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Abstract

This paper concerns approximate cloaking by mapping for a full, but scalar wave
equation, when one allows for physically relevant frequency dependence of the material
properties of the cloak. The paper is a natural continuation of [20], but here we employ
the Drude-Lorentz model in the cloaking layer, that is otherwise constructed by an
approximate blow up transformation of the type introduced in [10]. The central math-
ematical problem translates into the analysis of the effect of a small inhomogeneity in
the context of a non-local full wave equation.

1 Introduction

Cloaking by mapping (frequently referred to as transformation optics) was introduced
by Pendry, Schurig, and Smith [23] for the Maxwell system, and Leonhardt [12] in the
geometric optics setting. These authors used a singular change of variables which blows
up a point to a cloaked region. The exact same transformation had been used before
by Greenleaf, Lassas, and Uhlmann [6] to establish non-uniqueness in the context of the
Calderon problem. The singular nature of the cloaks presents various difficulties in practice
as well as in theory: (1) they are hard to fabricate and (2) in certain cases the correct
definition of the corresponding electromagnetic fields is not obvious. To avoid the use of
singular structures, regularized schemes have been proposed in [3, 4, 10, 26, 27].

In this paper we analyse approximate cloaking for a full wave equation using transfor-
mation optics, where we incorporate the Drude-Lorentz model, see e.g., [8], in the layer
constructed by transformation optics. The Drude-Lorentz model takes into account the
effect of the oscillations of free electrons on the electric permittivity (by means of a simple
harmonic oscillator model). We could have incorporated the same model in other parts of
space, to better model conducting metallic elements of these parts as well. For the trans-
formation optics construction we use the approximate scheme introduced in [10], which
is based on a transformation blowing up a small ball of radius ε to the cloaked region.
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When viewed in (complex) frequency domain, the refractive index associated with the
Drude-Lorentz model may be extended analytically to the whole upper half plane. As
is well known, an immediate consequence of this is causality for the associated non-local
wave equation, see [8] and [28], – a property which is most essential for the well-posedness
(and the physical relevance) of this equation. Another well known consequence of this
analyticity property are the so-called Kramers-Krönig relations between the real and the
imaginary part of the refractive index (they are essentially related by Hilbert transforms).
However, this fact is not explicitly used in our analysis.

Approximate cloaking schemes for the Helmholtz equation based on the regularized
transformations introduced in [10] have been studied extensively in various regimes, see
[9, 16, 17, 21]. A related scheme, which (in 3d) blows up a small diameter cylinder to
the cloaked region is studied in [18], under the condition that the cross section of the
cylinder is symmetric, the degree of visibility of this scheme is the same as for the 3d
scheme considered in [9, 16, 21], even though the material properties are less singular. The
corresponding perfect cloaking scheme was introduced in [5, 13], and other approximate
schemes are studied in [14], though no rates of convergence are established. Frequently
a (damping) lossy layer is employed inside the transformation cloak. Without this lossy
layer, the field inside the cloaked region might depend on the field outside (even for
a perfect cloak), and resonance can appear and destroy the cloaking (or approximate
cloaking) ability of the pure transformation cloak, see [17]. A discussion of the close
connection between cloaking for the Helmholtz equations and quantum cloaking is given
in [18].

We next describe the setting in details. Given r > 0, let Br denote the ball centered
at 0 and of radius r. Let Fε be the standard transformation Rd → Rd, d = 2, 3, which
blows up the ball Bε to B1, equals the identity outside B2, and is given by

Fε(x) =


x if x ∈ Rd \B2,(2− 2ε

2− ε
+
|x|

2− ε

) x
|x|

if x ∈ B2 \Bε,
x

ε
if x ∈ Bε.

(1.1)

Assume that the cloaked region is the ball B1/2, the contents of which is characterized
by a real, matrix valued function a and a complex function σ. The surrounding cloak
contains two parts. In the time harmonic regime, these can be described as follows. The
outer part is the Drude-Lorentz version of the standard layer, generated by the blow up
map Fε. In this layer, occupying B2 \B1, the material characteristics are given by(

Fε
)
∗I, (Fε

)
∗1 + σ1,c , (1.2)

where
σ1,c(k, x) =

σN
k2ε − k2 − iσDk

. (1.3)

While the first part (Fε
)
∗1 of the refractive index in (1.2) is standard from the transfor-

mation optics approach, the second part σ1,c is exactly the correction introduced by the
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Drude-Lorentz model, see e.g., [8, page 331]. Here σN and σD are material constants, and
kε > 0 is the so-called resonant frequency of the Drude-Lorentz model; in a more general
model there could be several resonant frequencies {ki,ε}, and the corresponding part of
the refractive index would be a sum of terms (1.3) ranging over all these frequencies, see
e.g., [8, page 310]. In this paper, we use the standard notation

F∗A(y) =
DF (x)A(x)DF T (x)

|detDF (x)|
, F∗Σ(y) =

Σ(x)

|detDF (x)|
, x = F−1(y) ,

for the “pushforward” of a symmetric, matrix valued function, A, and a scalar function,
Σ, by the diffeomorphism F . In what follows, we assume for ease of notation that

σN = σD = 1 in B2 \B1 .

The inner part of our cloak is a fixed damping layer as considered in [16]. This damping
(lossy) layer occupies B1 \B1/2, and its material characteristics are given by

I, 1 +
i

k
.

Therefore, in the time harmonic regime, i.e., in frequency domain, the entire medium is
characterized by 1

Ac,Σc :=



I, 1 in Rd \B2 ,(
Fε
)
∗I,
(
Fε
)
∗1 + σ1,c in B2 \B1 ,

I, 1 + i/k in B1 \B1/2 ,

a, σ in B1/2 .

(1.4)

We assume that a, σ ∈ L∞(B1/2), with

1

Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2 , 1

Λ
≤ <(σ) ≤ Λ , and 0 ≤ =(σ) ≤ Λ , (1.5)

for some positive constant Λ. With this notation, the temporal Fourier transform ûc of
the field 2, will be a solution to

div(Ac∇ûc) + k2Σcûc = −f̂ .

The temporal Fourier transform of a function v(t, x) is given by

v̂(k, x) =
1√
2π

∫ ∞
−∞

v(t, x)eikt dt .

1Notice that the ”damping layer”, B1 \ B1/2, is a bit different from that in [20] where, for any fixed

γ > 0, we used Ac = I, Σc = ε2 + i
kεγ

, for n = 2, and Ac = εI, Σc = ε3 + iε1−γ

k
, for n = 3. This change is,

however, not essential – the essential change is in the layer B2 \B1, with the inclusion of σ1,c. It would be
interesting to investigate whether, in view of the damping present in σ1,c, the layer B1 \B1/2 is necessary
at all.

2where we extend the time domain field by 0 for negative time.
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The corresponding field in time domain (for positive time) is the unique weak solution
uc ∈ L∞

(
(0,+∞);H1(Rd)

)
, with ∂tuc ∈ L∞

(
[0,+∞);L2(Rd)

)
, to the non-local wave

equation{
Σ1,c∂

2
ttuc − div(Ac∇uc) + Σ2,c∂tuc +G ∗ ∂tuc = f in [0,+∞)× Rd,

∂tuc(t = 0) = uc(t = 0) = 0 in Rd,
(1.6)

where f ∈ L2
(
(0,+∞) × Rd

)
with compact support. The definition of weak solutions to

(1.6), and the proof of well-posedness of (1.6) is presented in Section 4. The coefficients
Σ1,2 and Σ2,c are given by

Σ1,c =



1 in Rd \B2 ,

(Fε)∗1 in B2 \B1 ,

1 in B1 \B1/2 ,

σ in B1/2 ,

Σ2,c =



0 in Rd \B2 ,

0 in B2 \B1 ,

1 in B1 \B1/2 ,

0 in B1/2 ,

and G(t, x) is such that

Ĝ(k, x) = −ikσ1,c(k, x) x ∈ B2 \B1 .

A computation (see, e.g., [8, (7.110)]) shows that

G(t, x) = φ(t)H(t) , (1.7)

where H(t) denotes the Heaviside function, i.e.,

H(t) =

{
0 if t < 0 ,

1 otherwise ,
(1.8)

and

φ(t) =

√
2π

γ0
∂t

(
e−t/2 sin(γ0t)

)
, (1.9)

with
γ0 =

√
k2ε − 1/4 . (1.10)

We assume that kε > 1/2, so that γ0 is real and positive.

The presence of the Heaviside function in the formula (1.7) implies causality and
plays an important role in our analysis; in particular for the proof of well-posedness of uc,
and to establish that the Fourier transform, ûc, satisfies the outgoing radiation condition.

We only consider zero initial conditions. This is just for ease and simplicity of presen-
tation; indeed, our method would work for the general case, using an approach similar to
that in [20].
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Given f , the corresponding field in the homogeneous medium without the cloak and
the cloaked region is the unique weak solution u ∈ L∞

(
(0,+∞);H1(Rd)

)
, with

∂tu ∈ L∞
(
(0,+∞);L2(Rd)

)
, to the system{
∂2ttu−∆u = f in (0,+∞)× Rd ,

∂tu(t = 0) = u(t = 0) = 0 in Rd .

The extent to which we have succeeded in hiding the contents of B1/2 and the cloak itself,
should be measured in terms of the difference between uc and u, outside B2. The main
Theorem of this paper gives an estimate of this difference for the scheme in (1.4)

Theorem 1. Let d = 2 or 3, and let f ∈ C∞([0,+∞) × Rd) be such that supp f ⊂
(0, R) × (BR \ B2) for some R > 0. Suppose c∗ε

−d/2 < kε < C∗ε
−K for some positive

constant c∗, C∗ and K > d/2. Given any integer M ≥ 2d+ 4K−2, there exists a constant
C such that

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ CεT‖f‖CM ([0,R];L2(BR)) ∀T > 0, for d = 3 ,

and

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ C
1

| ln ε|
T‖f‖CM ([0,R];L2(BR)) ∀T > 0, for d = 2 .

C depends on R, c∗, C∗,K and M , but is independent of f , ε, kε, Λ and T .

We in fact prove the following slightly stronger result:

Theorem 2. Let d = 2 or 3, and let f ∈ C∞([0,+∞) × Rd) be such that supp f ⊂
(0, R) × (BR \ B2) for some R > 0. Suppose kε > c∗ε

−d/2 for some positive constant c∗,
then

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ CεT‖f‖ ∀T > 0, for d = 3 ,

and

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ C
1

| ln ε|
T‖f‖ ∀T > 0, for d = 2 .

Here C is a positive constant depending on R and c∗, but independent of f , ε, kε, Λ and
T . The norm of f is defined by

‖f‖ = ‖f‖kε,ε :=

∫ ∞
0

(1 + k2d+1)‖f̂(k, ·)‖L2 dk +

∫ ∞
λ0/ε

k2d−3k4ε‖f̂(k, ·)‖L2 dk ,

for some fixed positive constant λ0, depending only on c∗. Here f̂ is the Fourier transform
of f w.r.t. time, f being extended by zero for t < 0.

The assumption that supp f ⊂ (0, R) × (BR \ B2) could be replaced by supp f ⊂
[0, R) × (BR \ B2) (i.e., f does not have to vanish in a neighborhood of t = 0) provided
the regularity assumptions, and the norms, now be expressed in terms of f̃ (and not f),

5



where f̃ denotes the extension of f by zero for t < 0. The condition that f or f̃ be in
C∞, could also be replaced by an assumption about the continuity of only finitely many
derivatives. We leave the details to the reader.

Theorem 1 follows directly from Theorem 2 by noting that if c∗ε
−d/2 < kε < C∗ε

−K ,
for some K > d/2, then

‖f‖ =

∫ ∞
0

(1 + k2d+1)‖f̂(k, ·)‖L2 +

∫ ∞
λ0/ε

k2d−3k4ε‖f̂(k, ·)‖L2

≤ C

∫ ∞
0

(1 + k2d+4K−3)‖f̂(k, ·)‖L2

≤ C

(∫ ∞
0

(1 + k)−2
)1/2(∫ ∞

0
(1 + k2d+4K−2)2‖f̂(k, ·)‖2L2

)1/2

≤ C‖f‖CM ([0,R];L2(BR)) ,

for any integer M ≥ 2d+ 4K − 2. Here we used that supp f ⊂ (0, R)× (BR \B2) so that
the CM -norm of the extension of f by zero for t < 0 is bounded by ‖f‖CM ([0,R];L2(BR)).

