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1. Matrix scaling: Given nonnegative matrix A, can D;AD; have
uniform row and column sums?

2. Isotropic position: Given distribution on vectors, can one change
basis 4+ normalize and end up in isotropic position (E[uu'] = 1)?

3. Schur-Horn theorem: what can arise as the diagonal of a matrix
with given eigenvalues?

4. Horn's problem: given lists of numbers a, b, c, are there PSD
matrices A+ B + C = [ with lists of eigenvalues a, b, c, resp?

5. Operator scaling
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Teaser algorithm: Horn’s problem.

Decision algorithm relies on difficult theorems
Simple O(bm/e?) time search algorithm!
Algorithm (F18)
€ > 0, and three nonnegative diagonal matrices D1, D>, Ds.
Orthogonal matrices O1, O», O3 with

101010} + 020,05 + 030305 — I,|| < &

e Pick entries of O; from [22P], b input size.

e Set O; + O;h; orthogonal by right multiplication with
trangulars h;.

e Check if done. Else, enforce OlDloiL + OZDQO; 4= 03D3OT = I
by simultaneous /eft multiplication of O; + gO; with a lower
triangular g. Go to 2. 3
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General framework: Operator scaling

Definition
An “operator” Ais a tuple Az,..., A, of m X n matrices, and

zr:A,-A,., Zr:A, A
i=1 i=1

are the and right marginals (resp.) of A.

These are marginals of the two-body, mixed quantum state

D 1A (Al
i=1
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Some prior work

Producing e-scalings on scalable instances.

|
e (HM13) P diagonal, Q = I,, Ai = [ 0o ... LII,' ... 0
Isotropic position; certify no hidden subspace (SV17) poly log(1/¢).

e (GGOW16) P = I,,Q = I,; A arbitrary.
Used for poly-time noncommutative rational identity testing.
(AGLOW17) poly log(1/¢).

I
o (GGOW16) P =@ piln, Q =1, Ai=|0 ... ﬁi o]

used to approximate Brascamp-Lieb constant from analysis.



This work: A arbitrary, P, Q arbitrary.

Theorem (F18)
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This work: A arbitrary, P, Q arbitrary.

Theorem (F18)

Exists a randomized algorithm to find e-scalings of scalable A, P, Q
O(b-m-n-k(P)/e?)
where b is the bit complexity of the input.

Later (BFGOWW18): poly(b,1/¢) for one-body quantum marginals
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Old scaling algorithm

The following algorithm works in all the previously solved cases:

Algorithm (Naive scaling)
Input: A,P, Q,e.
Output: e-scaling of A to marginals P, Q.

e Check if done. Else, left-scale A < gA so that Y ©_; A,-PA;r = /.
e Check if done. Else, right-scale A <— Ah so that > ;_; A}L QA; = 1.

One problem - many choices for how to scale; each matters!
In previous success stories, scalings commuted with P, @, so choice
didn't affect later steps. Suggests careful choice necessary.
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New scaling algorithm

A good choice: and all the rest

Algorithm (Random + Triangular)
AP Q,c.
g-scaling of A to marginals P, Q or ERROR.

e Scale A on left and right by random matrices with entries in [6-225].
e Repeat, ¢ times returning ERROR if not possible:
e If done, return A. Else, left-scale A <— g A with g upper triangular.
e If done, return A. Else, right-scale A <— Ah with h upper triangular.

e return ERROR
Theorem

Provided t = Q(b-m - n- r(P)/e?), Random+Triangular outputs
ERROR with probability at most 1/3 if A, P, Q is scalable.
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Reduction example

Reduction for
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Upper triangular scaling

Whenever A, P, Q scalable by upper triangulars, the following terminates:

Algorithm (Triangular scaling)
AP Q,c.
e-scaling of A to P, Q by upper triangulars.

e Check if done. Else, scale A from the by upper triangular.
e Check if done. Else, scale A from the right by upper triangular.

13
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Running time analysis

Analysis almost identical to (GGOW16, Gu04); progress measure is

~ i Cletz:AN;)CZ\d-f
A= inf =200
AP 0T detX

1. After the first step, cap A > C exp(—10bm) where b is total
bit-complexity of A (GGOW16 + DM17 + log-convexity of cap(A)).
2. If A not e-scaling,
capgNA > eTre’ cap A
by AM-GM. Similar for right scaling.
3. Entire time after first step, cap A < C.

Running time O (b,;Tr P) =O0(b-m-n-k(P)/e?) .

n

14



What about general scalings?

So far:

If the random initial scaling gAh is scalable to P, @ by upper
triangulars, the triangular scaling part of Random + Triangular
succeeds.

ii5)
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General scalings

It remains to show that the random part succeeds:
If A, P, @ scalable by anything, then gAh, P, @ is scalable by upper
triangulars with probability at least 2/3 over choice of g, h.

“Proof:”

Lemma

(g, h) such that gAh is NOT scalable to P, Q by upper triangulars
forms an algebraic variety V' of degree at most 2 - 2°°.

If A, P, Q scalable, then V must not be everything (the scaling matrices
must not lie in V).

By the Schwartz-Zippel lemma, random (g, h) with entries in 6 - 22 miss
V with probability at least 2/3.
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1. No known poly. time decision algorithms for the operator scaling
question (even Brascamp-Lieb) - must scale exponentially close to

be surel!
2. Improve e-dependence to log(1/e) (a way to solve previous two
problems).

3. Long term goal: poly(log(1/¢)) for one-body quantum marginals -
nice consequences:

e new polynomial time null-cone membership algorithms,
e new membership algorithms for highly complicated polytopes

4. Derandomize.
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