Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes

Cole Franks (Rutgers)

joint work with

Peter Bürgisser, Ankit Garg, Rafael Oliveira,
Michael Walter, Avi Wigderson
Overview

Simple, efficient algorithm for *approximate* membership for broad class of polytopes

- known as *moment polytopes* in math and physics
- can have exponentially many facets and vertices
- capture many natural problems across computer science, mathematics, and physics

In particular, *one-body quantum marginal problem.*
Simple, efficient algorithm for approximate membership for broad class of polytopes

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems across computer science, mathematics, and physics

In particular, one-body quantum marginal problem.
Simple, efficient algorithm for approximate membership for broad class of polytopes

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems across computer science, mathematics, and physics

In particular, one-body quantum marginal problem.
Simple, efficient algorithm for approximate membership for broad class of polytopes

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems across computer science, mathematics, and physics

In particular, one-body quantum marginal problem.
Simple, efficient algorithm for approximate membership for broad class of polytopes

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems across computer science, mathematics, and physics

In particular, one-body quantum marginal problem.
Polytopes in the tensor scaling framework

- **Marginals**: marginals of joint probability distributions with constrained supports

- **Row and column sums**: of row/column reweightings of a fixed nonnegative matrix

- **Horn polytope**: spectra of symmetric matrices A, B, C with $A + B = C$
Polytopes in the tensor scaling framework

- **Marginals**: marginals of joint probability distributions with constrained supports

- **Row and column sums**: of row/column reweightings of a fixed nonnegative matrix

- **Horn polytope**: spectra of symmetric matrices A, B, C with $A + B = C$
Polytopes in the tensor scaling framework

- **Marginals**: marginals of joint probability distributions with constrained supports

- **Row and column sums**: of row/column reweightings of a fixed nonnegative matrix

- **Horn polytope**: spectra of symmetric matrices A, B, C with $A + B = C$
Outline

• Quantum marginals, moment polytopes, and tensor scaling
 • History, special cases, and applications
 • Our results
 • Algorithm
 • Analysis
 • Open problems
Outline

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems
Outline

• Quantum marginals, moment polytopes, and tensor scaling
• History, special cases, and applications
• Our results
 • Algorithm
 • Analysis
• Open problems
Outline

• Quantum marginals, moment polytopes, and tensor scaling
• History, special cases, and applications
• Our results
• Algorithm
 • Analysis
• Open problems
Outline

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
 - Open problems
Outline

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems
Quantum marginals, moment polytopes, and tensor scaling
Quantum marginals

If Alice, Bob, and Carol’s qubits are jointly in a pure quantum state, the one-body marginals are 2×2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$.

One body quantum marginal problem, $d = 3$

Input: PSD matrices P_A, P_B, P_C

Output: Whether there is a pure state with marginals P_A, P_B, P_C

Fact: the answer depends only on $\text{spec}(P_A), \text{spec}(P_B), \text{spec}(P_C)$.
Quantum marginals

If Alice, Bob, and Carol’s qubits are jointly in a pure quantum state, the one-body marginals are 2×2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$.

One body quantum marginal problem, $d = 3$

Input: PSD matrices P_A, P_B, P_C

Output: Whether there is a pure state with marginals P_A, P_B, P_C

Fact: the answer depends only on $\text{spec}(P_A), \text{spec}(P_B), \text{spec}(P_C)$.
Quantum marginals

If Alice, Bob, and Carol's qubits are jointly in a pure quantum state, the one-body marginals are 2×2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$

One body quantum marginal problem, $d = 3$

Input: PSD matrices P_A, P_B, P_C

Output: Whether there is a pure state with marginals P_A, P_B, P_C

Fact: the answer depends only on $\text{spec}(P_A), \text{spec}(P_B), \text{spec}(P_C)$.
Quantum marginals

If Alice, Bob, and Carol’s qubits are jointly in a pure quantum state, the one-body marginals are 2×2 PSD matrices $\rho^{(A)}$, $\rho^{(B)}$, $\rho^{(C)}$.

One body quantum marginal problem, $d = 3$

Input: PSD matrices P_A, P_B, P_C

Output: Whether there is a pure state with marginals P_A, P_B, P_C

Fact: the answer depends only on $\text{spec}(P_A)$, $\text{spec}(P_B)$, $\text{spec}(P_C)$.
Quantum marginals

If Alice, Bob, and Carol’s qubits are jointly in a pure quantum state, the one-body marginals are 2 × 2 PSD matrices \(\rho^A, \rho^B, \rho^C \).