The results obtained in this paper are in a slightly different spirit than the ones in
[20] (and, of course, for a different problem). The constants in Theorem 2 and Theorem 1
here are independent of Λ, while the ones in [20, Theorems 1 and 2] are not. However, the
estimates in [20, Theorems 1 and 2] are uniform in time, while the ones in Theorem 2 and
Theorem 1 here are not. The independence of the constants of Λ yields a stronger result
about the cloaking effects, since it asserts that the cloak works well for arbitrary objects.
Similar results as in [20] (i.e., results that are uniform in time, but not in Λ) would hold
in this setting, and results of the type in Theorem 2 and Theorem 1 would hold in the
setting of [20].

The approach in this paper borrows several ideas from the approach in [20], and adapts
these to the setting considered here. In order to do so we study and compare the model with
σ1,c in (1.4) and the model without σ1,c, and establish a perturbation estimate in the time
harmonic regime. Note that, for the model with σ1,c, the standard rescaling techniques,
as used in [16, 17, 20, 21], do not work. We hence work directly with this model without
rescaling. The proof is quite delicate, makes use of many ideas from [16, 17, 20, 21], and at
a crucial point requires an argument of “removable singularity”. To obtain the estimates in
time domain from the estimates in frequency domain, we proceed in a slightly different way
than [20]. We use a simple and helpful idea, also used in [19], by establishing estimates for
the difference of the time derivatives of uc and u not for their difference. As a consequence,
we avoid the non-standard estimates for very low frequency in [20]; their proof involved
the theory of H-convergence. Moreover, using this idea, we are also able to obtain the
independence of Λ for the constants in Theorem 2. As mentioned earlier, another element
of our analysis is the (definition of and) verification of well-posedness of uc. For this
purpose we rely on a non-trivial energy estimate, in the spirit of [19].

The paper is organized as follows. In Section 2, we present results for the model without
σ1,c and some estimates for

(
F−1ε

)
∗σ1,c. These will be used in the proof of Theorem 2 to
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obtain estimates in the time harmonic regime, when the frequency is of order at most
1/ε. Section 3 provides estimates for uc in the time harmonic regime for arbitrarily large
frequencies. In section 4, we establish the well-posedness of uc and discuss the outgoing
radiation condition for its Fourier transform w.r.t. time. The required non-trivial energy
estimate for uc is also derived there. Finally, the proof of Theorem 2 is given in Section 5.

2 Preliminaries

In this section we recall some known results, which will be used frequently in this
paper, and we derive an estimate related to the model without σ1,c in the time harmonic
regime, when the frequency is of order at most 1/ε. This estimate is an extension of [16,
Lemma 2.4]. We also estimate

(
F−1ε

)
∗σ1,c in various regions. These results will be used

in Section 5 in the proof of Theorem 2.
Let U denote a connected smooth open region of Rd (d = 2 or 3) with a bounded

complement (this includes U = Rd). Here and in what follows, a solution v ∈ H1
loc

(U)
(d = 2 or 3) to the Helmholtz equation

∆v + k2v = 0 in U ,

for some k > 0, is said to be an outgoing solution (or satisfy the outgoing radiation
condition) if

∂v

∂r
− ikv = o

(
r−

d−1
2

)
as r →∞ .

We shall also need the space W 1(U); it is defined as follows,

W 1(U) =
{
ψ ∈ L1

loc(U) :
ψ(x)√
1 + |x|2

∈ L2(U) and ∇ψ ∈ L2(U)
}

for d = 3 ,

and,

W 1(U) =
{
ψ ∈ L1

loc(U) :
ψ(x)

ln(2 + |x|)
√

1 + |x|2
∈ L2(U) and ∇ψ ∈ L2(U)

}
for d = 2 .

Lemma 1. Let d = 2 or 3 and k > 0. Suppose f ∈ L2(Rd) with supp f ⊂ B5, and let
vk ∈ H1

loc
(Rd) be the unique outgoing solution to

∆vk + k2vk = f in Rd .

Then, for d = 2 and 0 ≤ k ≤ 1/2,

‖∇vk‖L2(B6) + ‖vk‖L2(B6) ≤ C| ln k|‖f‖L2 ,

and for d = 3 or for d = 2 and k > 1/2,

‖∇vk‖L2(B6) + (k + 1)‖vk‖L2(B6) ≤ C‖f‖L2 .

Here C is a positive constant independent of k and f .
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Proof. The conclusion in the case k < k0, for arbitrary fixed k0 > 0, follows directly from
the properties of the fundamental solution to the Helmholtz equation. The conclusion in
the case k ≥ k0 can also be obtained from the fundamental solution to the Helmholtz
equation. In this case, one can alternately obtain the conclusion using the Morawetz
multipliers (see, e.g., [21, Lemma 2 and Proposition 1]). We note that the estimate in
[21, Proposition 1] requires a damping layer due to the desire to obtain estimates that are
independent of the arbitrary coefficients inside B1/2. Since the operator here is ∆ + k2

throughout, there is no need for such a layer. The details are left to the reader. �

We next recall the following result which will be used frequently in this paper. The
result is from [16, Lemma 2.2] (see also [21, Lemma 3]).

Lemma 2. Let d = 2 or 3, and let D be a smooth, open bounded subset of Rd such that
Rd\D is connected. Suppose 0 < k < τ , for some fixed τ > 0, and suppose gk ∈ H1/2(∂D).
Let vk ∈ H1

loc
(Rd \D) be the unique outgoing solution to{

∆vk + k2vk = 0 in Rd \D ,

vk = gk on ∂D .

Then
‖vk‖H1(BR\D) ≤ Cr‖gk‖H1/2(∂D) for any R > 0 .

The constant CR is independent of k and gk. Furthermore for any ε > 0 sufficiently small
that D ⊂ B2/ε

‖vk‖L2(B5/ε\B2/ε)
≤ Cε−1/2‖gk‖H1/2(∂D) if d = 3

‖vk‖L2(B5/ε\B2/ε)
≤ Cε−1 |H

(1)
0 (k/ε)|
|H(1)

0 (k)|
‖gk‖H1/2(∂D) if d = 2 .

Here the constant C is independent of k, gk and ε. Finally, if we assume that gk → g
weakly in H1/2(∂D) as k → 0, then vk → v weakly in H1

loc
(Rd \D) where v ∈W 1(Rd \D)

is the unique solution of {
∆v = 0 in Rd \D ,

v = g on ∂D .

We next establish an estimate for the model without σ1,c, for frequency at most 1/ε.

Lemma 3. Let d = 2 or 3, and let a and σ be in L∞(B1/2), with

a real symmetric, uniformly positive definite, and =(σ) ≥ 0 . (2.1)

Suppose 0 < ε < τ , and 0 < k < τ/ε for some fixed, positive constant τ . For g ∈
H−

1
2 (∂B1) let vε ∈ H1

loc
(Rd) be the unique outgoing solution to

∆vε + ε2k2vε = 0 in Rd \ B̄1 ,

div(A∇vε) + k2Σvε = 0 in B1 ,

∂vε
∂r

∣∣∣
ext
− 1

εd−2
∂vε
∂r

∣∣∣
int

= g on ∂B1 .

(2.2)
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Here

A =

{
I if x ∈ Rd \B1/2 ,

a if x ∈ B1/2 ,
Σ =


1 if x ∈ Rd \B1 ,

1 + i/k if x ∈ B1 \B1/2 ,

σ if x ∈ B1/2 .

There exists a positive constant C, depending only on d and τ , such that

‖vε‖H1(B5\B1) ≤ C max{k3−d, εd−2/k}‖g‖
H−

1
2 (∂B1)

.

Proof of Lemma 3. We follow the strategy in the proof of [16, Lemma 2.4], and consider
the case d = 2 and d = 3 separately.

Case 1: d = 2. We first prove

‖vε‖L2(B5\B1) ≤ C max{k, 1/k}‖g‖
H−

1
2 (∂B1)

, (2.3)

by contradiction. Suppose this estimate is not true. Then there exist (gn) ⊂ H−
1
2 (∂B1),

(εn), (kn), (an), and (σn) such that 0 < εn < τ , 0 < kn < τ/εn, an and σn satisfy (2.1),
and

‖vn‖L2(B5\B1) = 1 , lim
n→∞

max{kn, 1/kn}‖gn‖
H−

1
2 (∂B1)

= 0 . (2.4)

Here vn ∈ H1
loc

(R2) is the unique outgoing solution to
∆vn + ε2nk

2
nvn = 0 in R2 \B1,

div(An∇vn) + k2nΣnvn = 0 in B1,

∂vn
∂r

∣∣∣
ext
− ∂vn

∂r

∣∣∣
int

= gn on ∂B1 ,

(2.5)

where An and Σn are defined the same way as A and Σ, with a and σ replaced by an and
σn. Multiplying the equation for vn by v̄n (the conjugate of vn) and integrating on BR,
we obtain∫

∂BR

∂rvnv̄n −
∫
BR\B1

|∇vn|2 + ε2nk
2
n

∫
BR\B1

|vn|2

−
∫
B1

〈An∇vn,∇v̄n〉+ k2n

∫
B1

Σn|vn|2 =

∫
∂B1

gnv̄n . (2.6)

Letting R → ∞ in (2.6), using the outgoing condition, and considering the imaginary
part, we derive that

kn

∫
B1\B1/2

|vn|2 ≤ ‖gn‖H−1/2(∂B1)
‖vn‖H1/2(∂B1)

. (2.7)
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By Caccioppoli’s inequality, it follows that∫
B4/5\B3/5

|∇vn|2 ≤ C(k2n + 1)

∫
B1\B1/2

|vn|2

≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)
‖vn‖H1/2(∂B1)

.

Here and in the remainder of this proof, C denotes a positive constant depending only on
d and τ (which might change from one place to another). The above estimate implies that
for some r ∈ (3/5, 4/5) (r depends on n),∫

∂Br

|∇vn|2 + (1 + k2n)

∫
∂Br

|vn|2 ≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)
‖vn‖H1/2(∂B1)

. (2.8)

Multiplying the equation for vn by v̄n and integrating on B5 \Br, we have∫
∂B5

∂rvnv̄n −
∫
∂Br

∂rvnv̄n −
∫
B5\Br

|∇vn|2 + ε2nk
2
n

∫
B5\B1

|vn|2

+ k2n

∫
B1\Br

Σn|vn|2 =

∫
∂B1

gnv̄n . (2.9)

Since vn ∈ H1
loc

(R2 \B3) is the unique outgoing solution to ∆vn + ε2nk
2
nvn = 0 in R2 \B3

and εnkn ≤ τ , it follows that (see, e.g., Lemma 2)

‖vn‖H1(B6\B3) ≤ C‖vn‖H1/2(∂B3)
, (2.10)

Since ∆vn + ε2nk
2
nvn = 0 in B5 \ B1, using the standard theory of elliptic equations, we

have that
‖vn‖H1/2(∂B3)

≤ C‖vn‖H1(B4\B2) ≤ C‖vn‖L2(B5\B1) . (2.11)

A combination of (4.25) and (4.26) yields

‖vn‖H1(B6\B3) ≤ C‖vn‖L2(B5\B1) . (2.12)

Using (2.7), (2.8), and (2.12), we derive from (2.9) that∫
B5\Br

|∇vn|2 ≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)
‖vn‖H1/2(∂B1)

+ C‖vn‖2L2(B5\B1)
. (2.13)

We immediately obtain from (2.13) that∫
B5\B1

|∇vn|2 +

∫
B5\B1

|vn|2

≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)
‖vn‖H1/2(∂B1)

+ C‖vn‖2L2(B5\B1)

≤ C
(

max{kn, 1/kn}‖gn‖H−1/2(∂B1)
+ ‖vn‖L2(B5\B1)

)
‖vn‖H1(B5\B1) , (2.14)
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and so, by (2.4)
‖vn‖H1(B5\B1) ≤ C , and ‖vn‖H1/2(∂B1)

≤ C . (2.15)

From (2.7) and (2.15), we conclude

(1 + k2n)

∫
B1\B1/2

|vn|2 ≤ C max{kn, 1/kn}‖gn‖H−1/2(∂B1)
,

so by (2.4)

lim
n→∞

(1 + k2n)

∫
B1\B1/2

|vn|2 = 0 . (2.16)

Since, for any v ∈ H1(B1 \Br),

‖v‖2L2(∂B1)
≤ C‖v‖L2(B1\Br)‖v‖H1(B1\Br) ,

(see [7, Lemma 5.5]), it follows from (2.13), (2.15), and (2.16) that

lim
n→∞

‖vn‖L2(∂B1) = 0 .

