Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems accross computer science, mathematics, and physics

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems accross computer science, mathematics, and physics

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems accross computer science, mathematics, and physics

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems accross computer science, mathematics, and physics

- known as moment polytopes in math and physics
- can have exponentially many facets and vertices
- capture many natural problems accross computer science, mathematics, and physics

Polytopes in the tensor scaling framework

• Marginals: marginals of joint probability distributions with constrained supports

- Row and column sums: of row/column reweightings of a fixed nonnegative matrix
- Horn polytope: spectra of symmetric matrices A, B, C with A + B = C

Polytopes in the tensor scaling framework

• Marginals: marginals of joint probability distributions with constrained supports

- Row and column sums: of row/column reweightings of a fixed nonnegative matrix
- Horn polytope: spectra of symmetric matrices A, B, C with A + B = C

Polytopes in the tensor scaling framework

• Marginals: marginals of joint probability distributions with constrained supports

- Row and column sums: of row/column reweightings of a fixed nonnegative matrix
- Horn polytope: spectra of symmetric matrices A, B, C with A + B = C

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems

- Quantum marginals, moment polytopes, and tensor scaling
- History, special cases, and applications
- Our results
- Algorithm
- Analysis
- Open problems

Quantum marginals, moment polytopes, and tensor scaling

If Alice, Bob, and Carol's qubits are jointly in a pure quantum state, the one-body marginals are 2 × 2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$

One body quantum marginal problem, d = 3**Input:** PSD matrices P_A , P_B , P_C **Output:** Whether there is a pure state with marginals P_A , P_B , P_C

Fact: the answer depends only on spec(P_A), spec(P_B), spec(P_C).

If Alice, Bob, and Carol's qubits are jointly in a pure quantum state, the one-body marginals are 2 × 2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$

One body quantum marginal problem, d = 3**Input:** PSD matrices P_A, P_B, P_C **Output:** Whether there is a pure state with marginals P_A, P_B, P_C

Fact: the answer depends only on $\operatorname{spec}(P_A)$, $\operatorname{spec}(P_B)$, $\operatorname{spec}(P_C)$.

If Alice, Bob, and Carol's qubits are jointly in a pure quantum state, the one-body marginals are 2 × 2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$

One body quantum marginal problem, d = 3**Input:** PSD matrices P_A , P_B , P_C **Output:** Whether there is a pure state with marginals P_A , P_B , P_C

Fact: the answer depends only on spec(P_A), spec(P_B), spec(P_C).

If Alice, Bob, and Carol's qubits are jointly in a pure quantum state, the one-body marginals are 2 × 2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$

One body quantum marginal problem, d = 3**Input:** PSD matrices P_A , P_B , P_C **Output:** Whether there is a pure state with marginals P_A , P_B , P_C

Fact: the answer depends only on $\operatorname{spec}(P_A)$, $\operatorname{spec}(P_B)$, $\operatorname{spec}(P_C)$.

If Alice, Bob, and Carol's qubits are jointly in a pure quantum state, the one-body marginals are 2 × 2 PSD matrices $\rho^{(A)}, \rho^{(B)}, \rho^{(C)}$

One body quantum marginal problem, d = 3**Input:** PSD matrices P_A , P_B , P_C **Output:** Whether there is a pure state with marginals P_A , P_B , P_C

Fact: the answer depends only on $\operatorname{spec}(P_A)$, $\operatorname{spec}(P_B)$, $\operatorname{spec}(P_C)$.

Now consider *d* parties each holding *n*-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^{\otimes d}$

d d

d = 3, n = 2:

Now consider *d* parties each holding *n*-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^{\otimes d}$ $\underbrace{n \times \cdots \times n}_{d}$ arrays of complex numbers

d = 3, n = 2:

Now consider *d* parties each holding *n*-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^{\otimes d}$ $\underbrace{n \times \cdots \times n}_{d}$ arrays of complex numbers

d = 3, n = 2:

Now consider *d* parties each holding *n*-dimensional quantum system.

d-tensors: denoted $(\mathbb{C}^n)^{\otimes d}$ $\underbrace{n \times \cdots \times n}_{d}$ arrays of complex numbers

d = 3, n = 2:

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

 i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix rows = slices of X orthogonal to the i^{th} direction

Marginal

 i^{th} marginal of X is the $n_i imes n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^{\dagger}$$

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

 i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix rows = slices of X orthogonal to the i^{th} direction

Marginal

 i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^{\dagger}$$

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

 i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix rows = slices of X orthogonal to the i^{th} direction.

