
Trees: Math 454 Lecture 12 (7/18/2017)

Cole Franks

July 19, 2017

Some of these notes follow sections 5.1 and 5.6 of Keller and Trotter, which you can
find here:

http://www.rellek.net/book/ch_graphs.html.

More is in Brualdi 11.5.
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1 Spanning Trees

Definition 1.1 (Spanning tree). A spanning tree is a tree T = (V ′, E′) contained in
G = (V,E) with V ′ = V . In other words, the tree uses all the vertices of G.

1.1 Finding a spanning tree

A graph is connected if and only if it has a spanning tree.
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Theorem 1.1 (baby Kruskal’s algorithm). Let G = (V,E) be a connected graph. Let
S0 = ∅.
Set i = 1. While it is possible:

1. Find an edge e of G such that Si−1 ∪ e has no cycles.

2. Let Si = Si−1 ∪ {e} (that is, add e to Si−1).

3. Increase i by 1.

Do this for as long as possible. No matter how this is performed, you will be able to proceed
until exactly i = n− 1, and T = (V, Sn−1) will be a spanning tree of G.

The proof is slightly different from what we did in class.

Proof. Suppose we can’t perform the ith step for i ≥ 0. If not, all edges e of E \Si−1 make
a cycle when added to the edges of Si−1. That is, Si−1 ∪ {e} contains a cycle. This means
that the endpoints of each remaining edge of G are in the same connected component of
(V, Si−1). This means adding the remaining edges of G doesn’t increase the number of
connected components. However, G is connected, so there must be only one component
of (V, Si−1). In other words, we can’t perform step i exactly when (V, Si−1) is connected.
This means (V, Si−1) is a spanning tree. We know i = n because a tree on n vertices has
n− 1 edges.
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Figure 1: The edges in blue are a spanning tree made by Kruskal’s algorithm. In red are
edges that cannot be added in the next step.
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2 Leaves

Definition 2.1 (Leaf). If T is a tree, a leaf of T is a degree 1 vertex of T .

Example 1. The leaves of the following tree are labeled in red.

R

There’s a stronger version of the following theorem on the homework.

Theorem 2.1. Every tree has at least one leaf.

Proof. If not, every vertex has degree at least 2, so by the First Theorem of Graph Theory
there are at least n edges. We already know a tree has n−1 edges, so this is a contradiction.

3 Prüfer codes

Example 2. Count labeled trees of size 4.

There is a one-to-one correspondence between trees on vertex set V and strings of
length n − 2 with elements of V as entries. The sequence corresponding to T is called a
Prüfer code, and will be denoted prüfer (T ).

We’ll need to assume V is in order, so we just assume V is a set of n positive integers.
We define prüfer (T ) recursively:

Definition 3.1. Let ε denote the empty string, and if a and b are strings let a · b denote
their concatenation. Suppose T = (V,E). Define

prüfer (T ) :=

{
ε : |V | = 2

u · prüfer (T − v) : v is the smallest leaf of V and uv ∈ E

T −v denotes the graph T −v = (V \{v}, E \{e : v ∈ e}), or the tree obtained by removing
v.

Remark 3.1. prüfer (T ) is a well-defined function because v is attached to exactly one
vertex u, so there is only way to do this procedure. See Figure 2 for an example.
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Figure 2: The labeled tree at the top has Prüfer code 6643143.
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Theorem 3.1. Let S be a set of n positive integers.

f : {labeled trees with vertex set S} → { strings of n− 2 numbers from S}

given by f(T ) = prüfer (T ) is one-to-one and onto.

Proof. We already remarked that T → prüfer (T ) is a function. It remains to show that
each string of n− 2 numbers from S is prüfer (T ) for some tree T with vertex set [n].

First, notice that the numbers that don’t show up among prüfer (T ) are exactly the
labels of the leaves of T . This is because no leaf has another leaf connected to it, and
eventually every non-leaf vertex will have its neighbor removed which means it will show
up in prüfer (T ).

With this in hand, we do the rest by induction. Our base case is n = 2. In this case, the
only such string is the empty string, and it comes only from the tree T = ({1, 2}, {{1, 2}}).