We have (see, e.g., Lemma 2) for any R > 1,

‖vn‖H1(BR\B1) ≤ CR‖vn‖H1/2(∂B1)
≤ CR ,

where we used the second estimate of (2.15) to obtain the last bound. By extraction of a
subsequence (and a diagonalization argument) one might assume that εnkn → ω ∈ [0, τ ]
(since εnkn ∈ [0, τ ]) and vn → v weakly in H1

loc
(R2 \B1), vn|∂B1 → 0 weakly in H1/2(∂B1).

By (2.4),
‖v‖L2(B5\B1) = 1 , (2.17)

and for ω > 0, v is the unique outgoing solution to 3{
∆v + ω2v = 0 in R2 \B1

v = 0 on ∂B1.

Hence v = 0, and so we have a contradiction to (2.17). If ω = 0, then by Lemma 2,
v ∈W 1(R2) is the unique such solution to{

∆v = 0 in R2 \B1

v = 0 on ∂B1 .

Hence v = 0, and so again we have a contradiction to (2.17). This verifies the L2 estimate
(2.3). We have, as in (2.13),∫

B5\B1

|∇vε|2 ≤ C max{k, 1/k}‖g‖H−1/2(∂B1)
‖vε‖H1/2(∂B1)

+ C

∫
B5\B1

|vε|2 ,

3The outgoing property of v is just a consequence of the fact that the fundamental solution of the
Helmholz equation with frequency εnkn converges to the fundamental solution of the Helmholtz equation
with frequency ω, since ω > 0.
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and so by (2.3)
‖vε‖H1(B5\B1) ≤ C max{k, 1/k}‖g‖H−1/2(∂B1)

,

as desired. This completes the proof of the lemma for d = 2.

Case 2: d = 3. We have (see, e.g., Lemma 2)

‖vε‖H1(B5\B1) ≤ C‖vε‖H1/2(∂B1)
. (2.18)

Hence it suffices to prove that

‖vε‖
H

1
2 (∂B1)

≤ C max{1, ε/k}‖g‖
H−

1
2 (∂B1)

. (2.19)

We first prove (2.19) by contradiction for ε ≤ ε0, with ε0 sufficiently small. Suppose this

is not true. Then there exist (gn) ⊂ H−
1
2 (∂B1), (εn), (kn), (an), and (σn) such that

0 < εn < τ , 0 < kn < τ/εn, an and σn satisfy (2.1), εn → 0, and

‖vn‖
H

1
2 (∂B1)

= 1 , lim
n→∞

max{1, εn/kn}‖gn‖
H−

1
2 (∂B1)

= 0 . (2.20)

Here vn ∈ H1
loc

(R3) is the unique outgoing solution to
∆vn + ε2nk

2
nvn = 0 in R3 \B1 ,

div(An∇vn) + k2nΣnvn = 0 in B1 ,

∂vn
∂r

∣∣∣
ext
− 1

εn

∂vn
∂r

∣∣∣
int

= gn on ∂B1 ,

(2.21)

where An and Σn are defined in the same way as A and Σ, but with a and σ replaced by
an and σn. Since ‖vn‖

H
1
2 (∂B1)

= 1, it follows from (2.18) that

‖vn‖H1(B5\B1) ≤ C .

In combination with (2.20), (2.21), and the fact that εn → 0 this implies

lim
n→∞

∥∥∥∂vn
∂r

∣∣∣
int

∥∥∥
H−

1
2 (∂B1)

= 0 . (2.22)

Multiplying the equation of vn by v̄n and integrating on BR, we obtain∫
∂BR

∂rvnv̄n −
∫
BR\B1

|∇vn|2 + ε2nk
2
n

∫
BR\B1

|vn|2

− 1

εn

∫
B1

〈An∇vn,∇v̄n〉+
k2n
εn

∫
B1

Σn|vn|2 =

∫
∂B1

gnv̄n . (2.23)

Letting R → ∞ in (2.23), using the outgoing condition, and considering the imaginary
part, we derive from (2.20) and the fact knεn ≤ τ that

lim
n→+∞

(1 + k2n)

∫
B1\B1/2

|vn|2 = 0 . (2.24)
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Since ∆vn + k2n(1 + i/kn)vn = 0 in B1 \B1/2, by Caccioppoli’s inequality, we obtain∫
B4/5\B3/5

|∇vn|2 ≤ C(k2n + 1)

∫
B1\B1/2

|vn|2. (2.25)

It follows from (2.24) and (2.25) that there exits r ∈ (3/5, 4/5) (r depends on n) such that∫
∂Br

|∇vn|2 + (1 + k2n)

∫
∂Br

|vn|2 → 0 as n→∞. (2.26)

Since ∆vn + k2n(1 + i/kn)vn = 0 in B1 \Br, we have

−
∫
B1\Br

|∇vn|2 + (k2n + ikn)

∫
B1\Br

|vn|2 =

∫
∂Br

∂rvnv̄n −
∫
∂B1

∂rvnv̄n . (2.27)

A combination of (2.20), (2.22), (2.24), (2.26), and (2.27) yields

lim
n→∞

∫
B1\B4/5

|∇vn|2 = 0 . (2.28)

From (2.24) and (2.28), we conclude that

lim
n→∞

‖vn‖
H

1
2 (∂B1)

≤ C lim
n→∞

‖vn‖H1(B1\B4/5)
= 0 .

this is a contradiction to (2.20), and thus (2.19) holds under the additional assumption
that ε ≤ ε0 for some fixed 0 < ε0, sufficiently small.

It remains to prove (2.19) for ε0 < ε < τ . In this case, we first prove that

‖vε‖L2(B5\B1) ≤ C max{k, 1/k}‖g‖
H−

1
2 (∂B1)

, (2.29)

by contradiction, and then we show that

‖vε‖H1(B5\B1) ≤ C max{k, 1/k}‖g‖
H−

1
2 (∂B1)

. (2.30)

We note that since k is bounded (k < τ/ε0) and ε is bounded away from zero (2.30) implies
(2.19). In the argument by contradiction one may without loss of generality assume the
εn converge to ε1 > 0. Thus the system (2.21) is asymptotically similar to the 2d system
(2.5), and so the argument of proof proceeds in the same fashion as in the two dimensional
case presented above. The details are left to the reader. �

We next provide some useful estimates for σ1,ε which is defined as follows

σ1,ε :=
(
F−1ε

)
∗σ1,c , in B2 \Bε . (2.31)

Lemma 4. Assume kε ≥ c∗ε−1, for some fixed constant c∗ > 0. We have

|σ1,ε| ≤
C1

εd−1k2ε
if k <

c∗
2
ε−1 ,

and,

|σ1,ε| ≤
C2

εd−1k
and =(σ1,ε) ≥

c3k

max{k4ε , k4}
if k ≥ c∗

2
ε−1 ,

for some positive constants C1, C2, c3 independent of ε, k and kε (but dependent on c∗).

13



Proof. We recall, by (1.3), and the fact that σN = σD = 1,

σ1,c =
1

k2ε − k2 − ik
, (2.32)

and therefore

=(σ1,c) =
k

(k2ε − k2)2 + k2
. (2.33)

If k < c∗
2 ε
−1 then it follows from (2.32) that

|σ1,c| ≤
C

k2ε
,

since k2ε − k2 > 3k2ε/4. In this proof, C denotes a positive constant independent of ε, k,
and kε.

If k ≥ c∗
2 ε
−1, then it follows from (2.32) that

|σ1,c| ≤
C

k
,

and from (2.33) that

=(σ1,c) ≥
Ck

max{k4ε , k4}
.

Since σ1,ε = (F−1ε )∗σ1,c, the estimates in this lemma are now a consequence of the fact
that

1/C ≤ detDF−1ε ≤ Cε−d+1 .

�

3 Stability estimates in the time harmonic regime

Let ûc(k, ·) be the Fourier transform of uc(·, x) w.r.t. t 4 , i.e.,

ûc(k, x) :=
1√
2π

∫ ∞
−∞

uc(t, x)eikt dt .

Then ûc ∈ H1
loc

(Rd) (for a.e. k > 0) is the unique outgoing solution to

div(Ac∇ûc) + k2Σcûc = −f̂ ,

where (Ac,Σc) is given in (1.4) (see Proposition 2 in Section 4).

Define ũε(k, x) = ûc(k, Fε(k, x)). Then ũε ∈ H1
loc

(Rd) is the unique outgoing solution to

div(Aε∇ũε) + k2Σεũε = −f̂ , (3.1)

4After extending uc by 0 for t < 0.
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where

Aε,Σε =



I, 1 in Rd \B2 ,

I, σε(x) := 1 + σ1,ε(x) in B2 \Bε ,
1

εd−2
I,

1

εd
(1 + i/k) in Bε \Bε/2 ,

1

εd−2
a(εx),

1

εd
σ(εx) in Bε/2 ,

(3.2)

and
σ1,ε =

(
F−1ε

)
∗σ1,c . (3.3)

In this section, we establish the stability for solutions to (3.1), (3.2) for quite general
σ1,ε; hence in the remainder of this section, we do not assume that σ1,ε is of the form
(3.3), but only that it satisfies certain bounds. We recall that

a is bounded, uniformly elliptic, and σ ∈ L∞(B1) with =(σ) ≥ 0 . (3.4)

The first result of this section concerns the small to moderate frequency regime.

Lemma 5. Let d = 2 or 3, τ > 0, 0 < ε, k < τ , and g ∈ L2(Rd) with supp g ⊂ B4 \ Bε.
Assume that

‖σ1,ε‖L∞(B2\Bε) ≤ C0, and =(σ1,ε) ≥ 0 . (3.5)

Let vε ∈ H1
loc

(Rd) be the unique outgoing solution to

div(Aε∇vε) + k2Σεvε = g in Rd. (3.6)

There exists a positive constant C, depending only on d, τ and C0, such that

‖vε‖L2(B5\Bε) ≤ C max{1, 1/k}‖g‖L2 . (3.7)

Remark 1. In Lemma 5, the support of g is assumed to be inside B4\Bε not B4\B2, since
g will be of the form −k2σ1,εû1,ε, when we apply this lemma in the proof of Theorem 2.
The blow up technique does not work for Lemma 5 due to the presence of σ1,ε 6= 0 inside
B2 \ Bε. It is not essential that the support of g be inside B4 \ Bε, this could be replaced
by BM \Bε for any M > 4. The constant C in the estimate would depend on M .

Proof. The proof is based on a contradiction argument, in which we use an argument of
removable singularity. Suppose (3.7) does not hold. Then there exist {kn}, {εn} ⊂ (0, τ),
σ1,n, an, σn, and {gn}, supp gn ⊂ B4 \Bεn , such that (3.5) holds for σ1,n, an and σn satisfy
(3.4), and

max{1, 1/kn}‖gn‖L2 → 0 as n→∞, ‖vn‖L2(B5\Bεn ) = 1 . (3.8)

Here vn ∈ H1
loc

(Rd) is the unique outgoing solution to

div(An∇vn) + k2nΣnvn = gn in Rd,
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where An, Σn are defined in the same way as Aε, Σε with k, ε, σ1,ε, a, and σ replaced by
kn, εn, σ1,n, an, and σn. Using the outgoing radiation condition, as in (2.24), we obtain,

kn
εdn

∫
Bεn\Bεn/2

|vn|2 ≤
∫
Rd
|gn||vn| .