One body quantum marginal problem, \(d = 3 \)

Input: PSD matrices \(P_A, P_B, P_C \)

Output: Whether there is a pure state with marginals \(P_A, P_B, P_C \)

Fact: the answer depends only on \(\text{spec}(P_A), \text{spec}(P_B), \text{spec}(P_C) \).
Now consider d parties each holding n-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^\otimes d$

$n \times \cdots \times n$ arrays of complex numbers

d

$d = 3, n = 2$:

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\in (\mathbb{C}^2)^\otimes 3
\]

AKA $|000\rangle + |111\rangle$
Now consider d parties each holding n-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^{\otimes d}$

$n \times \cdots \times n$ arrays of complex numbers

$d = 3, n = 2$:

\[
\begin{array}{ccc}
1 & & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

\[\in (\mathbb{C}^2)^{\otimes 3}\]

AKA $|000\rangle + |111\rangle$
Now consider d parties each holding n-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^\otimes d$

$n \times \cdots \times n$ arrays of complex numbers

d

$d = 3, n = 2$:

$$
\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
\end{array} \in (\mathbb{C}^2)^\otimes 3
$$

AKA $|000\rangle + |111\rangle$
Now consider d parties each holding n-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^\otimes d$

$n \times \cdots \times n$ arrays of complex numbers

$d = 3, n = 2$:

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}
\end{array}
\in (\mathbb{C}^2)^\otimes 3
\]

AKA $|000\rangle + |111\rangle$
Flattening and marginals

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

<table>
<thead>
<tr>
<th>Flattening</th>
</tr>
</thead>
<tbody>
<tr>
<td>i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix</td>
</tr>
<tr>
<td>rows = slices of X orthogonal to the i^{th} direction.</td>
</tr>
</tbody>
</table>

Marginal
i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^\dagger$$

$\rho^{(i)}$ AKA partial trace of $|X\rangle \langle X|$ onto i^{th} subsystem
Flattening and marginals

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix

rows = slices of X orthogonal to the i^{th} direction.

Marginal

i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^\dagger$$

$\rho^{(i)}$ AKA partial trace of $\ket{X}\bra{X}$ onto i^{th} subsystem
Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix
rows = slices of X orthogonal to the i^{th} direction.

Marginal

i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^\dagger$$

$\rho^{(i)}$ AKA partial trace of $|X\rangle \langle X|$ onto i^{th} subsystem
Flattening and marginals

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix
rows = slices of X orthogonal to the i^{th} direction.

Marginal

i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)}\right)^\dagger$$

$\rho^{(i)}$ AKA partial trace of $|X\rangle \langle X|$ onto i^{th} subsystem
Flattening and marginals

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix

rows = slices of X orthogonal to the i^{th} direction.

Marginal

i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^\dagger$$

$\rho^{(i)}$ AKA partial trace of $|X\rangle \langle X|$ onto i^{th} subsystem
Consider a set X of d-tensors (for example $X = (\mathbb{C}^n)^\otimes d$);

$$\Delta(X) = \{\text{tuples of spectra of marginals of elements of } X \text{ with trace 1}\}$$

e.g. $((.75, .25), (.5, .5), (.9, .1))$ for 3 qubits

Amazing fact [Mumford, Ness ‘84]

For many natural X, including those in this talk, $\Delta(X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra p, arithmetic circuit parametrizing X

Output: Whether p is in moment polytope $\Delta(X)$
Moment polytopes

Consider a set X of d-tensors (for example $X = (\mathbb{C}^n)^\otimes d$);

$$\Delta(X) = \{\text{tuples of spectra of marginals of elements of } X \text{ with trace 1}\}$$

e.g. $((.75, .25), (.5, .5), (.9, .1))$ for 3 qubits

Amazing fact [Mumford, Ness ‘84]

For many natural X, including those in this talk, $\Delta(X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra p, arithmetic circuit parametrizing X

Output: Whether p is in moment polytope $\Delta(X)$
Consider a set \(X \) of \(d \)-tensors (for example \(X = (\mathbb{C}^n)^\otimes d \));

\[
\Delta(X) = \{ \text{tuples of spectra of marginals of elements of } X \text{ with trace 1} \}
\]

e.g. \(((.75, .25), (.5, .5), (.9, .1))\) for 3 qubits

Amazing fact [Mumford, Ness ‘84]

For many natural \(X \), including those in this talk, \(\Delta(X) \) is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra \(p \), arithmetic circuit parametrizing \(X \)

Output: Whether \(p \) is in moment polytope \(\Delta(X) \)
Consider a set X of d-tensors (for example $X = (\mathbb{C}^n)^\otimes d$);

$$\Delta(X) = \{\text{tuples of spectra of marginals of elements of } X \text{ with trace 1}\}$$

e.g. $((.75, .25), (.5, .5), (.9, .1))$ for 3 qubits

Amazing fact [Mumford, Ness ‘84]
For many natural X, including those in this talk, $\Delta(X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership
Input: list of spectra p, arithmetic circuit parametrizing X
Output: Whether p is in moment polytope $\Delta(X)$
Consider a set \mathbf{X} of d-tensors (for example $\mathbf{X} = (\mathbb{C}^n)^{\otimes d}$);

$$\Delta(\mathbf{X}) = \{\text{tuples of spectra of marginals of elements of } \mathbf{X} \text{ with trace 1}\}$$

e.g. $((.75, .25), (.5, .5), (.9, .1))$ for 3 qubits

Amazing fact [Mumford, Ness ‘84]

