
Operator Scaling with Specified Marginals

Cole Franks

June 26, 2018

Rutgers University

Organization

1. Examples; teaser algorithm

2. What is operator scaling?

3. Algorithmic results

4. Proofs

1

Special cases of operator scaling

1. Matrix scaling: Given nonnegative matrix A, can D1AD2 have

uniform row and column sums?

2. Isotropic position: Given distribution on vectors, can one change

basis + normalize and end up in isotropic position (E[uu†] = I)?

3. Schur-Horn theorem: what can arise as the diagonal of a matrix

with given eigenvalues?

4. Horn’s problem: given lists of numbers a,b, c , are there PSD

matrices A + B + C = I with lists of eigenvalues a,b, c , resp?

5. Operator scaling

2

Special cases of operator scaling

1. Matrix scaling: Given nonnegative matrix A, can D1AD2 have

uniform row and column sums?

2. Isotropic position: Given distribution on vectors, can one change

basis + normalize and end up in isotropic position (E[uu†] = I)?

3. Schur-Horn theorem: what can arise as the diagonal of a matrix

with given eigenvalues?

4. Horn’s problem: given lists of numbers a,b, c , are there PSD

matrices A + B + C = I with lists of eigenvalues a,b, c , resp?

5. Operator scaling

2

Special cases of operator scaling

1. Matrix scaling: Given nonnegative matrix A, can D1AD2 have

uniform row and column sums?

2. Isotropic position: Given distribution on vectors, can one change

basis + normalize and end up in isotropic position (E[uu†] = I)?

3. Schur-Horn theorem: what can arise as the diagonal of a matrix

with given eigenvalues?

4. Horn’s problem: given lists of numbers a,b, c , are there PSD

matrices A + B + C = I with lists of eigenvalues a,b, c , resp?

5. Operator scaling

2

Special cases of operator scaling

1. Matrix scaling: Given nonnegative matrix A, can D1AD2 have

uniform row and column sums?

2. Isotropic position: Given distribution on vectors, can one change

basis + normalize and end up in isotropic position (E[uu†] = I)?

3. Schur-Horn theorem: what can arise as the diagonal of a matrix

with given eigenvalues?

4. Horn’s problem: given lists of numbers a,b, c , are there PSD

matrices A + B + C = I with lists of eigenvalues a,b, c , resp?

5. Operator scaling

2

Teaser algorithm: Horn’s problem.

Decision algorithm MNS12 relies on difficult theorems KT99, BZ01.

Simple O(bm/ε2) time search algorithm!

Algorithm (F18)

Input: ε > 0, and three nonnegative diagonal matrices D1,D2,D3.

Output: Orthogonal matrices O1,O2,O3 with

‖O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 − Im‖ ≤ ε

• Pick entries of Oi randomly from [22b], b input size.

• Set Oi ← Oihi orthogonal by right multiplication with upper

trangulars hi .

• Check if done. Else, enforce O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 = Im

by simultaneous left multiplication of Oi ← gOi with a lower

triangular g. Go to 2. 3

Teaser algorithm: Horn’s problem.

Decision algorithm MNS12 relies on difficult theorems KT99, BZ01.

Simple O(bm/ε2) time search algorithm!

Algorithm (F18)

Input: ε > 0, and three nonnegative diagonal matrices D1,D2,D3.

Output: Orthogonal matrices O1,O2,O3 with

‖O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 − Im‖ ≤ ε

• Pick entries of Oi randomly from [22b], b input size.

• Set Oi ← Oihi orthogonal by right multiplication with upper

trangulars hi .

• Check if done. Else, enforce O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 = Im

by simultaneous left multiplication of Oi ← gOi with a lower

triangular g. Go to 2. 3

Teaser algorithm: Horn’s problem.

Decision algorithm MNS12 relies on difficult theorems KT99, BZ01.

Simple O(bm/ε2) time search algorithm!

Algorithm (F18)

Input: ε > 0, and three nonnegative diagonal matrices D1,D2,D3.

