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Ramsey Theory shows up in Chapter 3.3 of Brualdi.
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1 Ramsey Theory

Ramsey Theory is a theory built upon the idea that often when one partitions objects
into several parts, at least one of the parts must contain some nice substructure. An easy
example of this is the pigeonhole principle, which dictates simply that if you partition a
set of objects, you will get a large part.
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1.1 More Pigeonhole Principle

Theorem 1.1 (“Strong” Pigeonhole Principle). If a set of size n is partitioned into m
parts, there is a part of size dn/me.

1.2 Ramsey numbers

Fact 1.2.1. If the edges of K6 are colored red and blue, then there is either a red copy of
K3 or a blue copy of K3.

Proof. Look at a vertex v. It has five incident edges in K6, so some 3 of them are the same
color. Assume, without loss of generality, that this color is blue. Thus, v is adjacent to at
least 3 vertices by blue edges. These 3 vertices have 3 edges among them. If any one of
these edges is blue, then its endpoints and v form a blue triangle. If all the edges are red,
then they form a red triangle. Hence, either way, K6 contains triangle of red or blue.

We can try to come up with theorems of the same form for red Km’s and blue K ′ns.

Definition 1.1. R(m,n) is the smallest number r such that every coloring of the edges of
Kr contains a red copy of Km or a blue copy of Kn.

Example 1. Since the following contains no red or blue K3, R(3, 3) > 5.

However, the fact above shows R(3, 3) ≤ 6, so in fact R(3, 3) = 6.
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1.3 Ramsey’s Theorem for Graphs

Theorem 1.2. For all m ≥ 1, n ≥ 1, R(m,n) actually exists, and

R(m,n) ≤
(
m+ n− 2

m− 1

)
.

Proof. We need to show there is a number r such that if the edges of Kr are colored with
red and blue, then Kr contains a red copy of Km or a blue copy of Kn. First we show

R(m,n) ≤ Rm−1,n +Rm,n−1.

Suppose s = Rm−1,n and t = Rm−1,n. Consider a coloring of the edges of Ks+t with red
and blue. Any vertex v has either at least s neighbors through red edges or at least t
neighbors through blue edges; otherwise there are at most 1 + (s− 1) + (t− 1) = s+ t− 1
vertices. Suppose v has s neighbors through red edges. Since s = R(m − 1, n), there is
either a red Km−1 among these neighbors, in which case we can add v to get a red Km,
or a blue Kn. The argument is similar if v instead has at least t neighbors through blue
edges. Either way, Ks+t has either a red Km or a blue Kn.

We can use the above fact to show

R(m,n) ≤
(
m+ n− 2

m− 1

)
.

Let the above proposition be denoted P (n,m). We prove it for all n ≥ 1,m ≥ 1 by double
induction:
First off, note if m ≤ 2 or n ≤ 2, the claim is very easy. In fact,

R(m, 2) = m =

(
m+ 2− 2

m− 1

)
and

R(2, n) = n =

(
n+ 2− 2

2− 1

)
.

Thus, P (m, 2) for all m ≥ 0, P2,n for all n ≥ 0 are our base cases. We assume n,m ≥ 3
to do the induction step. We use Pm−1,n and Pm,n−1 to prove Pm,n. The idea of double
induction is illustrated in Figure 2.
Thus, we assume Pm−1,n holds and Pm,n−1 holds, that is

R(m− 1, n) ≤
(
m+ n− 3

m− 2

)
and

R(m,n− 1) ≤
(
m+ n− 3

m− 1

)
.
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Figure 1: The idea of double induction. One could think of the axes as all the propositions
P (m, 2) and P (2, n), highlighted in blue to indicate they are true. Then, once you know
Pm−1,n and Pm,n−1 imply Pm,n, the truth of the propositions “spreads” up and to the right
via the blue arrows to fill out the whole quadrant.

We already showed
R(m,n) ≤ R (m− 1, n) +R (m,n− 1) .

However, by the induction hypothesis,

R (m− 1, n) +R (m,n− 1) ≤
(
m+ n− 3

m− 2

)
+

(
m+ n− 3

m− 1

)
=

(
m+ n− 2

m− 1

)
.

The last equality is Pascal’s Formula.

1.4 Best known bounds for diagonal Ramsey numbers

R(2, 2) = 2

R(3, 3) = 6

R(4, 4) = 5

R(5, 5) ∈ [43, 48]

R(6, 6) ∈ [102, 165]

Erdős asks us to imagine an alien force, vastly more powerful than us, landing
on Earth and demanding the value of R(5, 5) or they will destroy our planet.
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Figure 2: Obtaining a blue K4 from a blue K3 among the neighbors of v via blue edges.