For many natural \mathbf{X}, including those in this talk, $\Delta(\mathbf{X})$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra p, arithmetic circuit parametrizing \mathbf{X}

Output: Whether p is in moment polytope $\Delta(\mathbf{X})$
Moment polytopes

Consider a set X of d-tensors (for example $X = (\mathbb{C}^n)^\otimes d$);

$$\Delta(X) = \{ \text{tuples of spectra of marginals of elements of } X \text{ with trace } 1 \}$$

e.g. $((.75, .25), (.5, .5), (.9, .1))$ for 3 qubits

Amazing fact [Mumford, Ness ‘84]
For many natural X, including those in this talk, $\Delta(X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra p, arithmetic circuit parametrizing X

Output: Whether p is in moment polytope $\Delta(X)$
Quantum marginal problem, restated

Moment polytope membership for $\mathbb{X} = (\mathbb{C}^n)^\otimes d$!

Quantum marginal problem

Input: p list of spectra

Output: Whether p is in the moment polytope $\Delta(\mathbb{X})$ for $\mathbb{X} = (\mathbb{C}^n)^\otimes d$.
Quantum marginal problem, restated

Moment polytope membership for $X = (\mathbb{C}^n)^\otimes d$!

<table>
<thead>
<tr>
<th>Quantum marginal problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: p list of spectra</td>
</tr>
<tr>
<td>Output: Whether p is in the moment polytope $\Delta(X)$ for $X = (\mathbb{C}^n)^\otimes d$.</td>
</tr>
</tbody>
</table>
Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by
 \[M^{(i)} \leftarrow g_i M^{(i)} \]

- **Scaling**: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its closure

Tensor scaling is moment polytope membership for $X = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by
 $$M^{(i)} \leftarrow g_i M^{(i)}$$

- **Scaling:** Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its closure

Tensor scaling is moment polytope membership for $X = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by $M^{(i)} \leftarrow g_i M^{(i)}$

- **Scaling:** Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

- **Input:** p list of spectra, tensor X
- **Output:** whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its closure

Tensor scaling is moment polytope membership for $X = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by
 $$M^{(i)} \leftarrow g_i M^{(i)}$$

- **Scaling:** Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its closure

Tensor scaling is moment polytope membership for $X = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by $M(i) \leftarrow g_i M(i)$

- **Scaling:** Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its closure

Tensor scaling is moment polytope membership for $X = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
Method: tensor scaling

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by
 \[M^{(i)} \leftarrow g_i M^{(i)} \]

- **Scaling:** Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure*

Tensor scaling is moment polytope membership for $\overline{X} = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by
 \[M^{(i)} \leftarrow g_i M^{(i)} \]

- **Scaling**: Simultaneous local basis change \((g_1, \ldots, g_d) \cdot X := g \cdot X\)

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching p

- say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its closure

Tensor scaling is moment polytope membership for $X = \overline{G \cdot X}$!

Fact: Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X!
History, special cases, and applications
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals l_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The Kronecker polytope in representation theory

Nonuniform tensor scaling:
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals l_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The Kronecker polytope in representation theory

Nonuniform tensor scaling:
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The Kronecker polytope in representation theory

Nonuniform tensor scaling:
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The Kronecker polytope in representation theory

Nonuniform tensor scaling:
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals l_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The *Kronecker polytope* in representation theory

Nonuniform tensor scaling:
- *Entanglement polytopes*: comparing different types of entanglement
- *Computing quantum functionals*: information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals l_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The *Kronecker polytope* in representation theory

Nonuniform tensor scaling:
- *entanglement polytopes:* comparing different types of entanglement
- *Computing quantum functionals:* information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals \(l_n/n \)
- Nullcone problem in invariant theory: do all invariants vanish on \(X \)?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random \(X \)
- The *Kronecker polytope* in representation theory

Nonuniform tensor scaling:
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state
Applications of tensor scaling

Matrix scaling: reweighting rows and columns
- deterministically approximating permanent

Operator scaling: tensor scaling with two marginals
- noncommutative rational identity testing
- Forster’s radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn’s problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals l_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X
- The *Kronecker polytope* in representation theory

Nonuniform tensor scaling:
- *entanglement polytopes*: comparing different types of entanglement
- *Computing quantum functionals*: information theoretic value of a state
Approximate versions of all these questions

Approximate tensor scalings:
Produce scaling of input X with marginals ε-close to input p

Approximate quantum marginals:
Produce tensor with marginals ε-close to input p

Approximate moment polytope membership:
Correctly output one of

$$p \in \Delta(X) + B(\varepsilon) \text{ or } p \in \Delta(X)^c + B(\varepsilon).$$
Approximate versions of all these questions

Approximate tensor scalings:
Produce scaling of input X with marginals ε-close to input p

