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1 Generating functions and recurrences

This follows the second half of Section 7.4 in Brualdi. Generating functions are especially
suited to help us solve recurrences. Suppose

Example 1. Let’s solve the recurrence

hn = 5hn−1 − 6hn−2

for n ≥ 2 with h0 = 1 and h1 = −2. Consider the generating function

h(x) =
∑
n≥0

hnx
n.

This just carries the information about the sequence hn as coefficients of a power series.
The main thing to notice is that multiplying h by x shifts the generating function as follows:

h(x) = h0 + h1x + h2x
2 + . . . hnx

n

xh(x) = h0x + h1x
2 + . . . hn−1x

n

x2h(x) = h0x
2 + . . . hn−2x

n.
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Using this and the recurrence helps us get a nice equation for the generating function. Our
recurrence relation can also be written

hn − 5hn−1 + 6hn−2 = 0.

If we multiply the second line of the above equation by −5, the third by 6, and add them
together, we get

h(x) h0 + h1x + h2x
2 + . . . hnx

n

−5xh(x) = + (−5)h0x + (−5)h1x
2 + . . . (−5)hn−1x

n

+6x2h(x) + 6h0x
2 + . . . 6hn−2x

n.
= h0 + (h1 − 5h0)x + 0 + . . . 0.

Thus,
(1− 5x + 6x2)h(x) = 1− 7x,

or

h(x) =
(1− 7x)

1− 5x + 6x2
.

This is all well and good, but unless it helps us find the coefficients, it is ultimately useless.
To deal with this, we need to express it in a way that allows us to use generating functions
whose coefficients we already know to find the coefficients of h(x). This is the partial
fraction decomposition. First, write 1 − 5x + 6x2 = (1 − 2x)(1 − 3x). Then, using the
partial fraction decomposition, we can write

h(x) =
(1− 7x)

1− 5x + 6x2
=

(1− 7x)

(1− 2x)(1− 3x)
=

c1
1− 2x

+
c2

1− 3x

for some constants c1 and c2. To solve for these, we clear the denominator, and find

(1− 3x)c1 + (1− 2x)c2 = 1− 7x,

which implies

c1 + c2 = 1

−3c1 − 2c2 = −7.

or (adding thrice the first row to the second)

c1 + c2 = 1

c2 = −4,

or c2 = −4, c1 = 5. Now, we know

f(x) =
5

1− 2x
− 4

1− 3x
.
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Now we can use Newton’s binomial theorem with n = −1 (really, this is just the famililar
Taylor series for 1/(1− x)) to obtain

f(x) =
∑
n≥0

(5 · 2n − 4 · 3n)xn.

Thus, hn = 5 · 2n − 4 · 3n for all n ≥ 0.

Here’s the idea - because of the shifting idea above, if we start with a recurrence relation
fn = a1fn−1 + · · ·+ akfn−k, the generating function f(x) satisfies

(1− a1x− a2x
2 − · · · − akx

k)f(x) = b0 + b1x + · · ·+ bk−1x
k−1.

b0, b1, . . . , bk−1 can easily be found from the first few terms of fn. This means

f(x) =
b0 + b1x + · · ·+ bk−1x

k−1

1− a1x− a2x2 − · · · − akxk
,

where we know the b′is and the a′is come from the recurrence. Next, we factor the denom-
inator as

1− a1x− a2x
2 − · · · − akx

k = (1− r1x)n1(r2 − x)n2 . . . (rt − x)nt .

Note that this is a bit different than the usual factoring - here the roots will be x = 1
ri

.
Using the partial fraction decomposition, express

f(x) =
b0 + b1x + · · ·+ bk−1x

k−1

1− a1x− a2x2 − · · · − akxk

=
c(1)1

(1− r1x)
+ · · ·+ c(1)n1

(1− r1x)n1

+ . . .

+
c(l)1

(1− rtx)
+ · · ·+ c(l)nt

(1− rtx)nt
.

Next, use your favorite method to solve for the constants c(i)j (you can clear the denom-
inators or just plug in different values for x, each of which will give you a k × k linear
system to solve). Finally, each thing of the form

1

(1− rx)n

can be rewritten using newton’s binomial theorem to become∑
k≥0

(
n + k − 1

k

)
rkxk.

From this, we can extract the coefficients. Let’s see another example.
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1.1 Repeated roots.

This works even if we have repeated roots.

Example 2. Suppose hn satisfies the recurrence hn = −hn−1 + 16hn−2−20hn−3 for n ≥ 3
and h0 = 0, h1 = 1, h2 = −1.