If n ≥ 3, suppose s1s2 . . . sn is a string of n − 2 numbers from the set S of n positive
integers. Let k be the least number in S not among {s1, s2, . . . , sn}. By induction, there is
exactly one tree T ′ with vertex set S \{k} with prüfer (T ′) = s2, . . . , sn. Form T by adding
k to T ′ as a leaf attached to s1. Then prüfer (T ) = s1s2 . . . sn.

T is the only tree we can make with Prüfer code s1s2 . . . sn, because in any tree T ′′

with Prüfer code s1s2 . . . sn, there had to be a leaf attached to s1 of lowest label. Since the
labels of leaves of T ′′ are exactly the numbers not among s1s2 . . . sn, said leaf must have
label k (the least number among those numbers not among s1s2 . . . sn, and so T ′′ must be
formed by adding k to T ′ as a leaf attached to s1.

We can use the idea in this proof to make a tree from a Prüfer code.

Example 3 (Making tree from Prüfer code). Let’s turn the Prüfer code 75531 into a tree
on vertex set [7].

Prüfer code vertex set edge added
75531 {1, 2, 3, 4, 5, 6, 7} {2, 7}
5531 {1, 3, 4, 5, 6, 7} {4, 5}
531 {1, 3, 5, 6, 7} {6, 5}
31 {1, 3, 5, 7} {5, 3}
1 {1, 3, 7} {3, 1}
ε {1, 7} {1, 7}

You can also see this pictorially in Figure 3.
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Figure 3: The Prüfer code inside each ring is the code of the tree inside the ring. Each ring
is attached to the vertex set of the tree inside by a line. To construct the tree, we work
from the outside in.

.
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4 Counting spanning trees: Cayley

We immediately get the following theorem:

Theorem 4.1 (Cayley’s Formula). The number of labeled trees on vertex set [n] is

nn−2.

This is an example of a more general method for computing the number of spanning
trees, which we will state but not prove. First we need a definition:

Definition 4.1. Let G be a graph with vertex set [n]. If A(G) is the adjacency matrix of
G, and diag(d(1), . . . d(v)) is a diagonal matrix with the degree of vertex i in the i, i entry,
then the Laplacian of G the matrix

L(G) = diag(d(1), . . . d(v))−A(G).

Example 4. The adjacency matrix of the graph G given by

 

is

A(G) =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

 ,

and the diagonal matrix with degrees on the diagonal is
3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

 ,

so the Laplacian is

L(G) =


3 −1 −1 −1
−1 2 0 −1
−1 0 1 0
−1 −1 0 2

 .
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Example 5 (Laplacian of Kn). The complete graph has adjacency matrix all ones except
zeroes on the diagonal. The degrees are all n − 1, so the Laplacian L(Kn) will be the
matrix with (n− 1)’s on the diagonal and −1’s everywhere else.

Theorem 4.2. (Kirchoff’s Matrix Tree Theorem) Let G be a connected graph. Form the
n× n matrix L′ by deleting any row and column from the Laplacian L(G) of G. Then the
number of labeled spanning trees of G is detL′.

Example 6. Let’s find the number of spanning trees of the graph from the previous
example. The Laplacian is

L(G) =


3 −1 −1 −1
−1 2 0 −1
−1 0 1 0
−1 −1 0 2

 .

I choose to calculate the spanning trees by deleting the first row and column, so the number
of spanning trees is

det

 2 0 −1
0 1 0
−1 0 2

 = det

 2 0 −1
0 1 0
0 0 3/2

 = 2 · 1 · (3/2) = 3.

Remark 4.1. Cayley’s formula is a special case of the matrix tree theorem because the
number of labeled spanning trees of Kn is exactly the number of labeled trees with vertex
set n. If we take delete a row and column from L(Kn), we get an (n−1)×(n−1) matrix L′

with n− 1’s on the diagonal and −1’s everywhere else. You can check that the eigenspace
of L′ corresponding to the eigenvalue n has dimension (n − 2) and the eigenspace of L′

corresponding to 1 has dimension 1. Thus the determinant of L′ is nn−2.