Approximate quantum marginals:
Produce tensor with marginals ε-close to input p

Approximate moment polytope membership:
Correctly output one of

$$p \in \Delta(X) + B(\varepsilon) \text{ or } p \in \Delta(X)^c + B(\varepsilon).$$
Approximate versions of all these questions

Approximate tensor scalings:
Produce scaling of input X with marginals ε-close to input p

Approximate quantum marginals:
Produce tensor with marginals ε-close to input p

Approximate moment polytope membership:
Correctly output one of

$$p \in \Delta(X) + B(\varepsilon) \text{ or } p \in \Delta(X)^c + B(\varepsilon).$$
Approximate versions of all these questions

Approximate tensor scalings:
Produce scaling of input X with marginals ε-close to input p

Approximate quantum marginals:
Produce tensor with marginals ε-close to input p

Approximate moment polytope membership:
Correctly output one of

$$p \in \Delta(X) + B(\varepsilon) \text{ or } p \in \Delta(X)^c + B(\varepsilon).$$
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] poly log(1/(\varepsilon))</td>
<td>[F'18] poly(1/(\varepsilon))</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] poly(1/(\varepsilon))</td>
<td>this work: poly(1/(\varepsilon))</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)
- [Higuchi,Sudbery'02] qubits; [Klaychko'04] polytope, [WDGC13] algebraic algorithm, [BCMW'17]: membership in \(\text{NP} \cap \text{coNP}\)
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] poly log(1/(\varepsilon))</td>
<td>[F'18] poly(1/(\varepsilon))</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] poly(1/(\varepsilon))</td>
<td>this work: poly(1/(\varepsilon))</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)
- [Higuchi, Sudbery ‘02] qubits; [Klaychko ‘04] polytope, [WDGC13] algebraic algorithm, [BCMWW’17]: membership in \(\text{NP} \cap \text{coNP}\)
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] poly $\log(1/\varepsilon)$</td>
<td>[LSW '98] poly $\log(1/\varepsilon)$</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] poly $\log(1/\varepsilon)$</td>
<td>[F '18] poly $(1/\varepsilon)$</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] poly $(1/\varepsilon)$</td>
<td>this work: poly $(1/\varepsilon)$</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)
- [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13] algebraic algorithm, [BCMW‘17]: membership in $\text{NP} \cap \text{coNP}$
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] poly log(1/ε)</td>
<td>[LSW '98] poly log(1/ε)</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] poly log(1/ε)</td>
<td>[F’18] poly(1/ε)</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] poly(1/ε)</td>
<td>this work: poly(1/ε)</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)
- [Higuchi,Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13] algebraic algorithm, [BCMW’17]: membership in \(\text{NP} \cap \text{coNP} \)
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] poly log(1/(\varepsilon))</td>
<td>[F'18] poly(1/(\varepsilon))</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] poly(1/(\varepsilon))</td>
<td>this work: poly(1/(\varepsilon))</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)
- [Higuchi,Sudbery'02] qubits; [Klaychko'04] polytope, [WDGC13] algebraic algorithm, [BCMW'17]: membership in \(\text{NP} \cap \text{coNP}\)
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
<td>[LSW '98] poly log(1/(\varepsilon))</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] poly log(1/(\varepsilon))</td>
<td>[F'18] poly(1/(\varepsilon))</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] poly(1/(\varepsilon))</td>
<td>this work: poly(1/(\varepsilon))</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)

- [Higuchi, Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13] algebraic algorithm, [BCMW‘17]: membership in NP ∩ coNP
Approximate scaling algorithms: nonuniform vs uniform

<table>
<thead>
<tr>
<th></th>
<th>uniform</th>
<th>nonuniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix scaling</td>
<td>[LSW '98] (\text{poly log}(1/\varepsilon))</td>
<td>[LSW '98] (\text{poly log}(1/\varepsilon))</td>
</tr>
<tr>
<td>Operator scaling</td>
<td>[AGLOW '17] (\text{poly log}(1/\varepsilon))</td>
<td>[F'18] (\text{poly}(1/\varepsilon))</td>
</tr>
<tr>
<td>Tensor scaling</td>
<td>[BGOWW '17] (\text{poly}(1/\varepsilon))</td>
<td>this work: (\text{poly}(1/\varepsilon))</td>
</tr>
</tbody>
</table>

One body quantum marginal problem (nonuniform)

- [Higuchi, Sudbery‘02] qubits; [Klaychko‘04] polytope, [WDGC13] algebraic algorithm, [BCMW’17]: membership in \(\text{NP} \cap \text{coNP}\)
Our results
Our results

Theorem (BFGOWW ’18, Tensor scaling)

There is a randomized $\poly(n^d, \langle X \rangle + \langle p \rangle, 1/\epsilon)$-time algorithm for approximate tensor scaling on input X, p, ϵ with success probability $1/2$.

