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Keller and Trotter Graph Theory chapter:

http://www.rellek.net/book/ch_graphs.html.

Keller and Trotter Network Flows chapter:

http://www.rellek.net/book/ch_networkflow.html.

Keller and Trotter Intro to Ramsey Theory:

http://www.rellek.net/book/s_probmeth_graph-ramsey.html.

More can be found about matchings in Chapter 9, 11.4, and 12.5 of Brualdi. Ramsey
Theory shows up in Chapter 3.3 of Brualdi.
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1 Menger’s Theorem

1.1 Vertex version of Menger

Definition 1.1. Paths P1 and P2 from x to y are independent if the only vertices they
share are x and y.

Theorem 1.1. The number of vertices required to separate s from t in a graph G is exactly
the number of independent, directed paths from s to t.

Example 1. The highlighted paths are independent, and circled in red are vertices that
can be removed to separate s and t.

Proof. Clearly if there are k independent paths, you need to delete at least one vertex from
each to disconnect s and t, so the number of vertices required to separate s from t in a
graph G is at least the number of independent, directed paths from s to t. Next we need to
show that the number of independent paths from s to t is at least the number of vertices
required to separate s from t in G. That is, we need to find the independent paths.

Form a network N = (D, c, s+, t−) from the graph G. For each vertex v of G, add
vertices v+ and v− to D and an arc (v−, v+) to D with capacity 1. For each arc (v, w) of
G, add an arc (v+, w−) to D with infinite capacity. Delete s− and t+, and name the source
of this network to be s+ and the sink t−. See Figure 1.

Suppose some cut S in N has capacity k <∞. The arcs of D leaving S must be of the
form (v−, v+), because these are the only arcs with finite capacities. A directed path from
s to t in G corresponds to exactly one directed path s+ to t− in D, and this path must
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Figure 1: The bottom network is obtained from the digraph at top by the procedure in the
proof.
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leave S at some point, so it must visit a vertex x+ such that x− is not in S. Thus, the
set X of vertices x of G such that x− ∈ S but x+ 6∈ S separates s from t in G. Because
cap(S) = k, we must have |X| = k.

The preceding argument shows that a cut of capacity k in N gives rise to a set of k
vertices separating s and t. If at least k vertices are required to separate s and t, then

min cap(S) ≥ k.

Because of this, the Max-Flow Min-Cut theorem tells us there is an integral flow in N with
value at least k.

An integral flow, however, has flow value zero or 1 on every edge, because flow entering
v− through an arc (w+, v−) must leave v− via the arc (v−, v+) which has capacity only 1.
Form a subgraph of G by adding the arcs (v, w) such that the flow on (v+, w−) = 1. This
subgraph has in-degree 1 and out-degree 1 on all vertices except for s and t, and s will
have outdegree c and t will have in-degree c, so the subgraph is a union of c independent
paths.

Remark 1.1. This works for directed or undirected graphs. If you want to do it for
undirected graphs, just apply the theorem to the directed graph formed by replacing each
edge {u, v} by the pair of arcs (u, v), (v, u).

2 Hall’s Marriage theorem

In this section we will consider undirected graphs, though it doesn’t matter much, because
usually you can think of edges as going from one side of the bipartite graph to the other.

Definition 2.1. If G = (X ∪ Y,E) is a bipartite graph and R ⊂ X, then

Γ(R) = {y : y is adjacent to some vertex in R}.

In other words, Γ(R) is all vertices adjacent to some vertex in R. It’s like the
“neighborhood” of the set R.
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We saw in Lecture 13 that if |Γ(R)| < |R| for some R subset X then there is no hope of a
complete matching from X to Y . This is because R must be matched to Γ(R), and there
are not enough vertices in Γ(R) to accomplish this. It turns out that this is the only issue
we must avoid.

Definition 2.2. G = (X ∪ Y,E) is said to satisfy Hall’s marriage condition if

|Γ(R)| ≥ |R|

for all subsets R ⊂ X.

Theorem 2.1. G contains a complete matching of X to Y if and only if G satisfies Hall’s
marriage condition, or equivalently

|Γ(R)| ≥ |R|

for all subsets R ⊂ X.

Proof. We already noticed that if there is a perfect matching, then Hall’s marriage condi-
tion must be satisfied.