Marginal

 i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^{\dagger}$$

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

 i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix

rows = slices of X orthogonal to the i^{th} direction.

Marginal

 i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^{\dagger}$$

Three different ways of viewing a $n \times n \times n$ tensor as an $n \times n^2$ matrix.

Flattening

 i^{th} flattening $M^{(i)}$ of X is an $n \times n^{d-1}$ matrix

rows = slices of X orthogonal to the i^{th} direction.

Marginal

 i^{th} marginal of X is the $n_i \times n_i$ matrix

$$\rho^{(i)} = M^{(i)} \left(M^{(i)} \right)^{\dagger}$$

Consider a set X of *d*-tensors (for example $X = (\mathbb{C}^n)^{\otimes d}$);

 $\Delta(\mathbb{X}) = \{ \text{tuples of spectra of marginals of elements of } \mathbb{X} \text{ with trace } 1 \}$

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness '84] For many natural X, including those in this talk, $\Delta(X)$ is a

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Consider a set X of *d*-tensors (for example $X = (\mathbb{C}^n)^{\otimes d}$);

 $\Delta(\mathbb{X}) = \{ \text{tuples of spectra of marginals of elements of } \mathbb{X} \text{ with trace } 1 \}$

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness '84] For many natural X, including those in this talk, $\Delta(X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Consider a set X of *d*-tensors (for example $X = (\mathbb{C}^n)^{\otimes d}$);

 $\Delta(\mathbb{X}) = \{ \text{tuples of spectra of marginals of elements of } \mathbb{X} \text{ with trace } 1 \}$

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness '84] For many natural X, including those in this talk, $\Delta(X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Consider a set X of *d*-tensors (for example $X = (\mathbb{C}^n)^{\otimes d}$);

 $\Delta(\mathbb{X}) = \{ \text{tuples of spectra of marginals of elements of } \mathbb{X} \text{ with trace } 1 \}$

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness '84]

For many natural $\mathbb X,$ including those in this talk, $\Delta(\mathbb X)$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Consider a set X of *d*-tensors (for example $X = (\mathbb{C}^n)^{\otimes d}$);

 $\Delta(\mathbb{X}) = \{ \text{tuples of spectra of marginals of elements of } \mathbb{X} \text{ with trace } 1 \}$

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness '84]

For many natural \mathbb{X} , including those in this talk, $\Delta(\mathbb{X})$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra \boldsymbol{p} , arithmetic circuit parametrizing \mathbb{X} **Output:** Whether \boldsymbol{p} is in moment polytope $\Delta(\mathbb{X})$

Consider a set X of *d*-tensors (for example $X = (\mathbb{C}^n)^{\otimes d}$);

 $\Delta(\mathbb{X}) = \{ \text{tuples of spectra of marginals of elements of } \mathbb{X} \text{ with trace } 1 \}$

e.g. ((.75, .25), (.5, .5), (.9, .1)) for 3 qubits

Amazing fact [Mumford, Ness '84]

For many natural \mathbb{X} , including those in this talk, $\Delta(\mathbb{X})$ is a convex polytope!

called the moment polytope; can be defined in much greater generality

Central question: Moment polytope membership

Input: list of spectra \boldsymbol{p} , arithmetic circuit parametrizing \mathbb{X} **Output:** Whether \boldsymbol{p} is in moment polytope $\Delta(\mathbb{X})$
Moment polytope membership for $\mathbb{X} = (\mathbb{C}^n)^{\otimes d}!$

Quantum marginal problem Input: p list of spectra Output: Whether p is in the moment polytope $\Delta(X)$ for $X = (\mathbb{C}^n)^{\otimes d}$. Moment polytope membership for $\mathbb{X} = (\mathbb{C}^n)^{\otimes d}!$

Quantum marginal problem Input: p list of spectra Output: Whether p is in the moment polytope $\Delta(X)$ for $X = (\mathbb{C}^n)^{\otimes d}$.

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by $M^{(i)} \gets g_i M^{(i)}$
- Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: *p* list of spectra, tensor *X*

Output: whether there exists scalings of X with spectra of marginals approaching **p**

• say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure* **Tensor scaling** is moment polytope membership for $\mathbb{X} = \overline{G \cdot X}$! **Fact: Quantum marginal** problem for $p \iff$ **tensor scaling** problem for p and *random* X!

g

Given X, can we locally change basis to obtain specific marginals?