The algorithm requires $O\left(dn^{2d \langle X \rangle + \langle p \rangle + d \log d n \epsilon^2} \right)$ iterations, each dominated by computing a Cholesky decomposition of some $n \times n$ matrix.

Corollary (BFGOWW ’18, Quantum marginals)

There is a randomized $\poly(\langle p \rangle, 1/\epsilon)$-time algorithm for approximate quantum marginals on input p, ϵ with success probability $1/2$.

Corollary (BFGOWW ’18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time $\poly(n^d, \langle \text{parameterization of } X \rangle, p, 1/\epsilon)$.
Our results

Theorem (BFGOWW ’18, Tensor scaling)

There is a randomized poly($n^d, \langle X \rangle + \langle p \rangle, 1/\varepsilon$)-time algorithm for approximate tensor scaling on input X, p, ε with success probability 1/2.

The algorithm requires $O\left(dn^{2d} \frac{\langle X \rangle + \langle p \rangle + d \log dn}{\varepsilon^2} \right)$ iterations, each dominated by computing a Cholesky decomposition of some $n \times n$ matrix.

Corollary (BFGOWW ’18, Quantum marginals)

There is a randomized poly($\langle p \rangle, 1/\varepsilon$)-time algorithm for approximate quantum marginals on input p, ε with success probability 1/2.

Corollary (BFGOWW ’18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time poly($n^d, \langle \text{parameterization of } X \rangle, p, 1/\varepsilon$)
Our results

<table>
<thead>
<tr>
<th>Theorem (BFGOWW ’18, Tensor scaling)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a randomized (\text{poly}(n^d, \langle X \rangle + \langle p \rangle, 1/\varepsilon))-time algorithm for approximate tensor scaling on input (X, p, \varepsilon) with success probability 1/2.</td>
</tr>
</tbody>
</table>

The algorithm requires \(O \left(\frac{dn^{2d} \langle X \rangle + \langle p \rangle + d \log dn}{\varepsilon^2} \right) \) iterations, each dominated by computing a Cholesky decomposition of some \(n \times n \) matrix.

<table>
<thead>
<tr>
<th>Corollary (BFGOWW ’18, Quantum marginals)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a randomized (\text{poly}(\langle p \rangle, 1/\varepsilon))-time algorithm for approximate quantum marginals on input (p, \varepsilon) with success probability 1/2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (BFGOWW ’18, Approximate moment polytope membership)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a randomized algorithm for approximate moment polytope membership running in time (\text{poly}(n^d, \langle \text{parameterization of } X \rangle, p, 1/\varepsilon))</td>
</tr>
</tbody>
</table>
Our results

Theorem (BFGOWW ’18, Tensor scaling)

There is a randomized poly\((n^d, \langle X \rangle + \langle p \rangle, 1/\epsilon)\)-time algorithm for approximate tensor scaling on input \(X, p, \epsilon \) with success probability \(1/2 \).

The algorithm requires \(O\left(dn^{2d} \frac{\langle X \rangle + \langle p \rangle + d \log dn}{\epsilon^2}\right) \) iterations, each dominated by computing a Cholesky decomposition of some \(n \times n \) matrix.

Corollary (BFGOWW ’18, Quantum marginals)

There is a randomized poly\((\langle p \rangle, 1/\epsilon)\)-time algorithm for approximate quantum marginals on input \(p, \epsilon \) with success probability \(1/2 \).

Corollary (BFGOWW ’18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time poly\((n^d, \langle \text{parameterization of } X \rangle, p, 1/\epsilon) \).
Actual membership oracle?

Theorem (BFGOWW ’18)

If the spectra of marginals of X are $\varepsilon = \exp(-O(dn^{d+1}\langle p \rangle))$-close to p, then $p \in \Delta(X)$.

Unfortunately, doesn’t result in poly time algorithm for membership! Need $\text{poly}(\log(1/\varepsilon))$.
Theorem (BFGOWW '18)

If the spectra of marginals of X are $\varepsilon = \exp(-O(dn^{d+1})\langle p \rangle)$-close to p, then $p \in \Delta(X)$.

Unfortunately, doesn’t result in poly time algorithm for membership! Need poly($\log(1/\varepsilon)$).
Algorithm
Vague tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: scaling of X s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

Repeat T times:
 • If done, output X.
 • Else, change basis in a single vector space to FIX the worst marginal of X.
 (ignoring damage done to other marginals!)

Output OUTSIDE POLYTOPE

Not this simple.
Vague tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling of X s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

 (ignoring damage done to other marginals!)

- Output OUTSIDE POLYTOPE

Not this simple.
Algorithm

Input: X, p with integer coordinates, ε.
Output: scaling of X s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.
 (ignoring damage done to other marginals!)

- Output OUTSIDE POLYTOPE

Not this simple.
Vague tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.
Output: scaling of X s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.
 (ignoring damage done to other marginals!)

- Output OUTSIDE POLYTOPE

Not this simple.
Vague tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling of X s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

 (ignoring damage done to other marginals!)