Next, we need to show if G satisfies Hall’s marriage condition then there is a perfect
matching. Let G = (X ∪ Y,E) be a bipartite graph satisfying Hall’s marriage condition.
Form a directed graph D with

• vertices X ∪ Y ∪ {s, t}, that is, the same vertex set but with two additional vertices.
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• a directed edge (s, x) for every vertex x ∈ X.

• a directed edge (x, y) for every edge E = {x, y} for x ∈ X and y ∈ Y .

• a directed edge (y, t) for every vertex y ∈ Y .

Now a complete matching of X to Y exactly corresponds to |X| independent paths from
s to t in D. By Menger’s Theorem, we know that the maximum number of independent
paths is exactly the size of the smallest set of vertices that separate s from t.

Suppose there is no matching of size |X|, then there must be a set S of vertices of size
|S| < |X| that separates s from t. Assume S = S1 ∪ S2, where S1 ⊂ X and S2 ⊂ Y . This
means there are no edges from X \ S1 to Y \ S2 in D. Thus, Γ(X − S1) ⊂ S2, or

Γ(X − S1) ≤ S2 < |X| − |S1|

so that
|Γ(X − S1)| < |X − S1|,

a contradiction.

Example 2. A latin square is an n×n square filled with the numbers {1, . . . , n} in which
each row and each column contain each number exactly once. How to make these? It
turns out that no matter how we fill out the first m < n columns, we can fill out the next
column. We do this by making a bipartite graph G = (R ∪ [n], E), where {r, j} ∈ E if the
number j has not yet appeared in row r.

• Each vertex r ∈ R has degree (m− n) because m symbols have appeared so far, and

• each vertex j ∈ [n] has degree (m − n) because every number has already appeared
in m rows (because every column contains each number once!).
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This means the bipartite graph is regular, that is, all the degrees are the same.

12/4/2014 
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Degrees  
y Every vertex of 𝑉1 has degree 𝑛 −𝑚. 

◦ Every symbol is in 𝑚 columns of the rectangle. 
y Every vertex of 𝑉2 has degree 𝑛 −𝑚. 

◦ Every column already contains 𝑚 symbols. 
 𝑉1 

A 

B 
C 

D 
E 

𝑉2 
1 

2 
3 

4 
5 

Concluding the Proof 
y Consider a subset 𝐴 ⊂ 𝑉1. 

◦ The sum of the degrees of the vertices of 𝐴 is 
𝑛 −𝑚 𝐴 . 

◦ Since every vertex of 𝑉2 has degree 𝑛 −𝑚, 
we have 𝐴 ≥ 𝑁 𝐴 . 

y By Hall’s theorem there exists a perfect 
matching, which implies that we can 
always add another row to the Latin 
rectangle, as long as it is not a square. 

Theorem 2.2. If G = (X ∪ Y,E) is a regular bipartite graph, then G contains a complete
matching of X to Y .

Proof. We just have to check Hall’s marriage condition for regular bipartite graphs. Let
S ⊂ X, and consider Γ(S). For y ∈ Γ(S), let dS(y) be the number of neighbors y has
among S. Then we can count the edges between S and Γ(S) in two ways; namely, the
number of edges there is

d|S| =
∑

y∈Γ(s)

dS(y) ≤ d|Γ(S)|.

Dividing by d, |S| ≤ |Γ(S)|, meaning Hall’s condition holds.

Once we get this perfect matching {1, j1}, {2, j2}, . . . {n, jn}, just put ji in row i to make
the m + 1st column.

Remark 2.1. Another way to think about Latin squares is as decompositions of Kn,n into
n edge-disjoint, perfect matchings.

3 Ramsey Theory

Ramsey Theory is a theory built upon the idea that often when you partition objects into
several parts, at least one of the parts must contain some nice substructure. An easy
example of this is the pigeonhole principle, which dictates simply that if you partition a
set of objects, you will get a large part.

3.1 More Pigeonhole Principle

Theorem 3.1 (“Strong” Pigeonhole Principle). If a set of size n is partitioned into m
parts, there is a part of size dn/me.
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3.2 Ramsey numbers

People at a party.

Fact 3.2.1. If the edges of K6 are colored red and blue, then there is either a red copy of
K3 or a blue copy of K3.