- Changing basis on the i^{th} vector space by g_i changes flattening by $M^{(i)} \leftarrow g_i M^{(i)}$
- Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: *p* list of spectra, tensor *X*

Output: whether there exists scalings of X with spectra of marginals approaching **p**

• say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure* **Tensor scaling** is moment polytope membership for $X = \overline{G \cdot X}$! **Fact: Quantum marginal** problem for $p \iff$ **tensor scaling** problem for p and *random* X!

Given X, can we locally change basis to obtain specific marginals?

• Changing basis on the i^{th} vector space by g_i changes flattening by

$$M^{(i)} \leftarrow \mathbf{g}_i M^{(i)}$$

• Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: *p* list of spectra, tensor *X*

Output: whether there exists scalings of X with spectra of marginals approaching **p**

• say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure* **Tensor scaling** is moment polytope membership for $X = \overline{G \cdot X}$! **Fact: Quantum marginal** problem for $p \iff$ **tensor scaling** problem for p and *random* X!

Given X, can we locally change basis to obtain specific marginals?

• Changing basis on the i^{th} vector space by g_i changes flattening by

$$M^{(i)} \leftarrow \mathbf{g}_i M^{(i)}$$

• Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor X

Output: whether there exists scalings of X with spectra of marginals approaching **p**

9

• say $G \cdot X$: set of all scalings of X, $G \cdot X$ its *closure* **Tensor scaling** is moment polytope membership for $X = \overline{G \cdot X}$! **Fact: Quantum marginal** problem for $p \iff$ **tensor scaling** problem for p and *random* X!

Given X, can we locally change basis to obtain specific marginals?

• Changing basis on the i^{th} vector space by g_i changes flattening by

$$M^{(i)} \leftarrow \mathbf{g}_i M^{(i)}$$

• Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor **X**

Output: whether there exists scalings of X with spectra of marginals approaching **p**

• say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure* **Tensor scaling** is moment polytope membership for $X = \overline{G \cdot X}$! **Fact: Quantum marginal** problem for $p \iff$ **tensor scaling** profor p and *random* X!

Given X, can we locally change basis to obtain specific marginals?

• Changing basis on the i^{th} vector space by g_i changes flattening by

$$M^{(i)} \leftarrow \mathbf{g}_i M^{(i)}$$

• Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor **X**

Output: whether there exists scalings of X with spectra of marginals approaching **p**

• say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure* **Tensor scaling** is moment polytope membership for $\mathbb{X} = \overline{G \cdot X}$! **Fact:** Quantum marginal problem for $p \iff$ tensor scaling problem for p and random X.

Given X, can we locally change basis to obtain specific marginals?

• Changing basis on the i^{th} vector space by g_i changes flattening by

$$M^{(i)} \leftarrow \mathbf{g}_i M^{(i)}$$

• Scaling: Simultaneous local basis change $(g_1, \ldots, g_d) \cdot X := g \cdot X$

Question: Tensor scaling

Input: p list of spectra, tensor **X**

Output: whether there exists scalings of X with spectra of marginals approaching **p**

• say $G \cdot X$: set of all scalings of X, $\overline{G \cdot X}$ its *closure* **Tensor scaling** is moment polytope membership for $X = \overline{G \cdot X}$! **Fact: Quantum marginal** problem for $p \iff$ **tensor scaling** problem for p and *random* X!

History, special cases, and applications

Applications of tensor scaling

Matrix scaling: reweighting rows and columns

- deterministically approximating permanent
- **Operator scaling: tensor scaling with two marginals**
- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices
- Uniform tensor scaling: target marginals I_n/n
- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state
- One body quantum marginal problem: tensor scaling for random XThe *Kronecker polytope* in representation theory
- Nonuniform tensor scaling:
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state¹⁰

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

• Nullcone problem in invariant theory: do all invariants vanish on X?

• equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

- The Kronecker polytope in representation theory
- Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random *X* • The *Kronecker polytope* in representation theory **Nonuniform tensor scaling:**

• entanglement polytopes: comparing different types of entanglement

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

• entanglement polytopes: comparing different types of entanglement

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

• entanglement polytopes: comparing different types of entanglement

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

- The *Kronecker polytope* in representation theory **Nonuniform tensor scaling:**
- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state¹⁰

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

- The *Kronecker polytope* in representation theory **Nonuniform tensor scaling:**
- entanglement polytopes: comparing different types of entanglement

• deterministically approximating permanent

Operator scaling: tensor scaling with two marginals

- noncommutative rational identity testing
- Forster's radial isotropic position
- computing the Brascamp-Lieb constant in analysis
- Horn's problem on eigenvalues of sums of matrices

Uniform tensor scaling: target marginals I_n/n

- Nullcone problem in invariant theory: do all invariants vanish on X?
- equivalence under SLOCC to locally maximally mixed state

One body quantum marginal problem: tensor scaling for random X

• The Kronecker polytope in representation theory

Nonuniform tensor scaling:

- entanglement polytopes: comparing different types of entanglement
- Computing quantum functionals: information theoretic value of a state¹⁰

Produce scaling of input X with marginals ε -close to input p

Approximate quantum marginals:

Produce tensor with marginals ε -close to input **p**

Approximate moment polytope membership:

Correctly output one of

$\boldsymbol{p} \in \Delta(\mathbb{X}) + B(\varepsilon) \text{ or } \boldsymbol{p} \in \Delta(\mathbb{X})^{c} + B(\varepsilon).$

Produce scaling of input X with marginals ε -close to input p

Approximate quantum marginals:

Produce tensor with marginals ε -close to input **p**

Approximate moment polytope membership:

Correctly output one of

 $\boldsymbol{p} \in \Delta(\mathbb{X}) + B(\varepsilon) \text{ or } \boldsymbol{p} \in \Delta(\mathbb{X})^{c} + B(\varepsilon).$

Produce scaling of input X with marginals ε -close to input p

Approximate quantum marginals:

Produce tensor with marginals ε -close to input **p**

Approximate moment polytope membership:

Correctly output one of

 $\boldsymbol{p} \in \Delta(\mathbb{X}) + B(\varepsilon) \text{ or } \boldsymbol{p} \in \Delta(\mathbb{X})^{c} + B(\varepsilon).$

Produce scaling of input X with marginals ε -close to input p

Approximate quantum marginals:

Produce tensor with marginals ε -close to input **p**

Approximate moment polytope membership:

Correctly output one of

$$\boldsymbol{\rho} \in \Delta(\mathbb{X}) + B(\varepsilon) \text{ or } \boldsymbol{\rho} \in \Delta(\mathbb{X})^{c} + B(\varepsilon).$$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly $\log(1/arepsilon)$
Operator scaling	[AGLOW '17] poly log $(1/arepsilon)$	$[F'18]\operatorname{poly}(1/arepsilon)$
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly log(1/ $arepsilon$)
Operator scaling	[AGLOW '17] poly log $(1/arepsilon)$	[F'18] poly $(1/arepsilon)$
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly log(1/ $arepsilon$)
Operator scaling	[AGLOW '17] poly log(1/ $arepsilon$)	[F'18] poly $(1/arepsilon)$
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly log $(1/arepsilon)$
Operator scaling	[AGLOW '17] poly log(1/ $arepsilon$)	[F'18] poly(1/ ε)
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly log $(1/arepsilon)$
Operator scaling	[AGLOW '17] poly log(1/ $arepsilon$)	[F'18] poly $(1/arepsilon)$
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly log(1/ $arepsilon$)
Operator scaling	[AGLOW '17] poly log(1/ $arepsilon$)	[F'18] poly $(1/arepsilon)$
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

	uniform	nonuniform
Matrix scaling	[LSW '98] poly log $(1/arepsilon)$	[LSW '98] poly log $(1/arepsilon)$
Operator scaling	[AGLOW '17] poly log $(1/arepsilon)$	[F'18] poly $(1/arepsilon)$
Tensor scaling	[BGOWW '17] poly $(1/arepsilon)$	this work: $poly(1/arepsilon)$

One body quantum marginal problem (nonuniform)

• [Higuchi,Sudbery'02] qubits; [Klaychko'04] polytope, [WDGC13] algebraic algorithm, [BCMW'17]: membership in **NP** ∩ **coNP**

Theorem (BFGOWW '18, Tensor scaling)

There is a randomized poly(n^d , $\langle X \rangle + \langle p \rangle$, $1/\varepsilon$)-time algorithm for approximate tensor scaling on input X, p, ε with success probability 1/2.