Here we also used that =(σ1,n) and =(σn) are non-negative. Since supp gn ⊂ B4 \Bεn and
‖vn‖L2(B5\Bεn ) = 1, the above inequality implies that

kn + 1

εd−1n

∫
Bεn\Bεn/2

|vn|2 ≤ 2εn max{1, 1/kn}‖gn‖L2 . (3.9)

We have

∆vn +
k2n
ε2n

(1 + i/kn)vn = 0 in Bεn \Bεn/2 .

It follows from Caccioppoli’s inequality that∫
B4εn/5\B3εn/5

|∇vn|2 ≤
C(k2n + 1)

ε2n

∫
Bεn\Bεn/2

|vn|2 ,

and so
εn

εd−2n (kn + 1)

∫
B4εn/5\B3εn/5

|∇vn|2 ≤
C(kn + 1)

εd−1n

∫
Bεn\Bεn/2

|vn|2 . (3.10)

In this proof, C denotes a positive constant depending only on d and τ . From (3.9) and
(3.10)

εn

εd−2n (kn + 1)

∫
B4εn/5\B3εn/5

|∇vn|2 ≤ Cεn max{1, 1/kn}‖gn‖L2 . (3.11)

A combination of (3.9) and (3.11) now yields

1

εd−2n

∫
B4εn/5\B3εn/5

(kn + 1

εn
|vn|2 +

εn
kn + 1

|∇vn|2
)
≤ Cεn max{1, 1/kn}‖gn‖L2 .

It follows that for some α ∈ (3εn/5, 4εn/5) (α depends on n),

1

εd−2n

∫
∂Bα

(kn + 1

εn
|vn|2 +

εn
kn + 1

|∇vn|2
)
≤ C max{1, 1/kn}‖gn‖L2 → 0 as n→∞ .

(3.12)
Here we used (3.8) for the last convergence assertion. Multiplying the equation for vn by
v̄n, and integrating on B5 \Bα, we have

−
∫
B5\Bεn

|∇vn|2 + k2n

∫
B5\Bεn

(1 + σ1,n)|vn|2 −
1

εd−2n

∫
Bεn\Bα

|∇vn|2

+
k2n
εdn

(
1 +

i

kn

)∫
Bεn\Bα

|vn|2 =

∫
B5

gnv̄n −
∫
∂B5

∂rvn v̄n +
1

εd−2n

∫
∂Bα

∂rvn v̄n . (3.13)
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Since vn ∈ H1
loc

(Rd \B9/2) is an outgoing solution to ∆vn+k2nvn = 0 in Rd \B9/2, we have
(see, e.g., Lemma 2)

‖vn‖H1(B6\B9/2)
≤ C‖vn‖H1/2(∂B9/2)

,

and so, by the standard theory of elliptic equations,

‖vn‖H1(B6\B9/2)
≤ C‖vn‖L2(B5\Bεn ) . (3.14)

Using (3.5), (3.8), (3.9), (3.12), and (3.14), in combination with (3.13), we now obtain∫
B5\Bα

|∇vn|2 ≤ C . (3.15)

Define un ∈ H1(Bα) as follows

∆un = 0 in Bα and un = vn on ∂Bα .

We derive from (3.8) and (3.12) that∫
Bα

|∇un|2 + |un|2 → 0 as n→∞ . (3.16)

Indeed, set wn(x) = un(αx) for x ∈ B1. Then

∆wn = 0 in B1 ,

and

‖wn‖2H1(∂B1)
≤ C

(
α1−d

∫
∂Bα

|un|2 + α3−d
∫
∂Bα

|∇un|2
)
≤ C max{1, 1/kn}‖gn‖L2 ,

where we used (3.12), and the fact that 3εn/5 < α < 4εn/5 for the last estimate. It follows
that ∫

B1

|∇wn|2 + |wn|2 ≤ C max{1, 1/kn}‖gn‖L2 ,

which in terms of un yields

α−d
∫
Bα

|un|2 + α2−d
∫
Bα

|∇un|2 ≤ C max{1, 1/kn}‖gn‖L2 .

The assertion (3.16) now follows from (3.8). Define

Vn =

{
vn in Rd \Bα ,

un in Bα .

We derive from (3.8), (3.9), (3.15), and (3.16) that∫
B5

|∇Vn|2 + |Vn|2 ≤ C .
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It follows that (see, e.g., Lemma 2)

‖Vn‖H1(BR\B4) ≤ CR‖Vn‖H1/2(∂B4)
≤ CR‖Vn‖H1(B5) ≤ CR ,

for any R ≥ 5, and as a consequence

‖Vn‖H1(BR) ≤ CR ,

for all R > 0. After extraction of a subsequence we may thus assume that kn → k0 ≥ 0,
εn → ε0 ≥ 0, α → α0 (recall that α depends on n), σ1,εn → σ1 weakly in L2 (σ1 satisfies
(3.5)), and Vn → V weakly in H1

loc
(Rd).

Suppose k0 > 0. If ε0 = 0 then V is an outgoing solution to the equation

∆V + k20(1 + σ1)V = 0 in Rd \ {0} .

Since V ∈ H1
loc

(Rd), it follows that

∆V + k20(1 + σ1)V = 0 in Rd .

Therefore, V = 0, and we have a contradiction to the fact that
∫
B5
|V |2 = lim

∫
B5\Bεn

|Vn|2

= 1. Similarly, if k0 > 0 and ε0 > 0 (and thus α0 > 0), then V is an outgoing solution to

∆V + k20(1 + σ1)V = 0 in Rd \Bα0 . (3.17)

It follows from (3.16) that V = 0 in Bα0 . Hence V |Rd\Bα0 is the unique outgoing solution

to (3.19) with V = 0 on ∂Bα0 , and as a consequence V = 0 in all of Rd; we have also
arrived at a contradiction.

This leaves k0 = 0. We start by considering the case ε0 > 0 (and thus α0 > 0). By
Lemma 2, V ∈W 1(Rd \Bα0) is a solution to the equation

∆V = 0 in Rd \ B̄α0 . (3.18)

It follows from (3.16) that V = 0 in Bα0 , and thus V is the unique solution to (3.19), with
V = 0 on ∂Bα0 . Hence V = 0 in Rd \Bα0 , and as a consequence V = 0 in Rd, so we have
arrived at a contradiction.

Finally this leaves only the case k0 = ε0 = 0. By Lemma 2, V ∈W 1(Rd) is a solution
to the equation

∆V = 0 in Rd \ {0} . (3.19)

Since V ∈W 1(Rd), it follows that

∆V = 0 in Rd . (3.20)

Thus V = 0 in the case d = 3, and we have arrived at a contradiction in three dimensions.
In two dimensions, we can only at present conclude that V is a constant, due to (3.20).
We proceed to prove that V = 0 in the case d = 2 as well. Set

ṽn(x) = vn(εnx) for x ∈ B1 \B4/5 .
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From (3.8), (3.9), and (3.15), we have

‖ṽn‖2H1/2(∂B1)
≤ C

(∫
B1\B4/5

|∇ṽn|2 + |ṽn|2
)

= C

(∫
Bε\B4ε/5

|∇vn|2 + ε−2n |vn|2
)
≤ C .

(3.21)
Since limn→∞ ‖ṽn‖L2(B1\B4/5)

= 0 by (3.8) and (3.9), it follows from (3.21) that ṽn → 0

weakly in H1(B1 \B4/5), and thus

ṽn → 0 weakly in H1/2(∂B1) . (3.22)

Let v1,n ∈ H1
loc

(R2) be the unique outgoing solution to

∆v1,n + k2nv1,n = −k2nσ1,nvn in R2 .5

Applying Lemma 1, the regularity theory of elliptic equations, and using (3.5) and (3.8),
we have

1

kn + 1
‖∇2v1,n‖L2(B5) + ‖∇v1,n‖L2(B5) + (kn + 1)‖v1,n‖L2(B5) ≤ Ck

2
n(| ln kn|+ 1) .

As a consequence of this and the fact that kn → 0,

‖∇v1,n‖L2(B5) + ‖v1,n‖L∞(B5) ≤ Ck
2
n(| ln kn|+ 1) . (3.23)

By a rescaling (remember d = 2) we get

‖∇ṽ1,n‖L2(B5) + ‖ṽ1,n‖L∞(B5) ≤ Ck
2
n(| ln kn|+ 1) ,

with ṽ1,n(x) = v1,n(εnx), and thus

‖ṽ1,n‖H1/2(∂B1)
≤ Ck2n(| ln kn|+ 1)→ 0 . (3.24)

We define
wn = vn − v1,n in R2 \Bεn ;

wn ∈ H1
loc

(R2 \Bεn) is the unique outgoing solution to

∆wn + k2nwn = 0 in R2 \Bεn , and wn = vn − v1,n on ∂Bεn .

Set
Wn(x) = wn(εnx) for x ∈ R2 \B1 .

Then Wn ∈ H1
loc

(R2 \B1) is the unique outgoing solution to

∆Wn + k2nε
2
nWn = 0 in R2 \B1 , and Wn(x) = ṽn(x)− ṽ1,n(x) on ∂B1 .

5Setting σ1,n equal to zero outside B2 \Bεn .
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Applying Lemma 2 for Wn and using (3.22) and (3.24), we have Wn → 0 weakly in
H1
loc(R2 \B1), and by interior elliptic regularity estimates

‖Wn‖H1/2(∂B2)
→ 0 as n→ 0 .

Applying Lemma 2 to Wn again and rescaling, we obtain

‖wn‖L2(B5\B4) ≤
C| ln kn|
| ln(εnkn)|

‖Wn‖H1/2(∂B2)
→ 0 as n→∞ . (3.25)

A combination of (3.23) and (3.25) yields that vn → 0 in L2(B5\B4); it follows that V = 0
in B5 \B4, and thus V = 0 in all of R2 (since we already know it must be a constant). We
have a contradiction, and the proof is complete. �

The second result in this section deals with the moderate to high frequency regime.

Lemma 6. Let d = 2 or 3, 0 < ε < 1/2, and k > k0 > 0 for some constant k0. Suppose
g ∈ L2(Rd) with supp g ⊂ B4 \Bε and let vε ∈ H1

loc
(Rd) be the unique outgoing solution to

div(Aε∇vε) + k2Σεvε = g in Rd. (3.26)

Assume that

‖σ1,ε‖L∞ = χ1 , and =(σ1,ε) ≥ χ2 a.e. in B2 \Bε , (3.27)

for some χ1 ≥ χ2 > 0. There exist two positive constants λ and C, independent of k, ε,
χ1, χ2, and g such that

i) If kχ1 ≤ λ, then ∫
B5\Bε

(
|∇vε|2 + k2|vε|2

)
≤ C(k4 + 1)

∫
Rd
|g|2 . (3.28)

ii) If kχ1 > λ, then∫
B5\Bε

(
|∇vε|2 + k2|vε|2

)
≤ C

(
k4 +

k2χ4
1

χ2
2

)∫
Rd
|g|2 . (3.29)

Remark 2. As in the previous lemma, it is not essential that the support of g be inside
B4 \Bε, this could be replaced by BM \Bε for any M > 4. The constants in the estimates
would depend on M . We also note that the estimate (3.28) is stronger than the estimate
(3.29), since k > k0 > 0. It thus follows immediately that∫

B5\Bε

(
|∇vε|2 + k2|vε|2

)
≤ C

(
k4 +

k2χ4
1

χ2
2

)∫
Rd
|g|2 ,

for all k > k0 > 0. These facts shall both be used in the proof of Theorem 2.
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Proof. The proof is inspired by [21]. To simplify notation we drop the subscript ε from
vε. Multiplying (3.26) by v̄ and integrating on BR, R > 1, we obtain∫

∂BR

∂rv v̄ −
∫
BR

〈Aε∇v,∇v̄〉+ k2
∫
BR

Σε|v|2 =

∫
BR

gv̄ .