5 Counting ordered trees:

Definition 5.1. A rooted tree is one where one special vertex r is designated to be the
root. Pictorially this is usually represented by putting the root at the top (for some reason).
Once we do this, we can think of edges going towards or away from the root. We say a
vertex w is below v if there is path from r to v through w. An child w of a vertex v is a
vertex directly below v (that is, adjacent to v and below w), and v is w′s unique parent.
See Figure 4.

Definition 5.2. A ordered tree is a rooted tree with an ordering in which the children of
any parent are ordered from left to right, and all vertices below a child are to the left of
the vertices below a child that is further to the right. See Figure 5 for examples.
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Figure 4: A rooted tree, in which w′ is below w and v, w′ is a child of w and w is a child
of v.

Figure 5: The top two trees are not equal as ordered trees. Top left and bottom left are
equal as ordered trees. Bottom right is no ordered tree; it’s a space station.2
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Figure 6: An ordered tree whose traversal is the Dyck word DDUDUDUUDUDDUDUU .

Definition 5.3. For this class, a traversal of a rooted, ordered tree is a walk along all the
edges of the tree that visits vertices in order and uses each edge exactly twice. You can
think about edges as having a left and a right side, and traversals as walks that start at the
root and use the left and right side of each edge exactly once. A traversal can be written
down by noting when you went up and when you went down, say by U ′s and D′s. A tree
has exactly one transversal.

Remark 5.1. In computer science literature, traversals usually only care about the order
you visit the vertices rather than which edges you use, but I don’t now what else to call it.

Given a valid up-down sequence of length 2n, we can make exactly one ordered tree
with n edges with that sequence for its traversal! Here’s how it’s done:

Algorithm 1. Let w = x1x2x3 . . . x2n be an up-down sequence (a sequence of U’s and
D’s). Form a tree as follows:

1. Draw the root r. Sit on r.

2. Read w from left-to-right. If you read a D, add a child to the vertex you are sitting
on to the right of all its other children and go sit on that vertex. If you read a U , go
to the parent of the current vertex and sit on that vertex.

Remark 5.2. What conditions do we need for this algorithm to work? We need that
whenever we read a U , there was a parent to go to. This means that for ANY prefix of the
sequence, there at least as many D’s as there are U ’s. We also need that we made it back
to the root, so in the entire sequence there should be the same number of U ’s and D′’s.

Definition 5.4. A sequence of n U ’s and n D’s (really doesn’t have to be U and D, could
be anything) such that every prefix has at least as many D’s as it has U ’s is called a Dyck
word (pronounced deek).

2This link does not contain course material. https://youtu.be/JGp_5gOww0E
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The following theorem summarizes what we have seen:

Theorem 5.1. There is a one-to-one correspondence between Dyck words of length 2n and
ordered trees with n edges.

From here on out I am actually going to consider the roles of U and D switched, just
because I think it makes the pictures nicer. From now on every prefix of a Dyck word has
more U ’s than D’s.

Now let’s count the number of Dyck words of length 2n. There are two ways:

5.1 Counting Dyck words via a recurrence

Let Cn be the number of Dyck words of length 2n. Think of C0 = 1 as usual. Let w be
a Dyck word. Think of the graph of w as in Figure 7. Let 2 ≤ 2k ≤ 2n be the first point
at which w’s graph hits the x axis (we are justified in calling it 2k because we know it
is even). The number of words that first hit the horizon at k is Ck−1Cn−k, because the
possible words between 1 and 2k− 1 are the Dyck words of length 2k− 2 and the possible
words between 2k and 2n are the Dyck words of length 2n − 2k. Further, for different k,
these sets of words are disjoint. This means that

Cn =

n∑
k=1

Ck−1Cn−k, for n ≥ 1

or

Cn =

n−1∑
k=0

CkCn−k−1, for n ≥ 1

or

Cn+1 =

n∑
k=0

CkCn−k, for n ≥ 0.

5.2 Counting Dyck words awesomely
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Figure 7: The graph of a Dyck word. One can view Dyck words as mountain ranges that
never dip below the horizon.
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