In that case, he claims, we should marshal all our computers and all our math-
ematicians and attempt to find the value. But suppose, instead, that they ask
for R(6, 6). In that case, he believes, we should attempt to destroy the aliens.
- Joel Spencer

1.5 The Erdős-Szekeres Theorem

By Ramsey’s Theorem, for all numbers r and s, there is a number n(r, s) such that any
sequence of at least n(r, s) distinct real numbers has an increasing subsequence of length
r or a decreasing subsequence of length s.

To see this, we use the sequence (n1, . . . , nl) to color Kl. Suppose i < j. Color ij red
if ni < nj , and ij blue if ni > nj . A red Kr in this coloring is an increasing subsequence,
and a blue Kr is a decreasing subsequence. Ramsey’s theorem says for l large enough there
must be a monochromatic Kr or Ks in the coloring. Thus, n(r, s) ≤ R(r, s). This is a very
bad bound, however.

Example 2. Read left to right, a length 3 · 4 sequence with no increasing subsequence of
length 4 and no decreasing subsequence of length 5.
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We can actually get a much better bound than R(r, s) for n(r, s).

Theorem 1.3 (Erdős-Szekeres). A sequence of length (r−1)(s−1)+1 distinct real numbers
has an increasing subsequence of length r or an decreasing subsequence of length s.

Proof of Erdős-Szekeres. Let (n1, n2, . . . , n(r−1)(s−1)+1) be a sequence of distinct real num-
bers. Suppose, for contradiction, that all increasing subsequences of this sequence are of
length at most s− 1 and decreasing subsequences are of length at most r − 1.

We will set this up as an application of the Pigeonhole Principle where two pigeons in
a hole leads to a contradiction. Our pigeons will be the numbers {1, . . . , (r−1)(s−1)+1},
and our (r − 1)(s − 1) many holes will be pairs (a, b) of integers where 1 ≤ a ≤ r − 1
and 1 ≤ b ≤ s − 1. Assign the pigeon i to the hole (a, b) if a is the length of the longest
increasing subsequence ending at i and b is the length of the longest decreasing subsequence
beginning at i. By the Pigeonhole Principle, there are two numbers i and j assigned to the
same pair (a, b).

Case 1. (ni < nj): The increasing subsequence of length a ending at ni can be extended
to an increasing subsequence of length a+ 1 ending at j, a contradiction (the longest
increasing subsequence ending at j is a).

Case 2. (ni > nj): Do the same as Case 1, but extend the decreasing subsequence. This
is also a contradiction.

1.6 Estimating Ramsey Numbers

So far, we have seen upper bounds for R(n, n) for all n, but no lower bounds. Remember:

• To show R(n, n) ≤ r, we need to show that all colorings of Kr contain a monochro-
matic Kr.
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• To show R(n, n) > r, we need to find a coloring of Kr that doesn’t contain a
monochromatic Kr.

In Ramsey’s Theorem, we were proving upper bounds. We got

R(n, n) ≤
(

2n− 2

n− 1

)
, which we can estimate using

Theorem 1.4. (Stirling’s approximation:)

n! ≈
√

2πn
(n
e

)n
.

Stirlings approximation actually gives

Theorem 1.5. (
n

n/2

)
≈ 2n

√
2

πn
,

but we don’t need such precision. For that reason, we use big-O notation:

Definition 1.2. If f(n) and g(n) are nonnegative functions, we write

f(n) = O(g(n))

if there is a constant K > 0 such that f(n) ≤ Kg(n) for all n.

This means we can write

R(n, n) = O

(
4n√
n

)
.

2 The Probabilistic Method

Finally we can see the brilliant idea of the probabilistic method, first employed by Szele
and later perfected by Paul Erdős.

One silly way to show Kr has a coloring with no monochromatic Kn is to show that
typical colorings of Kr have no monochromatic Kn. This seems much harder than just
finding one such coloring, but the magic of probability says it isn’t so.
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2.1 Discrete Random Variables

Definition 2.1. If S is a sample space, a random variable X is an assignment of real
numbers to the elements of S. That is, X is a function

X : S → R.

Example 3. If our sample space S were {a, b, c, d, e} and our experiment were to draw
each one with equal probability, then X : S → R given by

X(a) = 5, X(b) = 3, X(c) = 3, X(d) = 3, X(e) = 1.

is a random variable.

Definition 2.2. The quantity
∑

s∈S X(s) Pr({s}) is called the expected value of X, and is
denoted

E[X] =
∑
s∈S

X(s) Pr({s}).

Fact 2.1.1. Since we are dealing with finite sample spaces, the range of X will be a finite
set. Thus, we can rearrange the definition of E[X] to give

E[X] =
∑
x

xPr[X = x],

where the sum is understood to run over the range of X.

Example 4. If X is the random variable from the previous example, then

E[X] = 5 · 1

5
+ 3 · 1/5 + 3 · 1/5 + 3 · 1/5 + 1 · 1/5 =

1

5
15 = 3.