Output: Orthogonal matrices O1,O2,O3 with

‖O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 − Im‖ ≤ ε

• Pick entries of Oi randomly from [22b], b input size.

• Set Oi ← Oihi orthogonal by right multiplication with upper

trangulars hi .

• Check if done. Else, enforce O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 = Im

by simultaneous left multiplication of Oi ← gOi with a lower

triangular g. Go to 2. 3

Teaser algorithm: Horn’s problem.

Decision algorithm MNS12 relies on difficult theorems KT99, BZ01.

Simple O(bm/ε2) time search algorithm!

Algorithm (F18)

Input: ε > 0, and three nonnegative diagonal matrices D1,D2,D3.

Output: Orthogonal matrices O1,O2,O3 with

‖O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 − Im‖ ≤ ε

• Pick entries of Oi randomly from [22b], b input size.

• Set Oi ← Oihi orthogonal by right multiplication with upper

trangulars hi .

• Check if done. Else, enforce O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 = Im

by simultaneous left multiplication of Oi ← gOi with a lower

triangular g. Go to 2. 3

Teaser algorithm: Horn’s problem.

Decision algorithm MNS12 relies on difficult theorems KT99, BZ01.

Simple O(bm/ε2) time search algorithm!

Algorithm (F18)

Input: ε > 0, and three nonnegative diagonal matrices D1,D2,D3.

Output: Orthogonal matrices O1,O2,O3 with

‖O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 − Im‖ ≤ ε

• Pick entries of Oi randomly from [22b], b input size.

• Set Oi ← Oihi orthogonal by right multiplication with upper

trangulars hi .

• Check if done. Else, enforce O1D1O
†
1 + O2D2O

†
2 + O3D3O

†
3 = Im

by simultaneous left multiplication of Oi ← gOi with a lower

triangular g. Go to 2. 3

Operator scaling

General framework: Operator scaling

Definition

An “operator” A is a tuple A1, . . . ,Ar of m × n matrices, and

r∑
i=1

AiA
†
i ,

r∑
i=1

A†
i Ai .

are the left and right marginals (resp.) of A.

These are marginals of the two-body, mixed quantum state

r∑
i=1

|Ai 〉 〈Ai | .

4

General framework: Operator scaling

Definition

An “operator” A is a tuple A1, . . . ,Ar of m × n matrices, and

r∑
i=1

AiA
†
i ,

r∑
i=1

A†
i Ai .

are the left and right marginals (resp.) of A.

These are marginals of the two-body, mixed quantum state

r∑
i=1

|Ai 〉 〈Ai | .

4

Scaling

Definition (scaling)

A scaling of a tuple A of matrices is another tuple obtained by

simultaneously changing basis on the left and right, i.e. Ai ← gAih.

Question:

Given a tuple A and positive semidefinite matrices P � 0, Q � 0,

Are there scalings of A with marginals arbitrarily close to P,Q?

If so, say A,P,Q is scalable.

May take P,Q diagonal w.l.o.g.

5

Scaling

Definition (scaling)

A scaling of a tuple A of matrices is another tuple obtained by

simultaneously changing basis on the left and right, i.e. Ai ← gAih.

Question:

Given a tuple A and positive semidefinite matrices P � 0, Q � 0,

Are there scalings of A with marginals arbitrarily close to P,Q?

If so, say A,P,Q is scalable.

May take P,Q diagonal w.l.o.g.

5

Scaling

Definition (scaling)

A scaling of a tuple A of matrices is another tuple obtained by

simultaneously changing basis on the left and right, i.e. Ai ← gAih.

Question:

Given a tuple A and positive semidefinite matrices P � 0, Q � 0,

Are there scalings of A with marginals arbitrarily close to P,Q?

If so, say A,P,Q is scalable.

May take P,Q diagonal w.l.o.g.

5

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

Some prior work

Producing ε-scalings on scalable instances.