Letting R go to infinity, using the outgoing condition, and considering the imaginary part,
we have

k lim sup
R→∞

∫
∂BR

|v|2 +
k

εd

∫
Bε\Bε/2

|v|2 + k2χ2

∫
B2\Bε

|v|2 ≤
∫
Rd
|g||v| . (3.30)

Since ∆v+ k2

ε2
v+ i k

ε2
v = 0 in Bε \Bε/2 and k > k0, it follows from Caccioppoli’s inequality

that ∫
B4ε/5\B3ε/5

|∇v|2 ≤ Ck2

ε2

∫
Bε\Bε/2

|v|2 . (3.31)

In this proof, C denotes a positive constant independent of ε, k, χ1, χ2, and g. It follows
from (3.30) and (3.31) that∫

B4ε/5\B3ε/5

|∇v|2 +
k2

ε2

∫
Bε\Bε/2

|v|2 ≤ Cεd−2k
∫
Rd
|g||v| .

Thus there exists t ∈ (3ε/5, 4ε/5) such that∫
∂Bt

|∇v|2 ≤ Cεd−3k
∫
Rd
|g||v| and

∫
∂Bt

|v|2 ≤ Cεd−1

k

∫
Rd
|g||v| . (3.32)

Applying [21, Lemma 2] with α = ε and R > β ≥ 5 (β is a fixed constant which will be
chosen later), we have 6

1

d− 1

∫
Bβ\Bε

|∇v|2 + k2|v|2 ≤ Fβ(ε, v+)− Fβ(R, v) +
β(3− d)

2

∫
BR\Bβ

|v|2

r3

+ C

∫
Rd
|g|(|v′|+ |v|) + C

∫
B2\Bε

k2χ1(|v||v′|+ |v|2) . (3.33)

Here

Fβ(r, v) = −k
2

2

∫
∂Br

P∗(r)|v|2 −
1

2

∫
∂Br

P∗(r)|v′|2 +
1

2

∫
∂Br

Q′∗(r)|v|2

− 1

2

∫
∂Br

Q∗(r)(|v|2)′ +
1

2

∫
∂Br

P∗(r)|∇∂Brv|2 ,

6This inequality is a variant of an inequality due to Morawetz and Ludwig [15] (see also [24]).
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with

P∗(r) =


2β

d− 1
if r > β ,

2r

d− 1
if 0 < r < β ,

and Q∗(r) =


β

r
if r > β ,

1 if 0 < r < β .

Note that

Fβ(r, v) = F (r, v) := − k2r

d− 1

∫
∂Br

|v|2 − r

d− 1

∫
∂Br

|v′|2

− 1

2

∫
∂Br

(|v|2)′ + r

d− 1

∫
∂Br

|∇∂Brv|2 , (3.34)

for 0 < r < β (where F is independent of β). Since P∗(r) = 2r
d−1 and Q∗(r) = 1 for

0 < r < β,

<
∫
Bε\Bt

(
∆v + k2v

)[ 2r

d− 1
vr + v

]
=

∫
Bε\Bt

<
[(

∆v + k2v
)( 2

d− 1
x · ∇v + v

)]
.

We have 7

<
[ (

∆v + k2v
) ( 2

d− 1
x · ∇v + v

)]
= − 1

d− 1

(
|∇v|2 + k2|v|2

)
+ < ∇ ·

[ 2

d− 1
∇v (x · ∇v)− 1

d− 1
x |∇v|2 +∇v v +

k2

d− 1
x |v|2

]
. (3.35)

Integrating over the domain Bε \Bt, we obtain:

<
∫
Bε\Bt

(
∆v + k2v

)[ 2r

d− 1
vr + v

]
+

1

d− 1

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)
= <

∫
∂Bε

(
2ε

d− 1
|vr|2 −

ε

d− 1

∣∣∇v∣∣2 + vr v +
k2 ε

d− 1
|v|2
)

−<
∫
∂Bt

(
2t

d− 1
|vr|2 −

t

d− 1

∣∣∇v∣∣2 + vr v +
k2 t

d− 1
|v|2
)
.

It follows that

1

εd−2(d− 1)

∫
Bε\Bt

|∇v|2 + k2|v|2 ≤ − 1

εd−2
F (ε, v−) +

1

εd−2
F (t, v)

+
Ck2

εd

∫
Bε\Bt

(ε|v||v′|+ |v|2) . (3.36)

7This is the “Rellich” identity which originates from [15, 22, 25].
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Adding (3.33) and (3.36), we obtain∫
Bβ\Bε

(
|∇v|2 + k2|v|2

)
+

1

εd−2

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)
≤ (d− 1)

(
F (ε, v+)− Fβ(R, v)− 1

εd−2
F (ε, v−) +

1

εd−2
F (t, v)

)

+
Ck2

εd

∫
Bε\Bt

(ε|v||v′|+ |v|2) +
β(3− d)(d− 1)

2

∫
BR\Bβ

|v|2

r3

+ C

∫
Rd
|g|(|v′|+ |v|) + C

∫
B2\Bε

k2χ1(|v||v′|+ |v|2). (3.37)

We next estimate the first and second lines of the RHS of (3.37). We start with the
first line. Using the outgoing condition, we have

lim sup
R→∞

−Fβ(R, v) ≤ Cβk2 lim sup
R→∞

∫
∂BR

|v|2 ,

which implies, by (3.30),

lim sup
R→∞

−Fβ(R, v) ≤ Cβk
∫
Rd
|g||v| . (3.38)

We claim that

F (ε, v+)− 1

εd−2
F (ε, v−) ≤ Ck2

∫
∂Bε

|v|2 . (3.39)

In fact, if d = 2 then there is nothing to prove since v+ = v− and ∂rv+ = ∂rv− on ∂Bε.
Assume d = 3. Since v+ = v− on ∂Bε, and ε < 1 we get, by (3.34),

F (ε, v+)− 1

ε
F (ε, v−) ≤ k2(1− ε)

2

∫
∂Bε

|v|2 − ε

2

∫
∂Bε

|v′+|2 +
1

2

∫
∂Bε

|v′−|2

− 1

2

∫
∂Bε

(|v+|2)′ +
1

2ε

∫
∂Bε

(|v−|2)′ . (3.40)

Using the fact that v′+ = (1/ε)v′− (and ε < 1), claim (3.39) follows from (3.40). We next
estimate the RHS of (3.39). We have∫

∂Bε

|v|2 − (ε/t)d−1
∫
∂Bt

|v|2 ≤ C
(∫

Bε\Bt
|∇v|2

)1/2(∫
Bε\Bt

|v|2
)1/2

.

This implies∫
∂Bε

|v|2 − (ε/t)d−1
∫
∂Bt

|v|2 ≤ Cc

k2εd−2

∫
Bε\Bt

|∇v|2 +
Ck2εd−2

c

∫
Bε\Bt

|v|2 , (3.41)
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for some small positive constant c, which will be chosen later. A combination of (3.39)
and (3.41) yields

F (ε, v+) − 1

εd−2
F (ε, v−)

≤ Ck2

[
c

k2εd−2

∫
Bε\Bt

|∇v|2 +
k2εd−2

c

∫
Bε\Bt

|v|2 +

∫
∂Bt

|v|2
]
. (3.42)

From (3.30) and (3.32), we have

k4εd−2

c

∫
Bε\Bt

|v|2 + k2
∫
∂Bt

|v|2 ≤ C
(
k3ε2d−2 + kεd−1

)∫
Rd
|g||v| . (3.43)

It follows from (3.42) and (3.43), by choosing c sufficiently small, that

F (ε, v+)− 1

εd−2
F (ε, v−) ≤ C

(
k3ε2d−2 + kεd−1

)∫
Rd
|g||v|+ 1

3εd−2

∫
Bε\Bt

|∇v|2 . (3.44)

We also have, by (3.34),

F (t, v) ≤ C
∫
∂Bt

|v||∇v| ≤ C
( ε
k

∫
∂Bt

|∇v|2 +
k

ε

∫
∂Bt

|v|2
)
,

which, by (3.32), implies
1

εd−2
F (t, v) ≤ C

∫
Rd
|g||v| . (3.45)

Combining (3.44) and (3.45), we reach the following estimate for the first line of the RHS
of (3.37)

F (ε, v+) + lim sup
R→∞

−Fβ(R, v)− 1

εd−2
F (ε, v−) +

1

εd−2
F (t, v)

≤ C(k3ε2d−2 + kεd−1 + βk)

∫
Rd
|g||v|+ 1

3εd−1

∫
Bε\Bt

|∇v|2 . (3.46)

Here we used that k ≥ k0 > 0, and β ≥ 5. We next estimate the second line of the RHS
of (3.37). For that purpose

k2

εd

∫
Bε\Bt

(
ε|v||v′|+ |v|2

)
≤
∫
Bε\Bt

([
k4

cεd
+
k2

εd

]
|v|2 +

c

εd−2
|v′|2

)
for c > 0. Using (3.30) and choosing c sufficiently small, we have

C
k2

εd

∫
Bε\Bt

(
ε|v||v′|+ |v|2

)
≤ C(k3 + k)

∫
Bε\Bt

|g||v|+ 1

3εd−2

∫
Bε\Bt

|v′|2 . (3.47)

On the other hand, using [21, (2.25)-(2.26)], we have for d = 2,∫
BR\Bβ

|v|2

r3
≤ C

∫ ∞
β

1

r3
dr

∫
∂Bβ

|v|2 ≤ C

β2

∫
∂Bβ

|v|2 ≤ C

β2

∫
B5\B4

|v|2 . (3.48)
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From (3.47) and (3.48), we reach the following estimate for the second line of the RHS of
(3.37)

Ck2

εd

∫
Bε\Bt

(
ε|v||v′|+ |v|2

)
+
β(3− d)(d− 1)

2

∫
BR\B5

|v|2

r3

≤ C(k3 + k)

∫
Bε\Bt

|g||v|+ 1

3εd−2

∫
Bε\Bt

|v′|2 +
C

β

∫
B5\B4

|v|2 . (3.49)

A combination of (3.37), (3.46) and (3.49) yields (by taking a ”limit” of large R)∫
Bβ\Bε

(
|∇v|2 + k2|v|2

)
+

1

εd−2

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)
≤ C(k3 + βk)

∫
Rd
|g||v|+ C

∫
Rd
|g||v′|+ C

∫
B2\Bε

k2χ1(|v||v′|+ |v|2) , (3.50)

for β sufficiently large. Here we used the fact that 0 < ε < 1/2 and k ≥ k0 > 0.

Case 1: kχ1 ≤ λ. It follows from (3.50) that∫
B5\Bε

(
|∇v|2 + k2|v|2

)
+

1

εd−2

∫
Bε\Bt

(
|∇v|2 + k2|v|2

)
≤ C(k4 + 1)

∫
Rd
|g|2 , (3.51)

since

(k3 + k)|g||v| ≤ (k2 + 1)(k + 1)|g||v| ≤ 1

c
(k2 + 1)2|g|2 + c(k + 1)2|v|2 , (3.52)

and

|g||v′| ≤ 1

c
|g|2 + c|v′|2 . (3.53)

In (3.51) we have absorbed the remaining terms of the RHS of (3.50) by the LHS (by
taking c sufficiently small) since λ can also be chosen sufficiently small.

Case 2: kχ1 ≥ λ. It follows from (3.50) that∫
B5\Bε

|∇v|2 + k2|v|2 +
1

εd−2

∫
Bε\Bt

|∇v|2 + k2|v|2 ≤ C
(
k4 +

k2χ4
1

χ2
2

)∫
Rd
|g|2, (3.54)

since
k2χ1(|v||v′|+ |v|2) ≤ c|v′|2 + Ck4χ2

1|v|2,

and, by (3.30),

k4χ2
1

∫
B2\Bε

|v|2 ≤ k2χ2
1

χ2

∫
Rd
|g||v| ≤ Ck2χ4

1

χ2
2

∫
Rd
|g|2 + c

∫
B4\Bε

k2|v|2.