We can use our shifting trick again to solve this recurrence. This time

hn + hn−1 − 16hn−2 + 20hn−3 = 0,

so

h(x) h0 + h1x + h2x
2 + h3x

3 . . .
+xh(x) = + h0x + h1x

2 + h2x
3 . . .

−16x2h(x) + (−16)h0x
2 + (−16)h1x

3 . . .
+20x3h(x) + 20h0x

3 . . .
= h0 + (h1 + h0)x + (h2 + h1 − 16h0) + 0 . . . .
= 0 + 1x + 0 + 0

Hence, (1 + x− 16x2 + 20x3)h(x) = x, or

h(x) =
x

1 + x− 16x2 + 20x3
.

We need to factor 1 + x − 16x2 + 20x3. Though there exist formulae for roots of a cubic,
they are messy. Fortunately we can get lucky in this case by guessing roots; recall that if
p/q is a rational root of this polynomial in reduced form then p divides 1 and q divides
20. Trying ±1,±1/2,±1/4,±1/5,±1/10,±1/20, we find that 1/2 is a root. This means
(2x− 1) divides the above polynomial. Dividing (2x− 1) into 1 + x− 16x2 + 20x3, we find

(2x− 1)(10x2 + 3x− 1) = 1 + x− 16x2 + 20x3,

and so 1 + x− 16x2 + 20x3 = (2x− 1)2(5x + 1). This tells us our generating function can
be written

h(x) =
x

(1− 2x)2(5x + 1)
,

and by decomposing into partial fractions,

h(x) =
x

(1− 2x)2(5x + 1)
=

c1
1− 2x

+
c2

(1− 2x)2
+

c3
1 + 5x

.

Clearing the denominators, we get

x = c1(1− 2x)(1 + 5x) + c2(1 + 5x) + c3(1− 2x)2
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or

c1 + c2 + c3 = 0

3c1 + 5c2 − 4c3 = 1

−10c1 + 0 + 4c3,

or  1 1 1
3 5 −4
−10 0 4

 c1
c2
c3

 =

 0
1
0

 .

Subtracting thrice the first row from the second and adding ten times the first row to the
third, this we have  1 1 1

0 2 −7
0 10 14

 c1
c2
c3

 =

 0
1
0

 .

Next, subtract 5 times the second row from the third. 1 1 1
0 2 −7
0 0 49

 c1
c2
c3

 =

 0
1
−5

 .

This gives us c3 = −5/49, and substituting c3 back in to the next lines, we find 2c2+35/49 =
1, or c2 = 7

49 = 1
7 , and finally c1 = −c2 − c3 = −2/49. Our generating function is

h(x) = − 2

49

1

1− 2x
+

1

7

1

(1− 2x)2
− 5

49

1

1 + 5x
;

Newton’s binomial theorem allows us to rewrite this

h(x) = − 2

49

1

1− 2x
+

1

7

1

(1− 2x)2
− 5

49

1

1− (5x)

− 2

49

∑
k≥0

2kxk +
1

7

∑
k≥0

(
k + 2− 1

k

)
2kxk − 5

49

∑
k≥0

(−5)kxk.

Hence,

hn = − 2

49
2n +

1

7
(n + 1)2n − 5

49
(−5)nxn.

1.2 Characteristic roots for repeated roots

If you find that your characteristic equation has some root repeated, you will not have
enough solutions to solve for the initial values. However, in that case we also get some
other solutions.
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Theorem 1.1. If q 6= 0 is a repeated root of the polynomial p(x) = xk−a1x
k−1−a2x

k−2−
· · ·−ak, then nqk is also a solution of the recurrence fn−a1fn−1+a2fn−2+· · ·+akfn−k = 0.

Proof. If q is a repeated root of p(x), then it is also a root of the derivative p′(x) (check
this by factoring p(x)). However, the recurrence relation with qn plugged in is

nqn − a1(n− 1)qn−1 − a2(n− 2)qn−2 − · · · − ak(n− k)qn−k

= qn−k(nqk − a1(n− 1)qk−1 − a2(n− 2)qk−2 − · · · − (n− k)ak),

which is zero whenever

nqk − a1(n− 1)qk−1 − a2(n− 2)qk−2 − · · · − (n− k)ak

is zero. We can rewrite this as

(n− k + k)qk − a1(n− k + k − 1)qk−1 − a2(n− k + k − 2)qk−2 − · · · − (n− k + k − k)ak

= (n− k)p(q) +
(
kqk − a1(k − 1)qk−1 − a2(n− k + k − 2)qk−2 − · · · − 0 · ak

)
= (n− k)p(q) + qp′(q) = 0,

so nqn satisfies the recurrence relation.