• (HM13) P diagonal, Q = Im, Ai =

[
0 . . .

|
ui
|

. . . 0

]
Isotropic position; certify no hidden subspace (SV17) poly log(1/ε).

• (GGOW16) P = In,Q = In; A arbitrary.

Used for poly-time noncommutative rational identity testing.

(AGLOW17) poly log(1/ε).

• (GGOW16) P =
⊕

pi Ini , Q = In, Ai =

[
0 . . .

||
Bi
||

. . . 0

]
used to approximate Brascamp-Lieb constant from analysis.

6

This work: A arbitrary, P ,Q arbitrary.

Theorem (F18)

Exists a randomized algorithm to find ε-scalings of scalable A, P,Q

O(b ·m · n · κ(P)/ε2)

where b is the bit complexity of the input.

Later (BFGOWW18): poly(b, 1/ε) for one-body quantum marginals

7

This work: A arbitrary, P ,Q arbitrary.

Theorem (F18)

Exists a randomized algorithm to find ε-scalings of scalable A, P,Q

O(b ·m · n · κ(P)/ε2)

where b is the bit complexity of the input.

Later (BFGOWW18): poly(b, 1/ε) for one-body quantum marginals

7

The algorithms

Old scaling algorithm

The following algorithm works in all the previously solved cases:

Algorithm (Näıve scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q.

• Check if done. Else, left-scale A← gA so that
∑r

i=1 AiPA
†
i = I .

• Check if done. Else, right-scale A← Ah so that
∑r

i=1 A
†
i QAi = I .

One problem - many choices for how to scale; each matters!

In previous success stories, scalings commuted with P,Q, so choice

didn’t affect later steps. Suggests careful choice necessary.

8

Old scaling algorithm

The following algorithm works in all the previously solved cases:

Algorithm (Näıve scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q.

• Check if done. Else, left-scale A← gA so that
∑r

i=1 AiPA
†
i = I .

• Check if done. Else, right-scale A← Ah so that
∑r

i=1 A
†
i QAi = I .

One problem - many choices for how to scale; each matters!

In previous success stories, scalings commuted with P,Q, so choice

didn’t affect later steps. Suggests careful choice necessary.

8

Old scaling algorithm

The following algorithm works in all the previously solved cases:

Algorithm (Näıve scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q.

• Check if done. Else, left-scale A← gA so that
∑r

i=1 AiPA
†
i = I .

• Check if done. Else, right-scale A← Ah so that
∑r

i=1 A
†
i QAi = I .

One problem - many choices for how to scale; each matters!

In previous success stories, scalings commuted with P,Q, so choice

didn’t affect later steps. Suggests careful choice necessary.

8

Old scaling algorithm

The following algorithm works in all the previously solved cases:

Algorithm (Näıve scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q.

• Check if done. Else, left-scale A← gA so that
∑r

i=1 AiPA
†
i = I .

• Check if done. Else, right-scale A← Ah so that
∑r

i=1 A
†
i QAi = I .

One problem - many choices for how to scale; each matters!

In previous success stories, scalings commuted with P,Q, so choice

didn’t affect later steps. Suggests careful choice necessary.

8

Old scaling algorithm

The following algorithm works in all the previously solved cases:

Algorithm (Näıve scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q.

• Check if done. Else, left-scale A← gA so that
∑r

i=1 AiPA
†
i = I .

• Check if done. Else, right-scale A← Ah so that
∑r

i=1 A
†
i QAi = I .

One problem - many choices for how to scale; each matters!

In previous success stories, scalings commuted with P,Q, so choice

didn’t affect later steps. Suggests careful choice necessary.

8

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

New scaling algorithm

A good choice: random initial and all the rest upper triangular.

Algorithm (Random + Triangular)

Input: A,P,Q, ε.

Output: ε-scaling of A to marginals P,Q or ERROR.

• Scale A on left and right by random matrices with entries in [6 · 22b].

• Repeat, t times returning ERROR if not possible:

• If done, return A. Else, left-scale A← g†A with g upper triangular.