Here we also used (3.52) and (3.53) to treat the remaining terms of the RHS of (3.50) in
the same fashion as before. The proof is complete. �
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4 Weak solutions and the well-posedness of the non-local
wave equations

In this section, we first introduce the notion of weak solutions for the system (1.6) and
establish the well-posedness of these. We then outline a proof of the fact that the Fourier
transform in time of these solutions solve a corresponding “outgoing” Helmholtz problem
for almost every frequency. We start with

Definition 1. Let d = 2 or d = 3. We say a function

u ∈ L∞
(
[0,∞);H1(Rd)

)
with ∂tu ∈ L∞

(
[0,∞);L2(Rd)

)
is a weak solution to (1.6) provided u(0, x) = 0 in Rd and

−
∫ t

0

∫
Rd

Σ1,c(x)
∂

∂s
u(s, x)

∂

∂s
v(s, x) dx ds+

∫ t

0

∫
Rd
〈Ac(x)∇u(s, x) , ∇v(s, x)〉 dx ds

+

∫ t

0

∫
B1\B1/2

Σ2,c(x)
∂

∂s
u(s, x) v(s, x) dx ds+

∫ t

0

∫
B2\B1

G ∗ ∂su(s, x) v(s, x) dx ds

=

∫ t

0

∫
Rd
f(s, x) v(s, x) dx ds , (4.1)

for all t > 0 and all v ∈ L∞
(
[0,∞);H1(Rd)

)
with ∂tv ∈ L∞

(
[0,∞);L2(Rd)

)
.

Note that u ∈ C0
(
[0,∞);L2(Rd)

)
and so the initial condition u(0, x) = 0 makes sense,

also note that the initial condition ut(0, x) = 0 is well-defined in a weak sense. It is clear
that if u ∈ C2

(
[0,+∞) × Rd

)
is a weak solution in the sense defined above, then it is a

classical solution to (1.6). Our definition is motivated by the standard definition of weak
solutions to the wave equation.

The well-posedness of weak solutions to (1.6) is given by the following

Proposition 1. Let d = 2 or d = 3, and let f ∈ L∞
(
[0,∞) × L2(Rd)

)
with compact

support in [0,∞) × Rd. Then there exists a unique u ∈ L∞
(
[0,∞);H1(Rd)

)
with ∂tu ∈

L∞
(
[0,∞);L2(Rd)

)
which is a weak solution to (1.6). Moreover,

E(t, u) ≤ Ct‖f‖2
L2
(
[0,t]×Rd

) , for a.e. t > 0 . (4.2)

Here C is a positive constant depending on Λ and ε, but independent of f and t, and

E(t, u) :=
1

2

∫
Rd

(
Σ1,c|∂tu(t, x)|2 + 〈Ac∇u(t, x),∇u(t, x)〉

)
dx, (4.3)

The proof is based on a standard Galerkin approach, as part of which we derive a
non-trivial energy estimate. Similar ideas were used in [19].

26



Proof. We first establish the existence of a weak solution by an approximate (Galerkin)
approach. Let (ϕj)

∞
j=1 ⊂ C∞c (Rd) be an orthonormal basis in H1(Rd). For m ∈ N, consider

um of the form

um =

m∑
j=1

dm,j(t) ϕj(x) , dm,j ∈ C2
(
[0,∞)

)
, (4.4)

satisfying

d2

ds2

∫
Rd

Σ1,c(x)um(s, x) ϕj(x) dx+

∫
Rd
〈Ac∇um(s, x),∇ϕj(x)〉 dx

+
d

ds

∫
B1\B1/2

Σ2,c(x)um(s, x) ϕj(x) dx+

∫
B2\B1

G ∗ ∂sum(s, x) ϕj(x) dx

=

∫
Rd
f(s, x) ϕj(x) dx , (4.5)

for j = 1, . . . ,m, and

dm,j(0) = d′m,j(0) = 0 for j = 1, . . . ,m . (4.6)

Since (ϕj)j are linearly independent, the (n×n) matrix M given by Mi,j = 〈ϕi, ϕj〉L2(Rd) is
invertible. Therefore, the existence and uniqueness of um follow by a standard argument,
for example, one can use the theory of Volterra equations (see, e.g., [2, Theorem 2.1.1]).

We now derive an estimate for um. Multiplying (4.5) by d′m,j(s), summing up with
respect to j, integrating on [0, t] with respect to s, and using (4.6) we obtain

E(t, um) +

∫ t

0

∫
B2\B1

G ∗ ∂sum(s, x) ∂sum(s, x) dx ds+

∫ t

0

∫
B1\B1/2

Σ2,c|∂sum|2 ds dx

=

∫ t

0

∫
Rd
f(s, x) ∂sum(s, x) dx ds . (4.7)

We claim that∫ t

0

∫
B2\B1

G ∗ ∂sum(s, x) ∂sum(s, x) dx ds ≥ 0 for a.e. t > 0 . (4.8)

Indeed, define

U(s, x) =

{
∂sum(s, x) if 0 < s < t ,

0 if s ≥ t ,
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and extend U by zero for s ≤ 0. Then∫ t

0

∫
B2\B1

G ∗ ∂sum(s, x) ∂sum(s, x) dx ds =

∫ ∞
−∞

∫
B2\B1

G ∗ U U dx ds

=

∫ ∞
−∞

∫
B2\B1

Ĝ ∗ UÛ dx dk =2<
∫ ∞
0

∫
B2\B1

Ĝ ∗ U Û dx dk

= 2

∫ ∞
0

∫
B2\B1

<(Ĝ)|Û |2 dx dk =2

∫ ∞
0

∫
B2\B1

k2

(k2ε − k2)2 + k2
|Û |2 dx dk ≥ 0 ,

by the definition of G. This establishes (4.8). From (4.7) and (4.8), we arrive at

E(t, um) ≤
∫ t

0

∫
Rd
f(s, x) ∂sum(s, x) dx ds . (4.9)

It follows from (4.9) that

E(t, um) ≤
(∫ t

0

∫
Rd
|∂sum(s, x)|2 dx ds

)1/2 (∫ t

0

∫
Rd
|f(s, x)|2 dx ds

)1/2
,

which implies

E(t, um) ≤ C
(∫ t

0
E(s, um) ds

)1/2 (∫ t

0

∫
Rd
|f(s, x)|2 dx ds

)1/2
. (4.10)

Here and in the remainder of this proof, C denotes a positive constant which depends on
ε and Λ, but is independent of f , t, and m. We derive from (4.10) that

E(t, um) ≤ Ct
∫ t

0

∫
Rd
|f(s, x)|2 dx ds . (4.11)

Hence, for any fixed T > 0, there exists a subsequence of (um) (which is also denoted
by um for notational ease) such that um → u weakly star in L∞

(
[0, T ], H1(Rd)

)
and

∂tum → ∂tu weakly star in L∞
(
[0, T ], L2(Rd)

)
. It is clear that u(0, x) = ∂tu(0, x) = 0,

and that u satisfies (4.1) for any v of the form v(s, x) = ϕj(x)ψ(s), ψ ∈ C1([0,∞).
By a standard linearity and approximation argument it follows that u satisfies (4.1) for
any v ∈ L∞

(
[0,∞), H1(Rd)

)
with ∂tv ∈ L∞

(
[0,∞), L2(Rd)

)
. In other words, u is a weak

solution to (1.6). To see that u is unique, it suffices to prove that if w ∈ L∞
(
[0, T ], H1(Rd)

)
,

with ∂tw ∈ L∞
(
[0, T ], L2(Rd)

)
, w(0, x) = ∂tw(0, x) = 0, and w satisfies (4.1) with f = 0

then w is identically zero. We have

−
∫ t

0

∫
Rd

Σ1,c(x)∂sw(s, x) ∂sv(s, x) dx ds+

∫ t

0

∫
Rd
Ac(x)∇w(s, x)∇v(s, x) dx ds

+

∫ t

0

∫
B1\B1/2

Σ2,c(x)∂sw(s, x) v(s, x) dx ds+

∫ t

0

∫
B2\B1

G ∗ ∂sw(s, x) v(s, x) dx ds = 0 ,
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for all v ∈ L∞
(
[0,∞), H1(Rd)

)
with ∂tv ∈ L∞

(
[0,∞), L2(Rd)

)
. After integration by parts,

this implies

−
∫ t

0

∫
Rd

Σ1,c(x)∂sw(s, x)∂sv(s, x) dx ds+

∫ t

0

∫
Rd
Ac(x)∇w(s, x)∇v(s, x) dx ds

−
∫ t

0

∫
B1\B1/2

Σ2,c(x)w(s, x) ∂sv(s, x) dx ds−
∫ t

0

∫
B2\B1

G ∗ w(s, x)∂sv(s, x) dx ds = 0 ,

(4.12)

for all v ∈ L∞
(
[0,∞), H1(Rd)

)
with ∂tv ∈ L∞

(
[0,∞), L2(Rd)

)
and v(t, x) = 0. Setting

v(s, x) =

∫ t

s
w(τ, x) dτ ,

substituting v in (4.12), and using the fact that ∂sv(s, x) = −w(s, x), we obtain∫ t

0

∫
Rd

Σ1,c(x)∂sw(s, x) w(s, x) dx ds−
∫ t

0

∫
Rd
Ac(x)∂s∇v(s, x)∇v(s, x) dx ds

+

∫ t

0

∫
B1\B1/2

Σ2,c(x)|w(s, x)|2 dx ds+

∫ t

0

∫
B2\B1

G ∗ w(s, x)w(s, x) dx ds = 0 .

It follows that

1

2

∫
Rd

(
Σ1,c|w(t, x)|2 +Ac(x)|∇v(0, x)|2

)
dx

+

∫ t

0

∫
B1\B1/2

Σ2,c(x)|w(s, x)|2 dx ds+

∫ t

0

∫
B2\B1

G ∗ w(s, x)w(s, x) dx ds = 0 ,

which in particular yields ∫
Rd

Σ1,c|w(t, x)|2 dx = 0 ,

or
w(t, x) = 0 for a.e. x ∈ Rd and all t ≥ 0 .

Here we used the fact that∫ t

0

∫
B2\B1

G ∗ w(s, x)w(s, x) dx ds ≥ 0 ,

cf. (4.8). This establishes the uniqueness of the weak solution u. The proof is complete.
�

Let ûc(k, x) be the Fourier transform of uc w.r.t. time, i.e., 8

ûc(k, x) :=
1√
2π

∫ ∞
−∞

uc(t, x)eikt dt.

We have
8We extend uc by 0 for t < 0.
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Proposition 2. Let d = 2 or d = 3, and let f ∈ L2
(
[0,+∞)×Rd

)
with compact support.

Suppose uc ∈ L∞
(
[0,+∞);H1(Rd)

)
with ∂tuc ∈ L∞

(
[0,+∞);L2(Rd)

)
is the unique weak

solution to (1.6). Then ûc(k, ·) ∈ H1
loc

(Rd) is the unique outgoing solution to the equation

div(Ac∇ûc) + k2Σcûc = −f̂ , (4.13)

for a.e. k > 0. Moreover,

kûc(k, x) ∈ L2
loc

(
[0,+∞)× Rd

)
.

We recall that ûc denotes the Fourier transform of uc (uc is extended by 0 for t < 0).

Outline of Proof. The proof of the first fact is similar to the one of [20, Theorem
A1], and is based on the so called limiting absorption principle. A key ingredient, as in
[20, (A9)], is the technique from the proof of Proposition 1 where the energy estimate
was established. The fact that kûc ∈ L2

loc

(
[0,+∞) × Rd

)
is obtained as follows. Let

uδ ∈ L∞
(
[0,+∞);H1(Rd)

)
with ∂tuδ ∈ L∞

(
[0,+∞);L2(Rd)

)
be the unique weak solution

9 to{
Σ1,c∂

2
ttuδ − div(Ac∇uδ) + Σ2,c∂tuδ +G ∗ ∂tuδ + δ∂tuδ = f in [0,+∞)× Rd ,

∂tuδ(t = 0) = uδ(t = 0) = 0 in Rd .
(4.14)

Then, as in the proof of Proposition 1,

δ

∫ t

0

∫
Rd
|∂tuδ|2 ≤ C . (4.15)

This implies ∂tuδ ∈ L2([0,+∞);L2(Rd)), and thus kûδ ∈ L2([0,+∞);L2(Rd)) = L2([0,∞)×
Rd). Here ûδ denotes the Fourier transform of uδ (uδ is extended by 0 for t < 0). As in
the proof of [20, Theorem A1] 10, for almost every k > 0, ûδ(k, ) ∈ H1(Rd) is the unique
solution to

div(Ac∇ûδ(k, ·)) + k2Σcûδ(k, ·) + iδkûδ(k, ·) = −f̂(k, ·).