- Output OUTSIDE POLYTOPE

Not this simple.
Algorithm

Input: \(X, p \) with integer coordinates, \(\varepsilon \).

Output: scaling of \(X \) s.t. spectra of marginals \(\varepsilon \)-close to \(p \), or OUTSIDE POLYTOPE

- Repeat \(T \) times:
 - If done, output \(X \).
 - Else, change basis in a single vector space to FIX the worst marginal of \(X \).
 (ignoring damage done to other marginals!)

- Output OUTSIDE POLYTOPE

Not this simple.
Actual tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ϵ.

Output: scaling Y s.t. spectra of marginals ϵ-close to p, or OUTSIDE POLYTOPE.

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
 (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\epsilon^2} \right)$, this is algorithm succeeds with probability at least $1/2$.

Actual tensor scaling algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: X, p with integer coordinates, ϵ.</td>
</tr>
<tr>
<td>Output: scaling Y s.t. spectra of marginals ϵ-close to p, or OUTSIDE POLYTOPE</td>
</tr>
</tbody>
</table>

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to **CAREFULLY FIX** worst marginal of Y. *(ignoring damage done to other marginals!)*
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\epsilon^2} \right)$, this is algorithm succeeds with probability at least $1/2$.
Actual tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling Y s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
 (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2} \right)$, this is algorithm succeeds with probability at least $1/2$.
Actual tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling Y s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
 (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(dn^{2d} (\langle Y \rangle + \langle p \rangle + d \log dn) \frac{d \log dn}{\varepsilon^2} \right)$, this is algorithm succeeds with probability at least $1/2$.
Actual tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling Y s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
 (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(dn^2 \frac{d \langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2} \right)$, this is algorithm succeeds with probability at least $1/2$.
Actual tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling Y s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
 (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(dn^{2d} \left[\frac{\langle Y \rangle + \langle p \rangle}{\varepsilon^2} + d \log dn \right] \right)$, this is algorithm succeeds with probability at least $1/2$.
Actual tensor scaling algorithm

Algorithm

Input: X, p with integer coordinates, ε.

Output: scaling Y s.t. spectra of marginals ε-close to p, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to CAREFULLY FIX worst marginal of Y.
 (ignoring damage done to other marginals!)
- Output OUTSIDE POLYTOPE

Theorem

For $T \geq O \left(\frac{dn^2 \langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2} \right)$, this is algorithm succeeds with probability at least $1/2$.
Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g_i

$$g_i \rho^{(i)} g_i^\dagger = \text{diag}(p_i)$$

WARNING: not every choice works.

The correct way is to fix the marginal using only lower triangular scalings g_i
Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g_i

$$g_i \rho^{(i)} g_i^\dagger = \text{diag}(p_i)$$

WARNING: not every choice works.

The correct way is to fix the marginal using only lower triangular scalings g_i
Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g_i

$$g_i \rho^{(i)} g_i^\dagger = \text{diag}(p_i)$$

WARNING: not every choice works.

The correct way is to fix the marginal using only lower triangular scalings g_i
Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g_i

$$g_i \rho^{(i)} g_i^\dagger = \text{diag}(p_i)$$

WARNING: not every choice works.

The correct way is to fix the marginal using only lower triangular scalings g_i
Fixing a marginal

Easy to fix an individual marginal;
Solve simple matrix factorization problem for g_i

$$g_i \rho^{(i)} g_i^\dagger = \text{diag}(p_i)$$

WARNING: not every choice works.

The correct way is to fix the marginal using only **lower triangular scalings** g_i
Analysis
Typical analysis

• Define potential function f with $f(g_0) = 1$
• Show f decreases by $\Omega(\epsilon^2)$ in each iteration of the algorithm if marginals off by at least ϵ
• Establish lower bound for f

However, triangular scaling algorithm can fail without randomization!

Must establish lower bounds for f that hold w.h.p over randomization
Typical analysis

- Define potential function f with $f(g_0) = 1$
- Show f decreases by $\Omega(\varepsilon^2)$ in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for f

However, triangular scaling algorithm can fail without randomization!

Must establish lower bounds for f that hold w.h.p over randomization
Typical analysis

- Define potential function f with $f(g_0) = 1$
- Show f decreases by $\Omega(\varepsilon^2)$ in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for f

However, triangular scaling algorithm can fail without randomization!

Must establish lower bounds for f that hold w.h.p over randomization
Typical analysis

- Define potential function f with $f(g_0) = 1$
- Show f decreases by $\Omega(\varepsilon^2)$ in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for f

However, triangular scaling algorithm can fail without randomization!

Must establish lower bounds for f that hold w.h.p over randomization
Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^\otimes d$ that are eigenfunctions for the action of the lower triangular matrices;

$$P(g \cdot Y) = \text{scalar}(g, p)P(Y)$$

$\text{scalar}(g, p)$ is just the eigenvalue.