• If done, return A. Else, right-scale A← Ah with h upper triangular.

• return ERROR

Theorem

Provided t = Ω(b ·m · n · κ(P)/ε2), Random+Triangular outputs

ERROR with probability at most 1/3 if A,P,Q is scalable.

9

The proofs

Proof idea: reduction

Imagine we had a map A 7→ Ã so that

scaling steps on A
↔ näıve scaling steps on Ã, which converge! (Gu04)

A has left marginal P ⇐⇒ Ã has left marginal I

A has right marginal Q ⇐⇒ Ã has right marginal I .

and

A Ã

B B̃

scaling

reduction

lifted

scaling

reduction
10

Proof idea: reduction

Imagine we had a map A 7→ Ã so that

scaling steps on A
↔ näıve scaling steps on Ã, which converge! (Gu04)

A has left marginal P ⇐⇒ Ã has left marginal I

A has right marginal Q ⇐⇒ Ã has right marginal I .

and

A Ã

B B̃

scaling

reduction

lifted

scaling

reduction
10

Proof idea: reduction

Imagine we had a map A 7→ Ã so that

scaling steps on A
↔ näıve scaling steps on Ã, which converge! (Gu04)

A has left marginal P ⇐⇒ Ã has left marginal I

A has right marginal Q ⇐⇒ Ã has right marginal I .

and

A Ã

B B̃

scaling

reduction

lifted

scaling

reduction
10

Proof idea: reduction

Imagine we had a map A 7→ Ã so that

scaling steps on A
↔ näıve scaling steps on Ã, which converge! (Gu04)

A has left marginal P ⇐⇒ Ã has left marginal I

A has right marginal Q ⇐⇒ Ã has right marginal I .

and

A Ã

B B̃

scaling

reduction

lifted

scaling

reduction
10

Reduction example

Reduction for

P =

 2 0 0

0 2 0

0 0 1

 and Q =

[
4 0

0 1

]
.

[
a b c

d e f

]
Ai

7→


a b c 0 0

d e f 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Ãi1

,


0 0 0 a b

0 0 0 d e

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Ãi2

. . .

11

Reduction example

Reduction for

P =

 2 0 0

0 2 0

0 0 1

 and Q =

[
4 0

0 1

]
.

[
a b c

d e f

]
Ai

7→


a b c 0 0

d e f 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Ãi1

,


0 0 0 a b

0 0 0 d e

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


Ãi2

. . .

11

Upper triangular scalings “lift”

Scaling A on right by  a b c

0 d e

0 0 f


scales Ã on right by 

a b c 0 0

0 d e 0 0

0 0 f 0 0

0 0 0 a b

0 0 0 0 d



12

Upper triangular scalings “lift”

Scaling A on right by  a b c

0 d e

0 0 f


scales Ã on right by 

a b c 0 0

0 d e 0 0

0 0 f 0 0

0 0 0 a b

0 0 0 0 d



12

Upper triangular scaling

Whenever A,P,Q scalable by upper triangulars, the following terminates:

Algorithm (Triangular scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to P,Q by upper triangulars.

• Check if done. Else, scale A from the left by upper triangular.

• Check if done. Else, scale A from the right by upper triangular.

13

Upper triangular scaling

Whenever A,P,Q scalable by upper triangulars, the following terminates:

Algorithm (Triangular scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to P,Q by upper triangulars.

• Check if done. Else, scale A from the left by upper triangular.

• Check if done. Else, scale A from the right by upper triangular.

13

Upper triangular scaling

Whenever A,P,Q scalable by upper triangulars, the following terminates:

Algorithm (Triangular scaling)

Input: A,P,Q, ε.

Output: ε-scaling of A to P,Q by upper triangulars.

• Check if done. Else, scale A from the left by upper triangular.

• Check if done. Else, scale A from the right by upper triangular.