Fix k0 > 0 arbitrary. We have, for 0 ≤ k ≤ k0 and for 0 < δ < 1,

‖ûδ(k, ·)‖L2(BR) ≤ Ck
−1‖f̂(k, ·)‖L2(BR) for , (4.16)

for some positive constant C, independent of δ and k, see Lemma 7 below. Since f has
compact support,

‖f̂(k, ·)‖L2(BR) ≤ C‖f‖L2 . (4.17)

A combination of (4.15), (4.16), and (4.17) yields(
kûδ(k)

)
0<δ<1

is bounded in L2
loc

([0,+∞)× Rd). (4.18)

9The definition of weak solutions for the equation of uδ is similar to the one for the equation of uc.
10More precisely, [20, (A10) and the following paragraph].
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By the limiting absorption principle (see e.g [11, Section 4.6]) we have, for almost every
k > 0,

ûδ(k, ·)→ V (k, ·) weakly in H1
loc

(Rd) , (4.19)

where V (k, x) ∈ H1
loc

(Rd) is the unique outgoing solution to (4.13). On the other hand
(see e.g., the proof of [20, Theorem A1] in particular [20, (A13)]),

kûδ(k, x) converges to kV (k, x) in the distributional sense on R× Rd . (4.20)

Since V (k, ·) = ûc(k, ·), k > 0, we derive from (4.18), (4.19), and (4.20) that

kûc ∈ L2
loc

([0,+∞)× Rd) .

The proof is complete. �

In the proof of Proposition 2, we used a simple consequence of the following lemma.

Lemma 7. Given g ∈ L2(Rd) with supp g ⊂ BR0, 0 < δ < 1, and 0 < k < k0, let
vk,δ ∈ H1(Rd) be the unique solution to

div(Ac∇vk,δ) + (k2Σc + ikδ)vk,δ = g in Rd .

There exists a positive constant C independent of k and δ such that

‖vk,δ‖L2(BR1
) ≤ C(| ln k|2 + 1)‖g‖L2 for d = 2 , (4.21)

and
‖vk,δ‖L2(BR1

) ≤ C‖g‖L2 for d = 3 . (4.22)

Proof. Under the conditions k < k0 and δ < 1, the estimates (4.21) and (4.22) follow
from a standard contradiction argument if k is bounded below by a positive constant.
Lemma 8 below implies these same estimates for sufficiently small k, and the proof is
complete. �

Lemma 8. Let A ∈ [L∞(Rd)]d×d and Σ ∈ L∞(Rd), d = 2, 3 be such that A is uniformly
elliptic, A = I in Rd \ B2, Σ = 1 in Rd \ B2, <(Σ) is strictly positive, and =(Σ) ≥ 0.
Given g ∈ L2(Rd) with supp g ⊂ BR0, and 0 < ε , δ < 1, let vε,δ ∈ H1(Rd) be the unique
solution to

div(A∇vε,δ) + (ε2Σ + iδ)vε,δ = g in Rd .

There exist two positive constants c and C independent of ε and δ such that if 0 < ε, δ < c
then

‖vε,δ‖L2(BR1
) ≤ C| ln ε|2‖g‖L2 for d = 2 ,

and
‖vε,δ‖L2(BR1

) ≤ C‖g‖L2 for for d = 3 .
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Proof. The proof of this lemma for d = 3 is simpler than for d = 2. Essentially the proof
for d = 3 follows along the first third of the argument for d = 2. For this reason we only
present the proof for d = 2. We may without loss of generality suppose R1 > R0 (if not,
simply increase R1), and for simplicity of notation we use R0 = 4, R1 = 5. The proof
proceeds by contradiction. Suppose there exist a sequence εn → 0, a sequence δn → 0,
and a sequence (gn) ⊂ L2(R2) such that supp gn ⊂ B4, and

lim
n→∞

| ln εn|2‖gn‖L2 = 0, and ‖vn‖L2(B5) = 1 . (4.23)

Here vn ∈ H1(R2) is the unique solution to

div(A∇vn) + (ε2nΣ + iδn)vn = gn in R2 .

Multiplying this equation by v̄n and integrating the obtained expression on B5, we have∫
B5

〈A∇vn,∇v̄n〉 −
∫
B5

(ε2nΣ + iδn)|vn|2 = −
∫
B5

gnv̄n +

∫
∂B5

∂vn
∂r

v̄n . (4.24)

Since ∆vn + (ε2n + iδn)vn = 0 in R2 \BR4 and vn ∈ H1(R2), it follows that 11

‖vn‖H1(BR\B9/2)
≤ CR‖vn‖H1/2(∂B9/2)

≤ CR‖vn‖L2(B5\B4) ≤ CR for R > 9/2 . (4.25)

It follows from (4.23) and (4.24) that∫
B5

|∇vn|2 ≤ C . (4.26)

A combination of (4.25) and (4.26) yields

‖vn‖H1(BR) ≤ CR ∀R > 0 .

Thus (after extraction of a subsequence) vn → v in L2
loc

(R2), where v ∈ W 1(R2) is a
solution to 12

div(A∇v) = 0 in R2 .

It is clear that v = α for some (complex) constant α. For d = 3 the proof would proceed
similarly until this point, where we could automatically conclude that α is zero, and we
would have reached a contradiction. In the two dimentional case it requires the following
additional argument to show that α is zero. Since ∆vn + ε̂2nvn = 0 in R2 \ B4 with
ε̂2n = ε2n + iδn and =(ε̂n) > 0, vn ∈ H1(R2) can be represented as

vn(x) =

∞∑
l=−∞

al,nH
(1)
l (ε̂n|x|)eilθ |x| > 4 , (4.27)

11One can use (4.27) below to derive this property.
12The proof is similar to the one of Lemma 2.
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where H
(1)
l is the Hankel function of the first kind of order l. This implies

vn = v0,n + v1,n |x| > 4 . (4.28)

where

v0,n = a0,nH
(1)
0 (ε̂n|x|), and v1,n =

∑
l 6=0

al,nH
(1)
l (ε̂n|x|)eilθ, |x| > 4 . (4.29)

By orthogonality, it is clear that for any R > 4,

‖v0,n‖H1(BR\B4) + ‖v1,n‖H1(BR\B4) ≤ C‖vn‖H1(BR\B4) .

After extraction of a subsequence, we may assume that v0,n → α0 in L2
loc

(R2 \ B4) and
v1,n → v1 in L2

loc
(R2 \ B4) for some (complex) constant α0 and some v1 ∈ L2

loc
(R2 \ B4).

Therefore,
α = v = α0 + v1 |x| > 4 .

This implies that v1 is constant on {|x| > 4}. It follows that v1 = 0 for |x| > 4 since∫
B6\B5

v1 = lim
n→∞

∫
B6\B5

v1,n = 0 .

As a consequence

lim
n→∞

vn = lim
n→∞

v0,n = α0 in L2
loc

(R2 \B4) .

We have ∫
∂BR

∂rvnv̄n =

∫
BR

〈A∇vn,∇v̄n〉 −
∫
BR

(ε2nΣ + iδn)|vn|2 +

∫
BR

gnv̄n .

If we let R→∞ and consider only the imaginary part, then we obtain

=
∫
R2

(ε2nΣ + iδn)|vn|2 = =
∫
R2

gnv̄n . (4.30)

Due to the fact that ε̂n has a postive imaginary part we have that v0,n ∈ H1(R2) (actually
it decreases exponentially at ∞), and so∫

∂B5

∂rv0,nv̄0,n = −
∫
R2\B5

|∇v0,n|2 +

∫
R2\B5

(ε2n + iδn)|v0,n|2 ,

which leads to

=
∫
∂B5

∂rv0,nv̄0,n = =
∫
R2\B5

(ε2n + iδn)|v0,n|2 =

∫
R2\B5

δn|v0,n|2

≤
∫
R2\B5

δn|vn|2 ≤ =
∫
R2

(ε2nΣ + iδn)|vn|2 .
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For the last two inequalities we used the orthogonality of the decomposition (4.28), and
the facts that Σ = 1 in R2 \ B5 and =Σ ≥ 0. In combination with (4.23) and (4.30) this
gives ∣∣∣∣= ∫

∂B5

∂rv0,nv̄0,n

∣∣∣∣ ≤ ‖gn‖L2‖vn‖L2(B5) ≤ ‖gn‖L2 . (4.31)

A simple calculation, based on (4.29) and the well know asymptotics of the Hankel function

H
(1)
0 for small argument (see e.g., [1, page 360]), gives

c|a0,n|2 ≤
∣∣∣∣=∫

∂B5

∂rv0,nv̄0,n

∣∣∣∣ ,
and so, in combination with (4.31), and (4.23) we get

| ln εn|2|a0,n|2 ≤ C| ln εn|2‖gn‖L2 → 0 as n→∞ .

This estimate and the formula (4.29) for v0,n now yields

lim
n→∞

v0,n = 0 on any bounded subset of R2 \B4 .

Accordingly we have α = α0 = 0, and so it follows that the vn converge to 0 in L2
loc(R2).

We have thus reached a contradiction to the fact that ‖vn‖L2(B5) = 1, and the proof is
complete. �

5 Proof of Theorem 2

The proof is related to that in [20], however, we shall estimate ∂tuc − ∂tu as a way of
getting to uc − u. This idea was also used in [19]. Let ûc(k, ·) be the Fourier transform of

uc w.r.t. time. By Proposition 2, for a.e. k > 0, ûc(k, ·) ∈ H1
loc

(Rd) is the unique outgoing
solution to

div(Ac∇ûc) + k2Σcûc = −f̂ , (5.1)

where (Ac,Σc) is given in (1.4). Moreover,

kûc ∈ L2
loc

(
[0,+∞)× Rd

)
. (5.2)

As before we introduce ũε(k, x) = ûc(k, Fε(k, x)). Then ũε ∈ H1
loc

(Rd) is the unique
outgoing solution to

div(Aε∇ũε) + k2Σεũε = −f̂ in Rd . (5.3)

Here

Aε,Σε =



I, 1 in Rd \B2 ,

I, σε(x) = 1 + σ1,ε(x) in B2 \Bε,
1

εd−2
I,

1

εd
(1 + i/k) in Bε \Bε/2 ,

1

εd−2
a(x/ε),

1

εd
σ(x/ε) in Bε/2 ,

(5.4)
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and
σ1,ε =

(
F−1ε

)
∗σ1,c .

Recall that σ1,c is given by (1.3) with σD = σN = 1. Let ũ1,ε ∈ H1
loc

(Rd) be the unique
outgoing solution to

div(A1,ε∇ũ1,ε) + k2Σ1,εũ1,ε = −f̂ ,

with

A1,ε,Σ1,ε =


I, 1 in Rd \Bε ,

1

εd−2
I,

1

εd
(1 + i/k) in Bε \Bε/2 ,

1

εd−2
a(x/ε),

1

εd
σ(x/ε) in Bε/2 .

Finally, let û(k, x) be the Fourier transform of u w.r.t. time; û(k, ·) ∈ H1
loc

(Rd) is the
unique outgoing solution to

∆û+ k2û = −f̂ in Rd ,

We first estimate ∫ 1/ε

0
k‖ũ1,ε − û‖L2(B5\B2) dk .

For this purpose, let Ũ1,ε(k, ·) ∈ H1
loc

(Rd) be the unique outgoing solution to{
∆Ũ1,ε + k2Ũ1,ε = −f̂ in Rd \Bε ,

Ũ1,ε = 0 in Bε ,

and define, in all of Rd,

w1,ε(k, ·) = Ũ1,ε(k, ·)− û(k, ·) and w2,ε = ũ1,ε(k, ·)− Ũ1,ε(k, ·) .