Potential function: $f_Y(g) = \log \frac{\|g \cdot Y\|}{\text{scalar}(g, p)}$

There's a fairly easy weak duality here: very roughly,

$$\inf_g f_Y(g) \geq \sup_{P \text{ highest weight}} P(Y)$$
Lower bounds: highest weights

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^{\otimes d}$ that are eigenfunctions for the action of the lower triangular matrices;

$$P(g \cdot Y) = \text{scalar}(g, p) P(Y)$$

$\text{scalar}(g, p)$ is just the eigenvalue.

Potential function: $f_Y(g) = \log \frac{\|g \cdot Y\|}{\text{scalar}(g, p)}$

There's a fairly easy weak duality here: very roughly,

$$\inf_{g} f_Y(g) \geq \sup_{P \text{ highest weight}} P(Y)$$
Our lower bounds are objects arising from representation theory.

Definition (Highest weights of type \(p \))

Homogeneous polynomials on \((\mathbb{C}^n)^{\otimes d}\) that are eigenfunctions for the action of the lower triangular matrices;

\[
P(g \cdot Y) = \text{scalar}(g, p)P(Y)
\]

\(\text{scalar}(g, p)\) is just the eigenvalue.

Potential function: \(f_Y(g) = \log \frac{\|g \cdot Y\|}{\text{scalar}(g, p)}\)

There’s a fairly easy weak duality here: very roughly,

\[
\inf_g f_Y(g) \geq \sup_{P \text{ highest weight}} P(Y)
\]
Lower bounds: highest weights

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type \(p \))

Homogeneous polynomials on \((\mathbb{C}^n)^{\otimes d}\) that are eigenfunctions for the action of the lower triangular matrices;

\[
P(g \cdot Y) = \text{scalar}(g, p) P(Y)
\]

\(\text{scalar}(g, p)\) is just the eigenvalue.

Potential function: \(f_Y(g) = \log \frac{\|g \cdot Y\|}{\text{scalar}(g, p)} \)

There's a fairly easy weak duality here: very roughly,

\[
\inf_{g} f_Y(g) \geq \sup_{P \text{ highest weight}} P(Y)
\]
Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(C^n)^{\otimes d}$ that are eigenfunctions for the action of the lower triangular matrices;

$$P(g \cdot Y) = \text{scalar}(g, p)P(Y)$$

$\text{scalar}(g, p)$ is just the *eigenvalue*.

Potential function: $f_Y(g) = \log \frac{\|g \cdot Y\|}{\text{scalar}(g, p)}$

There’s a fairly easy *weak duality* here: very roughly,

$$\inf_g f_Y(g) \geq \sup_{P \text{ highest weight}} P(Y)$$
Last ingredient: moment polytope and highest weights

$p \in \Delta(G \cdot X)$

Want for random Y $\inf_g f_Y(g) > \frac{1}{\text{poly}}$

"potential"
Last ingredient: moment polytope and highest weights

\[p \in \Delta(G \cdot X) \]

Figure 3.1: Borland–Dennis polytope. The solution of the one-body \(n \)-representability problem for three fermions with local dimension six, as given by the Borland–Dennis inequalities (3.1). The vertex \((1, 1, 1)\) corresponds to a single Slater determinant.

Figure 3.2: Three-qubit polytope. The solution of the one-body quantum marginal problem for pure states of three qubits, as given by the polygonal inequalities (3.2) for \(n = 3 \).

Figure 3.3: Bravyi’s polytope, corresponding to his solution (3.3) of the one-body quantum marginal problem for two qubits and global spectrum \(AB = (0.6, 0.3, 0.1, 0) \).

$\inf_g f_Y(g) > \frac{1}{\text{poly}}$

$\sup_{\mathcal{P}_{\text{hwv}}} P(Y) > \frac{1}{\text{poly}}$

Ness–Mumford'84
$+ \text{Derksen'01}$
$+ \text{Lemma}$

for random \(Y \)
Last ingredient: moment polytope and highest weights

\[p \in \Delta(G \cdot X) \]

Want for random \(Y \)

\[\inf_g f_Y(g) > \frac{1}{\text{poly}} \]

\(\text{"potential"} \)

\[\text{weak duality} \]

\[\sup_{P \text{ hwv}} P(Y) > \frac{1}{\text{poly}} \]

\(Ness – Mumford '84 \)
\(+ Derksen '01 \)
\(+ Lemma \)
for random \(Y \)
Open problems
Open problems

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in RP? A poly log($1/\varepsilon$) algorithm would prove it! In P?
- Can tensor scaling be done in poly log($1/\varepsilon$) for a random tensor? Would put quantum marginal problem in RP!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for multi-body quantum marginals.
- Develop separation oracles for moment polytopes.
Open problems

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in RP? A poly log(1/ε) algorithm would prove it! In P?
- Can tensor scaling be done in poly log(1/ε) for a random tensor? Would put quantum marginal problem in RP!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for multi-body quantum marginals.
- Develop separation oracles for moment polytopes.
Open problems