The algorithm requires $O\left(dn^{2d} \frac{\langle X \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$ iterations, each dominated by computing a Cholesky decomposition of some $n \times n$ matrix. **Corollary (BFGOWW '18, Quantum marginals)** There is a randomized poly $(\langle p \rangle, 1/\varepsilon)$ -time algorithm for approximate quantum marginals on input p, ε with success probability 1/2.

Corollary (BFGOWW '18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time poly(n^d , $\langle parameterization of X \rangle$, p, $1/\varepsilon$)

Theorem (BFGOWW '18, Tensor scaling)

There is a randomized poly(n^d , $\langle X \rangle + \langle p \rangle$, $1/\varepsilon$)-time algorithm for approximate tensor scaling on input X, p, ε with success probability 1/2.

The algorithm requires $O\left(dn^{2d} \frac{\langle X \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$ iterations, each dominated by computing a Cholesky decomposition of some $n \times n$ matrix.

Corollary (BFGOWW '18, Quantum marginals)

There is a randomized poly($\langle \mathbf{p} \rangle$, $1/\varepsilon$)-time algorithm for approximate quantum marginals on input \mathbf{p} , ε with success probability 1/2.

Corollary (BFGOWW '18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time poly(n^d , (parameterization of \mathbb{X}), p, $1/\varepsilon$)

Theorem (BFGOWW '18, Tensor scaling)

There is a randomized poly(n^d , $\langle X \rangle + \langle p \rangle$, $1/\varepsilon$)-time algorithm for approximate tensor scaling on input X, p, ε with success probability 1/2.

The algorithm requires $O\left(dn^{2d} \frac{\langle X \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$ iterations, each dominated by computing a Cholesky decomposition of some $n \times n$ matrix. **Corollary (BFGOWW '18, Quantum marginals)**

There is a randomized $poly(\langle \boldsymbol{p} \rangle, 1/\varepsilon)$ -time algorithm for approximate quantum marginals on input $\boldsymbol{p}, \varepsilon$ with success probability 1/2.

Corollary (BFGOWW '18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time poly(n^d , (parameterization of \mathbb{X}), p, $1/\varepsilon$)

Theorem (BFGOWW '18, Tensor scaling)

There is a randomized poly(n^d , $\langle X \rangle + \langle p \rangle$, $1/\varepsilon$)-time algorithm for approximate tensor scaling on input X, p, ε with success probability 1/2.

The algorithm requires $O\left(dn^{2d} \frac{\langle X \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$ iterations, each dominated by computing a Cholesky decomposition of some $n \times n$ matrix.

Corollary (BFGOWW '18, Quantum marginals)

There is a randomized $poly(\langle \boldsymbol{p} \rangle, 1/\varepsilon)$ -time algorithm for approximate quantum marginals on input $\boldsymbol{p}, \varepsilon$ with success probability 1/2.

Corollary (BFGOWW '18, Approximate moment polytope membership)

There is a randomized algorithm for approximate moment polytope membership running in time $poly(n^d, \langle parameterization of \mathbb{X} \rangle, \boldsymbol{p}, 1/\varepsilon)$

Theorem (BFGOWW '18)

If the spectra of marginals of X are $\varepsilon = \exp(-O(dn^{d+1})\langle \boldsymbol{p} \rangle)$ -close to \boldsymbol{p} , then $\boldsymbol{p} \in \Delta(\mathbb{X})$.

Unfortunately, doesn't result in poly time algorithm for membership! Need poly $(\log(1/arepsilon)).$

Theorem (BFGOWW '18)

If the spectra of marginals of X are $\varepsilon = \exp(-O(dn^{d+1})\langle \boldsymbol{p} \rangle)$ -close to \boldsymbol{p} , then $\boldsymbol{p} \in \Delta(\mathbb{X})$.

Unfortunately, doesn't result in poly time algorithm for membership! Need $poly(log(1/\varepsilon))$.
Input: X, p with integer coordinates, ε .

Output: scaling of X s.t. spectra of marginals ε -close to p, or OUTSIDE POLYTOPE

- Repeat *T* times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Input: X, p with integer coordinates, ε .

Output: scaling of X s.t. spectra of marginals ε -close to p, or OUTSIDE POLYTOPE

• Repeat T times:

- If done, output *X*.
- Else, change basis in a single vector space to FIX the worst marginal of *X*.