13

Running time analysis

Analysis almost identical to (GGOW16, Gu04); progress measure is

cap Ã = inf
X�0

det
∑

ÃiXÃ†i
detX

1. After the first step, cap Ã ≥ C exp(−10bm) where b is total

bit-complexity of A (GGOW16 + DM17 + log-convexity of cap(Ã)).

2. If A not ε-scaling,

cap g̃A ≥ e
pn
Tr P

ε2 cap Ã

by AM-GM. Similar for right scaling.

3. Entire time after first step, cap Ã ≤ C .

Running time O

(
bmTrP

ε2pn

)
= O(b ·m · n · κ(P)/ε2) .

14

Running time analysis

Analysis almost identical to (GGOW16, Gu04); progress measure is

cap Ã = inf
X�0

det
∑

ÃiXÃ†i
detX

1. After the first step, cap Ã ≥ C exp(−10bm) where b is total

bit-complexity of A (GGOW16 + DM17 + log-convexity of cap(Ã)).

2. If A not ε-scaling,

cap g̃A ≥ e
pn
Tr P

ε2 cap Ã

by AM-GM. Similar for right scaling.

3. Entire time after first step, cap Ã ≤ C .

Running time O

(
bmTrP

ε2pn

)
= O(b ·m · n · κ(P)/ε2) .

14

Running time analysis

Analysis almost identical to (GGOW16, Gu04); progress measure is

cap Ã = inf
X�0

det
∑

ÃiXÃ†i
detX

1. After the first step, cap Ã ≥ C exp(−10bm) where b is total

bit-complexity of A (GGOW16 + DM17 + log-convexity of cap(Ã)).

2. If A not ε-scaling,

cap g̃A ≥ e
pn
Tr P

ε2 cap Ã

by AM-GM. Similar for right scaling.

3. Entire time after first step, cap Ã ≤ C .

Running time O

(
bmTrP

ε2pn

)
= O(b ·m · n · κ(P)/ε2) .

14

Running time analysis

Analysis almost identical to (GGOW16, Gu04); progress measure is

cap Ã = inf
X�0

det
∑

ÃiXÃ†i
detX

1. After the first step, cap Ã ≥ C exp(−10bm) where b is total

bit-complexity of A (GGOW16 + DM17 + log-convexity of cap(Ã)).

2. If A not ε-scaling,

cap g̃A ≥ e
pn
Tr P

ε2 cap Ã

by AM-GM. Similar for right scaling.

3. Entire time after first step, cap Ã ≤ C .

Running time O

(
bmTrP

ε2pn

)
= O(b ·m · n · κ(P)/ε2) .

14

Running time analysis

Analysis almost identical to (GGOW16, Gu04); progress measure is

cap Ã = inf
X�0

det
∑

ÃiXÃ†i
detX

1. After the first step, cap Ã ≥ C exp(−10bm) where b is total

bit-complexity of A (GGOW16 + DM17 + log-convexity of cap(Ã)).

2. If A not ε-scaling,

cap g̃A ≥ e
pn
Tr P

ε2 cap Ã

by AM-GM. Similar for right scaling.

3. Entire time after first step, cap Ã ≤ C .

Running time O

(
bmTrP

ε2pn

)
= O(b ·m · n · κ(P)/ε2) .

14

What about general scalings?

So far:

If the random initial scaling gAh is scalable to P,Q by upper

triangulars, the triangular scaling part of Random + Triangular

succeeds.

15

General scalings

It remains to show that the random part succeeds:

If A,P,Q scalable by anything, then gAh,P,Q is scalable by upper

triangulars with probability at least 2/3 over choice of g , h.

“Proof:”

Lemma

(g , h) such that gAh is NOT scalable to P,Q by upper triangulars

forms an algebraic variety V of degree at most 2 · 22b.

If A, P,Q scalable, then V must not be everything (the scaling matrices

must not lie in V !).

By the Schwartz-Zippel lemma, random (g , h) with entries in 6 · 22b miss

V with probability at least 2/3.

16

General scalings

It remains to show that the random part succeeds:

If A,P,Q scalable by anything, then gAh,P,Q is scalable by upper

triangulars with probability at least 2/3 over choice of g , h.