Then w1,ε(k, ·) ∈ H1
loc

(Rd) is the unique outgoing solution to{
∆w1,ε + k2w1,ε = 0 in Rd \Bε ,

w1,ε = −û in Bε ,
(5.5)

and w2,ε ∈ H1
loc

(Rd) is the unique outgoing solution to
∆w2,ε + k2w2,ε = 0 in Rd \Bε ,

∇ · (A1,ε∇w2,ε) + k2Σ1,εw2,ε = 0 in Bε ,

∂w2,ε

∂r

∣∣∣
ext
− 1

εd−2
∂w2,ε

∂r

∣∣∣
int

= −∂Ũ1,ε

∂r
on ∂Bε .

(5.6)

We first estimate w1,ε. By Lemma 1 and the theory of regularity of elliptic equations,
we have, for d = 3 or (d = 2 and k > 1/2)

1

k + 1
‖∇2û(k, ·)‖L2(B2) + ‖∇û(k, ·)‖L2(B2) + (k + 1)‖û(k, ·)‖L2(B2) ≤ C‖f̂(k, ·)‖L2 (5.7)
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and for (0 < k < 1/2 and d = 2)

‖∇2û(k, ·)‖L2(B2) + ‖∇û(k, ·)‖L2(B2) + ‖û(k, ·)‖L2(B2) ≤ C| ln k|‖f̂(k, ·)‖L2 (5.8)

Here and in the remainder of this proof, C denotes a positive constant independent of ε,
k, and f . Since ∆û(k, ε·) + k2ε2û(k, ε·) = 0 in B2, it follows that∫

B1

|∇û(k, ε·)|2 ≤ C max{1, ε2k2}
∫
B2

|û(k, ε·)|2 ≤ C‖û(k, ·)‖2L∞(B2)
,

for 0 < k < 1/ε. Using (5.7) and (5.8), we derive that for 0 < k < 1/ε,

‖û(k, ε·)‖H1/2(∂B1)
≤ C(k + 1)‖f̂(k, ·)‖L2 , d = 3 , (5.9)

and
‖û(k, ε·)‖H1/2(∂B1)

≤ C(k + 1)ϕ(k)‖f̂(k, ·)‖L2 , d = 2 . (5.10)

Here
ϕ(k) = 1 if k > 1/2 , and ϕ(k) = | ln k| if 0 < k < 1/2 .

Applying Lemma 2 and rescaling, we have for 0 < k < 1/ε,

‖w1,ε(k, ·)‖L2(B5\B2) ≤ Cε(k + 1)‖f̂(k, ·)‖L2 for d = 3 , (5.11)

and

‖w1,ε(k, ·)‖L2(B5\B2) ≤ C
|H(1)

0 (k)|
|H(1)

0 (kε)|
(k + 1)ϕ(k)‖f̂(k, ·)‖L2 for d = 2 . (5.12)

Since
|H(1)

0 (k)|
|H(1)

0 (kε)|
≤ Cmin{k−1/2 , | ln k|+ 2}

| ln(kε)|+ 2
for 0 < kε < 1 ,

and thus

|H(1)
0 (k)|

|H(1)
0 (kε)|

≤ C


| ln k|+ 2

| ln ε|+ 2
, k ≤ 1 ,

1

| ln ε|+ 2
, 1 ≤ k ≤ 1/ε ,

we have

k
|H(1)

0 (k)|
|H(1)

0 (kε)|
ϕ(k) ≤ Ck(| ln k|2 + 1)

| ln ε|+ 2
, (5.13)

for 0 < k < 1/ε. It now follows from (5.11) and (5.12) that, in the range 0 < k < 1/ε,

k‖w1,ε(k, ·)‖L2(B5\B2) ≤ Cεk(k + 1)‖f̂(k, ·)‖L2 for d = 3 , (5.14)

and

k‖w1,ε(k, ·)‖L2(B5\B2) ≤
C

| ln ε|
k(k + 1)

(
| ln k|2 + 1

)
‖f̂(k, ·)‖L2 for d = 2 . (5.15)
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We next estimate w2,ε. Applying Lemma 3, we have, for 0 < k < 1/ε,

‖w2,ε(k, ε·)‖L2(B5\B1) ≤ C max{1, ε/k}
∥∥∥ ∂
∂r

(
Ũ1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

for d = 3 , (5.16)

and

‖w2,ε(k, ε·)‖L2(B5\B1) ≤ C max{k, 1/k}
∥∥∥ ∂
∂r

(
Ũ1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

for d = 2 . (5.17)

For 0 < εk < 1, the standard trace estimate, and a classical interior elliptic estimate, yield

‖w2,ε(k, ε·)‖H1/2(∂B2)
≤ C‖w2,ε(k, ε·)‖H1(B4\B3/2)

≤ C‖w2,ε(k, ε·)‖L2(B5\B1) ,

and so by use of Lemma 2, (5.16), (5.17) and a scaling argument, it follows that

‖w2,ε(k, ·)‖L2(B5\B2) = ε3/2‖w2,ε(k, ε·)‖L2(B5/ε\B2/ε)

≤ Cε‖w2,ε(k, ε·)‖L2(B5\B1) (5.18)

≤ Cεmax{1, ε/k}
∥∥∥ ∂
∂r

(
Ũ1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

for d = 3 ,

and

‖w2,ε(k, ·)‖L2(B5\B2) = ε‖w2,ε(k, ε·)‖L2(B5/ε\B2/ε)

≤ C
|H(1)

0 (k)|
|H(1)

0 (εk)|
‖w2,ε(k, ε·)‖L2(B5\B1) (5.19)

≤ C
|H(1)

0 (k)|
|H(1)

0 (εk)|
max{k, 1/k}

∥∥∥ ∂
∂r

(
Ũ1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

for d = 2 .

We have∥∥∥ ∂
∂r

(
Ũ1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

≤
∥∥∥ ∂
∂r

(
w1,ε(k, ε·)

)∥∥∥
H−1/2(∂B1)

+
∥∥∥ ∂
∂r

(
û(k, ε·)

)∥∥∥
H−1/2(∂B1)

.

Applying Lemma 2 to w1,ε(k, ε·) and using (5.9) and (5.10), we obtain, for 0 < k < 1/ε,∥∥∥ ∂
∂r

(
Ũ1,ε(ε·)

)∥∥∥
H−1/2(∂B1)

≤ C(k + 1)‖f̂(k, ·)‖L2 for d = 3,

and ∥∥∥ ∂
∂r

(
Ũ1,ε(ε·)

)∥∥∥
H−1/2(∂B1)

≤ C(k + 1)ϕ(k)‖f̂(k, ·)‖L2 for d = 2.

It now follows from (5.18) and (5.19) that, for 0 < k < 1/ε,

k‖w2,ε‖L2(B5\B2) ≤ Cε(k + 1) max{k, ε}‖f̂(k, ·)‖L2 for d = 3 , (5.20)

and

k‖w2,ε‖L2(B5\B2) ≤
C(k + 1)

| ln ε|
(
| ln k|2 + 1

)
max{1, k2}‖f̂(k, ·)‖L2 for d = 2 . (5.21)
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For the last estimate we also used (5.13). A combination of (5.14), (5.15), (5.20), and
(5.21) yields∫ 1/ε

0
k‖ũ1,ε − û‖L2(B5\B2) dk ≤ Cε

∫ 1/ε

0
(k + 1)2‖f̂(k, ·)‖L2 ≤ Cε‖f‖ if d = 3 , (5.22)

and ∫ 1/ε

0
k‖ũ1,ε − û‖L2(B5\B2) dk ≤ C

| ln ε|

∫ 1/ε

0
(| ln k|2 + 1)(1 + k)3 ‖f̂(k, ·)‖L2

≤ C

| ln ε|
‖f‖ if d = 2 , (5.23)

where ‖f‖ is the norm introduced in the statement of Theorem 2.
We next estimate ‖ũε(k, ·) − ũ1,ε(k, ·)‖L2(B5\B2) for k of order up to 1/ε. We already

know that =(σ1,ε) > 0 for k > 0, and from Lemma 4 and the fact that kε > c∗/ε
d/2 we

have

|σ1,ε| ≤
C

εd−1k2ε
≤ C0ε , (5.24)

for 0 < k < c∗
2 ε
−1. Applying Lemma 5 and the first part of Lemma 6 to ũε − ũ1,ε (with

g = −k2σ1,εũ1,ε) we obtain

k‖ũε(k, ·)− ũ1,ε(k, ·)‖L2(B5\B2) ≤ C(k2 + 1)k2 sup |σ1,ε|‖ũ1,ε(k, ·)‖L2(B2\Bε) (5.25)

for 0 < k < λ
C0ε

(λ is the constant from Lemma 6 ). A combination of (5.24) and (5.25)
yields

k‖ũε(k, ·)− ũ1,ε(k, ·)‖L2(B5\B2) ≤ Ck
2ε(k2 + 1)‖ũ1,ε(k, ·)‖L2(B2\Bε) , (5.26)

for 0 < k < λ0/ε, with λ0 = min{1, c∗/2, λ/C0}. Similarly, applying Lemma 5 and the
first part of Lemma 6 to the function û1,ε (with g = −f and coefficients A1,ε, Σ1,ε, i.e.,
Aε, Σε with σ1,ε = 0) we obtain

k‖ũ1,ε(k, ·)‖L2(B5\B2) ≤ C(k2 + 1)‖f̂(k, ·)‖L2 , (5.27)

for 0 < k < λ0/ε. A combination of (5.26) and (5.27) yields∫ λ0/ε

0
k‖ũε − ũ1,ε‖L2(B5\B2) dk ≤ Cε

∫ λ0/ε

0
(k + 1)5‖f̂(k, ·)‖L2 ≤ Cε‖f‖ . (5.28)

We now consider the regime k > λ0/ε. From the second part of Lemma 6, and the remark
following, we have

k‖ũε(k, ·)‖L2(B5\B2) ≤ C
(
k2 +

kχ2
1

χ2

)
‖f̂(k, ·)‖L2 ≤

C

λ0
ε
(
k3 +

k2χ2
1

χ2

)
‖f̂(k, ·)‖L2 . (5.29)

On the other hand, using Lemma 1 we have

k‖û(k, ·)‖L2(B5\B2) ≤ C‖f̂(k, ·)‖L2 ≤
C

λ0
εk‖f̂(k, ·)‖L2 , (5.30)
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for k > λ0/ε. Lemma 4 yields

k2χ2
1

χ2
≤ Ck2 1

ε2(d−1)k2
max{k4ε , k4}

k
≤ Cmax{k4ε , k4}

kε2(d−1)
≤ C(k2d+1 + k2d−3k4ε) , (5.31)

for k > λ0/ε. We derive from (5.29), (5.30), and (5.31) that∫ ∞
λ0/ε

k‖ũε − û‖L2(B5\B2) dk ≤ Cε
∫ ∞
λ0/ε

(k2d+1 + k2d−3k4ε)‖f̂(k, ·)‖L2 ,

or ∫ ∞
λ0/ε

k‖ũε − û‖L2 dk ≤ Cε‖f‖ . (5.32)

A combination of (5.22), (5.23), (5.28), and (5.32) now gives∫ ∞
0

k‖ũε − û‖L2(B5\B2) dk ≤ Cε‖f‖ if d = 3 ,

and ∫ ∞
0

k‖ũε − û‖L2(B5\B2) dk ≤
C

| ln ε|
‖f‖ if d = 2 .

Therefore, since ũε(k, ·) = ûc(k, ·) outside B2 (and since uc and u are real, so that
ûc(−k, ·)− û(−k, ·) = ûc(k, ·)− û(k, ·) ) it follows that

sup
t>0
‖∂tuc(t, ·)− ∂tu(t, ·)‖L2(B5\B2) ≤ Cε‖f‖ if d = 3 ,

and

sup
t>0
‖∂tuc(t, ·)− ∂tu(t, ·)‖L2(B5\B2) ≤

C

| ln ε|
‖f‖ if d = 2 .

From this we conclude

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤ CTε‖f‖ if d = 3 ,

and

sup
0<t<T

‖uc − u‖L2(B5\B2) ≤
CT

| ln ε|
‖f‖ if d = 2 .

The proof of Theorem 2 is complete. �
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