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Input: X, p with integer coordinates, ε .

Output: scaling of X s.t. spectra of marginals ε -close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Input: X, p with integer coordinates, ε .

Output: scaling of X s.t. spectra of marginals ε -close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Input: X, p with integer coordinates, ε .

Output: scaling of X s.t. spectra of marginals ϵ -close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Input: X, p with integer coordinates, ε .

Output: scaling of X s.t. spectra of marginals ϵ -close to p, or OUTSIDE POLYTOPE

- Repeat T times:
 - If done, output X.
 - Else, change basis in a single vector space to FIX the worst marginal of X.

(ignoring damage done to other marginals!)

• Output OUTSIDE POLYTOPE

Algorithm

Input: X, p with integer coordinates, ε .

Output: scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat *T* times:
 - If done, output *Y*.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of *Y*. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \ge O\left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$.

Algorithm

Input: *X*, *p* with integer coordinates, ε . **Output:** scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat *T* times:
 - If done, output *Y*.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of *Y*. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \ge O\left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$.

Algorithm

Input: *X*, *p* with integer coordinates, ε . **Output:** scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of *Y*. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \ge O\left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$.

Algorithm

Input: *X*, *p* with integer coordinates, ε . **Output:** scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of Y. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \ge O\left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$.

Algorithm

Input: *X*, *p* with integer coordinates, ε . **Output:** scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of *Y*. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \ge O\left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$

Algorithm

Input: *X*, *p* with integer coordinates, ε . **Output:** scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of *Y*. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \ge O\left(dn^{2d} \frac{\langle Y \rangle + \langle p \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$.

Algorithm

Input: *X*, *p* with integer coordinates, ε . **Output:** scaling *Y* s.t. spectra of marginals ε -close to *p*, or OUTSIDE POLYTOPE

- Choose g_0 randomly, set $Y = g_0 \cdot X$.
- Repeat T times:
 - If done, output Y.
 - Else, scale in single factor to **CAREFULLY** FIX worst marginal of *Y*. (*ignoring damage done to other marginals!*)
- Output OUTSIDE POLYTOPE

For
$$T \geq O\left(dn^{2d} \frac{\langle \mathbf{Y} \rangle + \langle \mathbf{p} \rangle + d \log dn}{\varepsilon^2}\right)$$
, this is algorithm succeeds with probability at least $1/2$.

Solve simple matrix factorization problem for g_i

 $g_i \rho^{(i)} g_i^{\dagger} = \operatorname{diag}(\boldsymbol{p}_i)$

WARNING: not every choice works.

Easy to fix an individual marginal; Solve simple matrix factorization problem for g_i

 $g_i \rho^{(i)} g_i^{\dagger} = \operatorname{diag}(\boldsymbol{p}_i)$

WARNING: not every choice works.

Solve simple matrix factorization problem for g_i

 $\mathbf{g}_i \rho^{(i)} \mathbf{g}_i^{\dagger} = \mathsf{diag}(\mathbf{p}_i)$

WARNING: not every choice works.

Solve simple matrix factorization problem for g_i

 $\boldsymbol{g}_i \rho^{(i)} \boldsymbol{g}_i^{\dagger} = \operatorname{diag}(\boldsymbol{p}_i)$

WARNING: not every choice works.

Solve simple matrix factorization problem for g_i

 $\boldsymbol{g}_i \rho^{(i)} \boldsymbol{g}_i^{\dagger} = \operatorname{diag}(\boldsymbol{p}_i)$

WARNING: not every choice works.

Analysis

- Define potential function f with $f(g_0) = 1$
- Show f decreases by Ω(ε²) in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for f

- Define potential function f with $f(g_0) = 1$
- Show f decreases by $\Omega(\varepsilon^2)$ in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for f

- Define potential function f with $f(g_0) = 1$
- Show f decreases by $\Omega(\varepsilon^2)$ in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for f

- Define potential function f with $f(g_0) = 1$
- Show f decreases by $\Omega(\varepsilon^2)$ in each iteration of the algorithm if marginals off by at least ε
- Establish lower bound for *f*

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^{\otimes d}$ that are eigenfunctions for the action of the lower triangular matrices;

 $P(g \cdot Y) = scalar(g, p)P(Y)$

scalar(g, p) is just the *eigenvalue*.

