal problem
Input: p list of spectra
Output: Whether p is in the moment polytope A(X) for X = (C")®9.
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Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?
e Changing basis on the i vector space by g; changes flattening by
MO gm0
e Scaling: Simultaneous local basis change (g1,...,84) - X =g - X

Question: Tensor scaling

Input: p list of spectra, tensor X
Qutput: whether there exists scalings of X with spectra of marginals

approaching p

e say G - X: set of all scalings of X, G - X its closure
Tensor scaling is moment polytope membership for X = G - X!
Fact: Quantum marginal problem for p <= tensor scaling problem

for p and random X! 9




History, special cases, and
applications
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Applications of tensor scaling

Matrix scaling: reweighting rows and columns

e deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

e noncommutative rational identity testing

e Forster’s radial isotropic position

e computing the Brascamp-Lieb constant in analysis

e Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals /,/n

e Nullcone problem in invariant theory: do all invariants vanish on X7

e equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
e The Kronecker polytope in representation theory

Nonuniform tensor scaling:

e entanglement polytopes: comparing different types of entanglement

e Computing quantum functionals: information theoretic value of a state!?
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Approximate versions of all these questions

Approximate tensor scalings:
Produce scaling of input X with marginals e-close to input
P

Approximate quantum marginals:
Produce tensor with marginals e-close to input p

Approximate moment polytope membership:
Correctly output one of

p € A(X)+ B(¢e) or p e A(X) + B(¢).

11
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uniform
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Matrix scaling

Operator scaling

Tensor scaling
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Approximate scaling algorithms: nonuniform vs

uniform

uniform

nonuniform

Matrix scaling [LSW '98] poly log(1/e) | [LSW '98] poly log(1/¢)

Operator scaling | [AGLOW '17] poly log(1/¢) [ F'18] poly(1/e)

Tensor scaling [BGOWW '17] poly(1/e) this

One body quantum marginal problem (nonuniform)

work: poly(1/¢)

e [Higuchi,Sudbery'02] qubits; [Klaychko'04] polytope, [WDGC13]
algebraic algorithm, [BCMW'’17]: membership in NP N coNP

12
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[

) iterations, each
dominated by computing a Cholesky decomposition of some n x n matrix.
Corollary (BFGOWW 18, Quantum marginals)
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Our results

Theorem (BFGOWW ’18, Tensor scaling)

There is a randomized poly(n?, (X) + (p), 1/€)-time algorithm for
approximate tensor scaling on input X, p, € with success probability 1/2.

The algorithm requires O dn2d<X>+<p>€w iterations, each
dominated by computing a Cholesky decomposition of some n x n matrix.
Corollary (BFGOWW 18, Quantum marginals)

There is a randomized poly({p), 1/e)-time algorithm for approximate
quantum marginals on input p,e with success probability 1/2.

Corollary (BFGOWW ’18, Approximate moment polytope
membership)

There is a randomized algorithm for approximate moment polytope

membership running in time poly(n9, (parameterization of X), p,1/¢)

13
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Theorem (BFGOWW ’18)

If the spectra of marginals of X are e = exp(—O(dn?*1)(p))-close to
p, then p € A(X).
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Actual membership oracle?

Theorem (BFGOWW ’18)

If the spectra of marginals of X are e = exp(—O(dn?*1)(p))-close to
p, then p € A(X).

Unfortunately, doesn't result in poly time algorithm for membership!
Need poly(log(1/¢)).

14
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Vague tensor scaling algorithm

Algorithm
Input: X, p with integer coordinates, &.

Output: scaling of X s.t. spectra of marginals e-close to p, or
OUTSIDE POLYTOPE

e Repeat T times:

e If done, output X.

e Else, change basis in a single vector space to FIX the worst marginal
of X.

(ignoring damage done to other marginals!)

e Output OUTSIDE POLYTOPE

Not this simple.

15
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Actual tensor scaling algorithm

Algorithm
Input: X, p with integer coordinates, €.

Output: scaling Y s.t. spectra of marginals e-close to p, or OUTSIDE
POLYTOPE

e Choose gy randomly, set Y = gg - X.
e Repeat T times:
e If done, output Y.
e Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
(ignoring damage done to other marginals!)

e Output OUTSIDE POLYTOPE

Theorem

For T>0 (andww) this is algorithm succeeds with
probability at least 1/2.

16



Fixing a marginal

Easy to fix an individual marginal;

17



Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g;

17



Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g;

gipNg! = diag(p;)

17



Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g;

gipNg! = diag(p;)

WARNING: not every choice works.

17



Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g;

gip\Ng! = diag(p;)

WARNING: not every choice works.

The correct way is to fix the marginal using only lower triangular
scalings g;

17
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Typical analysis

e Define potential function f with f(go) =1

e Show f decreases by Q(e?) in each iteration of the algorithm if
marginals off by at least €

e Establish lower bound for f

However, triangular scaling algorithm can fail without randomization!
Must establish lower bounds for  that hold w.h.p over
randomization

18
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Lower bounds: highest weights

Our lower bounds are objects arising from representation theory
Definition (Highest weights of type p)

Homogeneous polynomials on (C")®9) that are eigenfunctions for the
action of the lower triangular matrices;

P(g-Y) = scalar(g, p)P(Y)

scalar(g, p) is just the eigenvalue.

lg - Yl
scalar(g, p)
There's a fairly easy weak duality here: very roughly,

inf fy(g) > sup P(Y)
g P highest weight

Potential function: fy(g) = log

19



Last ingredient: moment polytope and highest weights
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“potential”’
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“potential”’ 1

Want for randomY .
infg  fv(g) > o

weak duality
Ness—Mumford*84
+Derksen‘01
+Lemma
for random Y

SUPP hwy P(Y) > poly
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Open problems

Is the tensor scaling decision problem in NP? Is it in coNP?

[ ]
e Isitin RP? A polylog(1/¢) algorithm would prove it! In P?
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Would put quantum marginal problem in RP!

e Approximately scale for other group actions, without alternating
minimization (in progress).
e Obtain similar algorithms for multi-body quantum marginals.

e Develop separation oracles for moment polytopes.
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