2 Nonhomogeneous Recurrences

Sometimes our equations may not be homogeneous, such as

Example 3.

hn = 3hn−1 − 4n

h0 = 2.

The homogeneous part of this recurrence relation is hn = 3hn−1, and the inhomogeneous
part is −4n.

2.1 Guessing a particular solution

One way to solve this type of problem is by guessing a solution to the recurrence relation,
including the inhomogeneous part, but ignoring the initial values. This is called the par-
ticular solution. Then we find enough solutions of the homogeneous version (the equation
but with the inhomogeneous part dropped out) ignoring the initial conditions. All linear
combinations of these solutions of the homogeneous part are called the general solution.
Next we find which instance of the general solution to add to the particular solution to
recover the initial values.
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Remark 2.1. How do we know when we have enough solutions that all their linear com-
binations form the general solution? What we need is that the solutions are linearly
independent. In the case of order one generating functions, the solution just needs to be
nonzero, and for order two generating functions, they just cannot be multiples of one an-
other. If the solutions are not linearly independent, you may not be able to recover the
initial values.

Suppose pn satisfies pn = 3pn−1 − 4n, and gn satisfies gn = 3gn−1 (the homogeneous
part). Here pn is a particular solution, and c1gn is the general solution. (the phrase general
solution means an expression representing all possible solutions of the homogeneous part
of the equation). Then

pn + c1gn = 3pn−1 − 4n + 3c1gn−1 = 3(pn−1 + c1gn−1)− 4n,

so pn + c1gn is also a solution. The key insight here is that adding solutions of the homo-
geneous part to the particular solution gives new solutions to the recurrence.

If we guess our particular solution pn to be a polynomial of degree 1 in n, such as an+b,
then at least 3pn−1 − 4n will be another polynomial of degree 1 in n. This is encouraging,
so let’s continue. To solve for a and b, we plug an + b into the recurrence relation. This
gives us

an + b = 3(a(n− 1) + b)− 4n,

or (−2a+ 4)n+ (−2b+ 3a) = 0, which holds for all n if and only if a = 2 and b = 3. Thus,
our particular solution is

pn = 2n + 3.

Next, a solution to the homogeneous part is

gn = 3n,

which we can find by our favorite method of solving homogeneous, linear recurrences with
constant coefficients. Thus, the general solution is

c13
n.

For the solution hn = pn + c1gn = c13
n + 2n+ 3 to satisfy the initial conditions h0 = 2,

3 + c1 = 2, so c1 = (−1). Finally, our solution is

hn = −3n + 2n + 3.

Remark 2.2 (Guidelines for guessing a particular solution). In general, one should guess
functions that look like the inhomogeneous part. If your equation looks like

fn = a1fn−1 + · · ·+ akfn−k + bn,
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then bn is called the inhomogeneous part of the recurrence relation, and

fn = a1fn−1 + · · ·+ akfn−k

is called the homogeneous part. If

• bn is a polynomial of degree k (for example, 3n2−2n+1 is a polynomial of degree 2),
try to guess a polynomial of degree k for f . (for the example here, we would guess
an2 + bn + c).

• bn is an exponential dn, try to guess an exponential c · dn. (for example, if bn were
4n, we would guess c · 4n.

2.2 Generating functions

We can also try to solve these types of problems with generating functions, which sometimes
prevents us from having to guess particular solutions. This helps a great deal if you know
a closed form for the generating function of the inhomogeneous part.

Example 4. Let’s solve hn = 2hn−1 + 3n for n ≥ 1, and h0 = 2.
Again, we try to find an equation for the generating function h(x) =

∑
n≥0 hnx

n. This
time, hn − 2hn− 1− 3n = 0 for n ≥ 1, so

h(x) h0 + h1x + h2x
2 + . . .

−2xh(x) = + (−2)h0x + (−2)h1x
2 + . . .

−
∑

n≥0 3nxn −1 + −3x + −3x2 + . . .

= h0 − 1 + 0 + 0 + . . . .

This gives us (1− 2x)h(x)−
∑

n≥0 3nxn = 1; however, we can rewrite∑
n≥0

3nxn =
1

1− 3x
,

so that

h(x) =
1

1− 2x
+

1

(1− 3x)(1− 2x)
.