“Proof:”

Lemma

(g , h) such that gAh is NOT scalable to P,Q by upper triangulars

forms an algebraic variety V of degree at most 2 · 22b.

If A, P,Q scalable, then V must not be everything (the scaling matrices

must not lie in V !).

By the Schwartz-Zippel lemma, random (g , h) with entries in 6 · 22b miss

V with probability at least 2/3.

16

General scalings

It remains to show that the random part succeeds:

If A,P,Q scalable by anything, then gAh,P,Q is scalable by upper

triangulars with probability at least 2/3 over choice of g , h.

“Proof:”

Lemma

(g , h) such that gAh is NOT scalable to P,Q by upper triangulars

forms an algebraic variety V of degree at most 2 · 22b.

If A, P,Q scalable, then V must not be everything (the scaling matrices

must not lie in V !).

By the Schwartz-Zippel lemma, random (g , h) with entries in 6 · 22b miss

V with probability at least 2/3.

16

General scalings

It remains to show that the random part succeeds:

If A,P,Q scalable by anything, then gAh,P,Q is scalable by upper

triangulars with probability at least 2/3 over choice of g , h.

“Proof:”

Lemma

(g , h) such that gAh is NOT scalable to P,Q by upper triangulars

forms an algebraic variety V of degree at most 2 · 22b.

If A, P,Q scalable, then V must not be everything (the scaling matrices

must not lie in V !).

By the Schwartz-Zippel lemma, random (g , h) with entries in 6 · 22b miss

V with probability at least 2/3.

16

General scalings

It remains to show that the random part succeeds:

If A,P,Q scalable by anything, then gAh,P,Q is scalable by upper

triangulars with probability at least 2/3 over choice of g , h.

“Proof:”

Lemma

(g , h) such that gAh is NOT scalable to P,Q by upper triangulars

forms an algebraic variety V of degree at most 2 · 22b.

If A, P,Q scalable, then V must not be everything (the scaling matrices

must not lie in V !).

By the Schwartz-Zippel lemma, random (g , h) with entries in 6 · 22b miss

V with probability at least 2/3.

16

Future work

1. No known poly. time decision algorithms for the operator scaling

question (even Brascamp-Lieb) - must scale exponentially close to

be sure!

2. Improve ε-dependence to log(1/ε) (a way to solve previous two

problems).

3. Long term goal: poly(log(1/ε)) for one-body quantum marginals -
nice consequences:

• new polynomial time null-cone membership algorithms,

• new membership algorithms for highly complicated polytopes

4. Derandomize.

17

Future work

1. No known poly. time decision algorithms for the operator scaling

question (even Brascamp-Lieb) - must scale exponentially close to

be sure!

2. Improve ε-dependence to log(1/ε) (a way to solve previous two

problems).

3. Long term goal: poly(log(1/ε)) for one-body quantum marginals -
nice consequences:

• new polynomial time null-cone membership algorithms,

• new membership algorithms for highly complicated polytopes

4. Derandomize.

17

Future work

1. No known poly. time decision algorithms for the operator scaling

question (even Brascamp-Lieb) - must scale exponentially close to

be sure!

2. Improve ε-dependence to log(1/ε) (a way to solve previous two

problems).

3. Long term goal: poly(log(1/ε)) for one-body quantum marginals -
nice consequences:

• new polynomial time null-cone membership algorithms,

• new membership algorithms for highly complicated polytopes

4. Derandomize.

17

Future work

1. No known poly. time decision algorithms for the operator scaling

question (even Brascamp-Lieb) - must scale exponentially close to

be sure!

2. Improve ε-dependence to log(1/ε) (a way to solve previous two

problems).

3. Long term goal: poly(log(1/ε)) for one-body quantum marginals -
nice consequences:

• new polynomial time null-cone membership algorithms,

• new membership algorithms for highly complicated polytopes

4. Derandomize.

17

	Operator scaling
	The algorithms
	The proofs

