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1 The Boolean Lattice

1.1 Sperner’s Theorem

Question 1. Suppose the UN had 10 official languages (which would be true if the four
proposed new languages became official). Say two interpreters are redundant if one can
speak all the languages the other speaks. How many interpreters can the UN have if no
two interpreters are redundant?

We can state this language in terms of families of sets. Let A; be the set of languages
spoken by interpreter i; where ¢ € [m] if there are m interpreters. Then a pair of redundant
interpreters is a pair 4; C A;. So the question becomes:

Question 2. What is the largest family of subsets of [10] such that no set in the family
is contained within another? Equivalently, what is the size of the largest antichain in the
Boolean lattice?
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One idea is just to let each interpreter speak some 5-subset of the languages. These

certainly don’t overlap, and this way we can have (150) = 252 interpreters. Is this the

largest number? It turns out to be so. The “middle level” of B, is the largest antichain.

Theorem 1.1 (Sperner’s Lemma). If F is a family of subsets of [n] such that there are
no distinct subsets A, B € F satisfying A C B, then

712 (2

In other words, the largest antichain of By, is of size

(1)

formed by all subsets of [n] of size |n/2].

Though the statement has nothing to do with probability, there is a beautiful proba-
bilistic proof.

Proof. Suppose F is an antichain in B,,. It is convenient to break F up by cardinality. If
i €{0,...n}, define
Fi={F € F:|F| =i}.

Choose a random permutation o of [n].

Next, we cook up a random variable X. Pick a random permutation ¢, and use it to
define a chain

C=0cC{o1} C{o1,02} C--- C{o1,...,0n-1} C{o1,...,0n-1}.
C is the chain of numbers contained in prefixes of 0. Now let
X=ICnF|l=Wi:o1,...,0i} € F|.

In other words, it is the number of “prefixes” of the permutation whose entries form a
member of F. F is an antichain and C is a chain, so by Fact 77,

X <1 always.

In particular,
E[X] < 1.

On the other hand, X = ) ! ; X;, where X; is the random variable that is 1 if
{o1,...,0;} € F and 0 otherwise, so



Since {o1,...,0;} is just a random i-subset of [n],
| Fil

(5

E[X;] =

By linearity of expectation,

Since (1) < (%)),

which implies

Corollary 1.1. B, can be partitioned into (LZJ) chains.
2

2 Hypergraphs

Hypergraphs are really just families of sets, which we have already talked about a great
deal.

2.1 Definitions

Definition 2.1. A hypergraph H = (V, E) is a pair of sets V, called the vertez set, and F,
called the edge set. E is a family of subsets of V. Alternately, E is a subset of the power
set of V, so E C 2V. The elements of the edge set are called the edges of H. The degree
d(v) of a vertex v is the number of edges containing v. The size of H is |F|, the number
of edges, and the order of H is |V, the number of vertices.

Definition 2.2. A hypergraph H = (V, E) is said to be k-uniform if every edge in F has
the same cardinality k. H is said to be r-regular if every vertex has degree r.

Example 1. Consider the following hypergraph H, where the vertices are the white circles
and each colored line is an edge (including the curved one).



This is a 3-uniform hypergraph.

Definition 2.3. We can represent a hypergraph H as an m xn matrix M with 0-1 entries,
called the incidence matriz. If V' is numbered {1,...,n} and E is numbered {1,...,m},
then the incidence matrix is given by

Mo — { 1: edge 7 contains vertex j for i € [m], j € [n].

YY1 0:¢ otherwise.

That is, edges label the rows and vertices label the columns, and there is a 1 in the i** row
and j*" column of M if the i edge contains the j** vertex.

Example 2. If H = ([4], {{1,2,3},{2,3,4},{3,4,1},{4,1,2}}), then

vertices
1 110
M = edges 01 1 1
1 0 1 1
11 01

Example 3. Every graph G is a 2-uniform hypergraph. The notion of degree in G as a
hypergraph is exactly the same as the notion of degree in G as a graph.

Theorem 2.1. If H = (V, E) is a finite, k-uniform hypergraph, then

ZUEV d(v)

= |E]|.
L



Proof. There are multiple ways to prove this; one is by counting the sum of the entries
of the incidence matrix in two different ways by summing either each column first or by
summing each row first. O

Remark 2.1. Why not just call them set families? One uses the term hypergraph when
trying to answer graph-like questions such as connectivity or talk about degrees, and set
family when one wants to answer set theory type questions. We’ll abuse notation and talk
about hypergraphs even though we are answering set theory questions.

2.2 Extremal set theory: How large can a hypergraph be that does...

Theorem 2.2 (Sperner). A hypergraph on n wvertices with the property that no edge is
contained in another has at most (LTZ}?J) vertices.

Just as a sanity check, make sure you know the size of the largest hypergraph with n
vertices.

An intersecting hypergraph H = (V, E) is one such that if AN B # () for all A, B € E.
Suppose H = ([n], E) is an intersecting hypergraph. How large can the size of H be? One
thing we could try is letting E be all edges containing 1. Since there are 2"~! such edges,
we can find an hypergraph of size 2”1 on n vertices.

2n—1

Theorem 2.3. An intersecting hypergraph on n vertices has at most edges.

Proof. Suppose H = ([n], E) is an intersecting hypergraph. Split 2["!, the set of all subsets
of [n], into pairs {A, [n]\ A}. No subset appears in more than one pair. Since the union of
these pairs is 2" and they have no subsets in common, there must be 2"~! pairs. However,
A and [n] \ A are always disjoint, so each of the pairs can contain at most one element of
E. Thus, |E| <271 O

The following proof wasn’t covered in class. I may cover it Monday. If you like reading
ahead, here’s a rough draft.
Less than 2k case, at least 2k case. Lower bounds for each.

Theorem 2.4 (Erdés, Ko, Rado). If n > 2k, a k-uniform intersecting hypergraph on n

vertices has at most
n—1
k—1

This beautiful proof is due to Katona. First we need a little Lemma.

edges.



Lemma 2.1. Suppose H = (|[n], E) is an intersecting, k-uniform hypergraph, and define

As={s,...,s+k—1}

for 0 < s < n—1, where addition is understood to be (mod n) that is, these “windows”

wrap around. Then at most k of the sets As can be edges of H.

Proof of Lemma. Suppose A; € E. Then the rest of the Ay that intersect As can be split
up into k — 1 disjoint pairs; namely
Ai—k‘v AZ

forie {s+1,...,s4+ k—1}. Thus, at most one of each of these k — 1 disjoint pairs can
be an edge of H, and so at most k of the As are edges of H. ]

Proof of EKR. Arrange the elements of [n] on a circle at random, and let A be the set
starting at 1. Consider the random variable X that is the expected number of windows
that are edges of H. We know that the number is always at most k. E[X]| < k. On the
other hand, each window is a random k-subset of [n]. So, if we let X; be the indicator
random variable that the i window is an edge of H (that is, 1 if it is an edge of H, 0
otherwise), then

£
[Xi] [ ] B
Now .
k> E[X] = ZE[}Q] = n‘(g
and so
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