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in RP? A poly $\log(1/\varepsilon)$ algorithm would prove it! In P?
- Can tensor scaling be done in poly $\log(1/\varepsilon)$ for a random tensor? Would put quantum marginal problem in RP!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for multi-body quantum marginals.
- Develop separation oracles for moment polytopes.
Open problems

• Is the tensor scaling decision problem in \textbf{NP}? Is it in \textbf{coNP}?
• Is it in \textbf{RP}? A poly log($1/\varepsilon$) algorithm would prove it! In \textbf{P}?
• Can tensor scaling be done in poly log($1/\varepsilon$) for a random tensor? Would put quantum marginal problem in \textbf{RP}!
• Approximately scale for other group actions, without alternating minimization (in progress).
 • Obtain similar algorithms for *multi-body* quantum marginals.
 • Develop separation oracles for moment polytopes.
Open problems

- Is the tensor scaling decision problem in \textbf{NP}? Is it in \textbf{coNP}?
- Is it in \textbf{RP}? A poly log$(1/\varepsilon)$ algorithm would prove it! In \textbf{P}?
- Can tensor scaling be done in poly log$(1/\varepsilon)$ for a random tensor? Would put quantum marginal problem in \textbf{RP}!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for multibody quantum marginals.
- Develop separation oracles for moment polytopes.
Open problems

- Is the tensor scaling decision problem in \textbf{NP}? Is it in \textbf{coNP}?
- Is it in \textbf{RP}? A poly log$(1/\varepsilon)$ algorithm would prove it! In \textbf{P}?
- Can tensor scaling be done in poly log$(1/\varepsilon)$ for a random tensor? Would put quantum marginal problem in \textbf{RP}!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for multi-body quantum marginals.
- Develop separation oracles for moment polytopes.
Thank you!
$p \in \Delta(G \cdot X)$
Moment polytope and representation theory

$p \in \Delta(G \cdot X)$

Want for

\[Y = g_0 \cdot X \quad \text{random} \]

\[\inf_{g} f_{Y,p}(g) > \frac{1}{\text{poly}} \]
Moment polytope and representation theory

\[p \in \Delta(G \cdot X) \]

\[Q \not= 0 \text{ on } G \cdot X, \; \deg Q \leq 2^{\text{poly}} \]

\[Q \in HWV_p \]

Want for
\[Y = g_0 \cdot X \]
random

\[\inf_{g} f_{Y,p}(g) > \frac{1}{\text{poly}} \]
Moment polytope and representation theory

\[p \in \Delta(\overline{G \cdot X}) \]

\[\text{Ness–Mumford}'84 \quad + \text{Derksen}'01 \]

\[Q \not\equiv 0 \text{ on } \overline{G \cdot X}, \deg Q \leq 2^\text{poly} \]

\[Q \in \text{HWV}_p \]

\[\text{probability} > .5 \]

\[Q(Y) \neq 0 \]

\[\inf_g f_{Y,p}(g) > \frac{1}{\text{poly}} \]
Moment polytope and representation theory

\[p \in \Delta(G \cdot X) \]

\[Q \not\equiv 0 \text{ on } G \cdot X, \deg Q \leq 2^{\text{poly}} \]

\[Q \in \text{HWV}_p \]

\[Q(Y) \neq 0 \]

\[\inf_g f_{Y,p}(g) > \frac{1}{\text{poly}} \]

\[\sup_{P \in \text{HWV}_p} \frac{1}{\deg P} \frac{|P(Y)|}{\|P\|} > \frac{1}{\text{poly}} \]

Want for

\[Y = g_0 \cdot X \text{ random} \]

Lemma

Probability > .5

Ness–Mumford'84 + Derksen'01
Moment polytope and representation theory

\[p \in \Delta(\overline{G \cdot X}) \]

Figure 3.1: Borland–Dennis polytope. The solution of the one-body \(n \)-representability problem for three fermions with local dimension six, as given by the Borland–Dennis inequalities (3.1). The vertex \((1, 1, 1)\) corresponds to a single Slater determinant.

Figure 3.2: Three-qubit polytope. The solution of the one-body quantum marginal problem for pure states of three qubits, as given by the polygonal inequalities (3.2) for \(n = 3 \).

Figure 3.3: Bravyi's polytope, corresponding to its solution (3.3) of the one-body quantum marginal problem for two qubits and global spectrum \(AB = (0.6, 0.3, 0.1, 0) \).

Want for

Lemma

\[Q \not\equiv 0 \text{ on } \overline{G \cdot X}, \deg Q \leq 2^{\text{poly}} \]

\[Q \in HWV_p \]

probability \(> 0.5 \)

\[Q(Y) \neq 0 \]

\[\inf_g f_{Y,p}(g) > \frac{1}{\text{poly}} \leftrightarrow \text{weak duality} \]

\[\sup_{P \in HWV_p} \frac{1}{\deg P} \frac{|P(Y)|}{\|P\|} > \frac{1}{\text{poly}} \]