Potential function:
$$f_Y(g) = \log \frac{||g \cdot Y||}{scalar(g, p)}$$

$$\inf_{g} f_{Y}(g) \geq \sup_{P \text{ highest weight }} P(Y)$$

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^{\otimes d}$) that are eigenfunctions for the action of the lower triangular matrices;

 $P(g \cdot Y) = scalar(g, p)P(Y)$

scalar(g, p) is just the *eigenvalue*.

Potential function:
$$f_Y(g) = \log \frac{\|g \cdot Y\|}{scalar(g, p)}$$

$$\inf_{g} f_{Y}(g) \geq \sup_{P \text{ highest weight }} P(Y)$$

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^{\otimes d}$) that are eigenfunctions for the action of the lower triangular matrices;

 $P(g \cdot Y) = scalar(g, p)P(Y)$

scalar(g, p) is just the *eigenvalue*.

Potential function:
$$f_Y(g) = \log \frac{||g \cdot Y||}{scalar(g, p)}$$

$$\inf_{g} f_{Y}(g) \geq \sup_{P \text{ highest weight }} P(Y)$$

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^{\otimes d}$ that are eigenfunctions for the action of the lower triangular matrices;

 $P(g \cdot Y) = scalar(g, p)P(Y)$

scalar(g, p) is just the *eigenvalue*.

Potential function:
$$f_{Y}(g) = \log \frac{\|g \cdot Y\|}{scalar(g, \mathbf{p})}$$

$$\inf_{g} f_{Y}(g) \geq \sup_{P \text{ highest weight }} P(Y)$$

Our lower bounds are objects arising from representation theory

Definition (Highest weights of type p)

Homogeneous polynomials on $(\mathbb{C}^n)^{\otimes d}$) that are eigenfunctions for the action of the lower triangular matrices;

 $P(g \cdot Y) = scalar(g, p)P(Y)$

scalar(g, p) is just the *eigenvalue*.

Potential function:
$$f_{Y}(g) = \log \frac{\|g \cdot Y\|}{scalar(g, p)}$$

$$\inf_{g} f_{Y}(g) \geq \sup_{P \text{ highest weight }} P(Y)$$

Last ingredient: moment polytope and highest weights

Last ingredient: moment polytope and highest weights

Last ingredient: moment polytope and highest weights

Open problems

• Is the tensor scaling decision problem in NP? Is it in coNP?

- Is it in **RP**? A poly $log(1/\varepsilon)$ algorithm would prove it! In **P**?
- Can tensor scaling be done in poly log(1/ε) for a random tensor?
 Would put quantum marginal problem in **RP**!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for *multi-body* quantum marginals.
- Develop separation oracles for moment polytopes.

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in **RP**? A poly $log(1/\varepsilon)$ algorithm would prove it! In **P**?
- Can tensor scaling be done in poly log(1/ε) for a random tensor?
 Would put quantum marginal problem in **RP**!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for *multi-body* quantum marginals.
- Develop separation oracles for moment polytopes.

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in **RP**? A poly $log(1/\varepsilon)$ algorithm would prove it! In **P**?
- Can tensor scaling be done in poly log(1/ε) for a random tensor?
 Would put quantum marginal problem in **RP**!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for *multi-body* quantum marginals.
- Develop separation oracles for moment polytopes.
- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in **RP**? A poly $log(1/\varepsilon)$ algorithm would prove it! In **P**?
- Can tensor scaling be done in poly log(1/ε) for a random tensor?
 Would put quantum marginal problem in **RP**!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for *multi-body* quantum marginals.
- Develop separation oracles for moment polytopes.

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in **RP**? A poly $log(1/\varepsilon)$ algorithm would prove it! In **P**?
- Can tensor scaling be done in poly log(1/ε) for a random tensor?
 Would put quantum marginal problem in **RP**!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for *multi-body* quantum marginals.
- Develop separation oracles for moment polytopes.

- Is the tensor scaling decision problem in NP? Is it in coNP?
- Is it in **RP**? A poly $log(1/\varepsilon)$ algorithm would prove it! In **P**?
- Can tensor scaling be done in poly log(1/ε) for a random tensor?
 Would put quantum marginal problem in **RP**!
- Approximately scale for other group actions, without alternating minimization (in progress).
- Obtain similar algorithms for *multi-body* quantum marginals.
- Develop separation oracles for moment polytopes.

Thank you!