Alternatively, we can write

E[X] = 1 · 1/5 + 3 · 3/5 + 5 · 1/5 = 3.

2.2 Linearity of Expectation

It is a very easy consequence of the definition of expected value that if X and Y are random
variables on the same sample space, and a and b are real numbers, then

Fact 2.2.1 (Linearity of Expectation).

E[aX + bY ] = aE[X] + bE[Y ].

We don’t need any special properties of random variables to apply linearity of expec-
tation.
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Example 5. Suppose we flip 4 fair coins and let X be the number of heads. Then X is the
sum of the random variables Xi, i ∈ [4], where Xi = 1 if the ith flip is H and 0 otherwise.
Then X = X1 +X2 +X3 +X4, so

E[X] = E[X1] + E[X2] + E[X3] + E[X4].

However, E[Xi] = 0 · .5 + 1 · .5 = .5 for i ∈ [4], so E[X] = 2. If Y is the number of heads
among the last two flips, then E[Y ] = 1, and E[X + Y ] = 3. Note that X and Y are not
independent.

2.3 Lower bounds for Ramsey numbers

Without further ado, let us use the probabilistic method to prove something about Ramsey
Theory.

Theorem 2.1. If (
r

n

)
21−(n2) < 1,

then R(n, n) > r.

Linearity of Expectation Proof: Suppose r and n satisfy the inequality above. Consider
the following experiment:

For each edge of Kr, flip a fair coin to decide whether the edge is colored red or blue.

The sample space is all 2(r2) colorings of the edges of Kr. Define a random variable X on
this sample space by

X(c) = number of monochromatic Kn in the coloring c.

The critical thing is that X is a sum of other random variables: If S is a fixed n-subset
of [r], then define XS to be the random variable that is 1 if the edges among S form a
monochromatic Kn and 0 if not. Then

X =
∑

|S|=r,S⊂[n]

XS ,

and by linearity of expectation,

E[X] =
∑

|S|=r,S⊂[n]

E[XS ].

However, because XS only takes values 0 or 1,

E[XS ] = Pr[XS = 1],
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which is exactly 2 · 2−(n2). (it is the probability that the coin flips for the
(
n
2

)
edges among

S all come up heads or all come up tails). Thus,

E[X] =

(
r

n

)
· 21−(n2) < 1.

A final, and critical step: Since E[X] < 1, there must be some element c of the sample space
with X(c) < 1. Otherwise, the expectation would certainly be at least 1. However, X(c)
can only take on integer values, so X(c) = 0. Thus, c has no monochromatic Kn’s.

There is an alternate proof avoiding the use of expected value, which exemplifies the
technique of seemingly wasteful upper bounds - a staple in probabilistic combinatorics.

Union-Bound Proof: Flip a fair coin to decide whether each edge of the complete graph on
[r] is colored red or blue. We want to look at the probability there is a blue Kn. If S is a
fixed n-subset of [r], then define AS to be the event that the complete graph on vertex set
S, a Kn, is monochromatic. We want to bound the probability at least one of the events
AS occurs. That is, we want to bound

Pr

 ⋃
|S|=r,S⊂[n]

AS

 .

We could use inclusion-exclusion, but that would be unnecessarily complicated. Instead,
we use what is known as the seemingly crude union-bound :

Pr

 ⋃
|S|=r,S⊂[n]

AS

 ≤ ∑
|S|=r,S⊂[n]

Pr(AS).

In words, the probability of the union is at most what it would be if the events were disjoint.

However, AS occurs if and only if the
(
n
2

)
independent flips coloring the edges among

S all come up heads or all come up tails, so

Pr(AS) = 2 · 2−(n2).

Further, there are
(
r
n

)
n-subsets of [r], so∑

|S|=r,S⊂[n]

Pr(AS) =

(
r

n

)
21−(n2).

If (
r

n

)
21−(n2) < 1
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2.4 Subgraphs

Sometimes we can find probabilistic proofs of statements that seem to have nothing to do
with probability. The following fact is actually not hard to prove in other ways, but this
proof is very clean.

Fact 2.4.1. Suppose G is a graph on n vertices and m edges. Then there is a subgraph of
G with k vertices that has

m ·
(
k
2

)(
n
2

)
edges.

Proof. Take a random k-subset S of the vertices of G = (V,E). Let X be the random
variable counting the number of edges of G contained in S. If e is an edge of G, define Xe

to be 1 if e ⊂ S and 0 otherwise. Then

X =
∑
e∈E

Xe,

and so
E[X] =

∑
e∈E

E[Xe].

This time, E[Xe] is the probability that e ⊂ S, which is(
k
2

)(
n
2

) .
Thus,

E[X] = m

(
k
2

)(
n
2

) ,
so there must be some set S of k vertices containing with at least (and one with at most!)

m
(k2)
(n2)

edges. The subgraph

H = (S, {e : e ∈ S})

is the desired subgraph.
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