With partial fractions, we can rewrite this as

h(x) =
1

1− 2x
− 2

1− 2x
+

3

1− 3x
=

3

1− 3x
− 1

1− 2x
,

or

h(x) =
n∑

i=1

(3 · 3n − 2n) ,

so hn = 3 · 3n − 2n.
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3 Catalan Numbers

Generating functions can also help with non-linear recurrences. This is the case for the
solution to the following problem:

Question 1. How many ways Cn are there to triangulate a convex (n + 2)-gon?

A triangulation is a division of the (n + 2)-gon into triangles by nonintersecting lines
between vertices.
We consider the 2-gon to be a sensible thing that can be triangulated in exactly one way,
so C0 = 1.

Theorem 3.1. Cn satisfies the recurrence

Cn+1 =
n∑

i=0

CiCn−i

for n ≥ 0.

Proof. Order the vertices of the n + 3-gon counterclockwise from 0 to n + 2, and pick the
triangle containing the two adjacent vertices n + 1 and n + 2. There are n + 1 different
choices for the other vertex of this triangle, namely the other vertices 0 . . . n). Each is
a different triangulation (lines do not intersect), so these cases are disjoint. Suppose we
picked vertex i. The polygons created by the vertices n+ 2, 0, 1, . . . , i and i, i+ 1, . . . , n+ 1
are convex (i + 2) and n− i + 2-gons, respectively (possibly 2-gons). The number of ways
to triangulate each of these is, by definition, Ci and Cn−i, so

Cn+1 =

n∑
i=0

CiCn−i.

None of the usual techniques we know work on this recurrence, but it is amenable to
generating functions!

Let h(x) =
∑

n≥0Cn be the generating function for the sequence (Cn)n≥0. The sum

n∑
i=0

CiCn−i

should look familiar from our formula for multiplying generating functions. If f(x) =∑
i≥0 ai, and g(x) =

∑
j≥0 bj , then

f(x)g(x) =
∑
n≥0

(
n∑

i=0

aibn−i

)
xn.
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This means if we multiply h(x) by itself, we get

h(x)h(x) =
∑
n≥0

(
n∑

i=0

CiCn−i

)
xn =

∑
n≥0

Cn+1x
n =

1

x

∑
n≥1

Cnx
n

 .

Since C0 = 1,

1

x

∑
n≥1

Cnx
n

 =
h(x)− 1

x
,

so
h(x) = 1 + xh(x)2.

This says h(x) is a solution of the equation xh(x)2 − h(x) + 1, or h(x) = 1±
√
1−4x
2x .

By our definition, we should have h(0) = 1, but 1+
√
1−4x
2x tends to infinity as x → 0, let’s

try the other root 1+
√
1−4x
2x . Since this has a power series expansion, its coefficients must

satisfy the same recurrence as h(x), and it has first coefficient 1 in its power series, so the
coefficients must actually match x. We can apply Newton’s binomial theorem to obtain

h(x) =
1

2x
− 1

2x
(1− 4x)1/2 =

1

2x
− 1

2x

∑
k≥0

(
1/2

k

)
(−4)kxk = −1

2

∑
k≥1

(
1/2

k

)
(−4)kxk−1.

The reason for the last equality is that
(
1/2
0

)
is just 1, so the 1/2x terms cancel out. For

k ≥ 1, we can rewrite (
1/2

k

)
=

(1/2)(1/2− 1) . . . (1/2− k + 1)

k!

=
(−1)k−1

2k
(1)(1)(3) . . . (2k − 3)

k!

=
(−1)k−1

2k
(2k − 2)!

(2k − 2)(2k − 4) . . . 4 · 2 · k!

=
(−1)k−1

22k−1
(2k − 2)!

(k − 1)!k!

=
(−1)k−1

k · 22k−1

(
2k − 2

k − 1

)
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For us, everything miraculously cancels:

h(x) = −1

2

∑
k≥1

(
1/2

k

)
(−4)kxk−1

= −1

2

∑
k≥1

(−1)k−1

k · 22k−1

(
2k − 2

k − 1

)
(−4)kxk−1

=
∑
k≥1

(−1)k

k · 22k

(
2k − 2

k − 1

)
(−4)kxk−1

=
∑
k≥1

1

k

(
2k − 2

k − 1

)
xk−1,

=
∑
k≥0

1

k + 1

(
2k

k

)
xk,

So

Cn =
1

n + 1

(
2n

n

)
.

These are called the Catalan numbers, and they count lots of other quantities in combina-
torics.
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