Proof. Look at a vertex v. It has five incident edges in K6, so some 3 of them are the same
color. Assume, without loss of generality, that this color is blue. Thus, v is adjacent to at
least 3 vertices by blue edges. These 3 vertices have 3 edges among them. If any one of
these edges is blue, then its endpoints and v form a blue triangle. If all the edges are red,
then they form a red triangle. Hence, either way, K6 contains triangle of red or blue.

We can try to come up with theorems of the same form for red Km’s and blue K ′ns.

Definition 3.1. R(m,n) is the smallest number r such that every coloring of the edges of
Kr contains a red copy of Km or a blue copy of Kn.

Example 3. Since the following contains no red or blue K3, R(3, 3) > 5.

However, the fact above shows R(3, 3) ≤ 6, so in fact R(3, 3) = 6.
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3.3 Ramsey’s Theorem

Theorem 3.2. For all m ≥ 1, n ≥ 1, R(m,n) actually exists, and

R(m,n) ≤
(
m + n− 2

m− 1

)
.

Proof. We need to show there is a number r such that if the edges of Kr are colored with
red and blue, then Kr contains a red copy of Km or a blue copy of Kn. First we show

R(m,n) ≤ Rm−1,n + Rm,n−1.

Suppose s = Rm−1,n and t = Rm−1,n. Consider a coloring of the edges of Ks+t with red
and blue. Any vertex v has either at least s neighbors through red edges or at least t
neighbors through blue edges; otherwise there are at most 1 + (s− 1) + (t− 1) = s + t− 1
vertices. Suppose v has s neighbors through red edges. Since s = R(m − 1, n), there is
either a red Km−1 among these neighbors, in which case we can add v to get a red Km,
or a blue Kn. The argument is similar if v instead has at least t neighbors through blue
edges. Either way, Ks+t has either a red Km or a blue Kn.

We can use the above fact to show

R(m,n) ≤
(
m + n− 2

m− 1

)
.

Let the above proposition be denoted P (n,m). We prove it for all n ≥ 1,m ≥ 1 by double
induction:
First off, note if m ≤ 2 or n ≤ 2, the claim is very easy. In fact,

R(m, 2) = m =

(
m + 2− 2

m− 1

)
and

R(2, n) = n =

(
n + 2− 2

2− 1

)
.

Thus, P (m, 2) for all m ≥ 0, P2,n for all n ≥ 0 are our base cases. We assume n,m ≥ 3
to do the induction step. We use Pm−1,n and Pm,n−1 to prove Pm,n. The idea of double
induction is illustrated in Figure 2.
Thus, we assume Pm−1,n holds and Pm,n−1 holds, that is

R(m− 1, n) ≤
(
m + n− 3

m− 2

)
and

R(m,n− 1) ≤
(
m + n− 3

m− 1

)
.
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Figure 2: The idea of double induction. One could think of the axes as all the propositions
P (m, 2) and P (2, n), highlighted in blue to indicate they are true. Then, once you know
Pm−1,n and Pm,n−1 imply Pm,n, the truth of the propositions “spreads” up and to the right
via the blue arrows to fill out the whole quadrant.

We already showed
R(m,n) ≤ R (m− 1, n) + R (m,n− 1) .

However, by the induction hypothesis,

R (m− 1, n) + R (m,n− 1) ≤
(
m + n− 3

m− 2

)
+

(
m + n− 3

m− 1

)
=

(
m + n− 2

m− 1

)
.

The last equality is Pascal’s Formula.

3.4 Best known bounds for diagonal Ramsey numbers

R(2, 2) = 2

R(3, 3) = 6

R(4, 4) = 5

R(5, 5) ∈ [43, 48]

R(6, 6) ∈ [102, 165]

Erdős asks us to imagine an alien force, vastly more powerful than us, landing
on Earth and demanding the value of R(5, 5) or they will destroy our planet.
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Figure 3: Finding a blue K4 by finding a blue K3 among neighbors attached with blue
edges.
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In that case, he claims, we should marshal all our computers and all our math-
ematicians and attempt to find the value. But suppose, instead, that they ask
for R(6, 6). In that case, he believes, we should attempt to destroy the aliens.
- Joel Spencer
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