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Abstract

The aim of (passive) cloaking with respect to electromagnetic (or acoustic) sensing is to
surround a region of space with a material layer – the cloak – that renders its contents and even
the existence of the layer undetectable by such measurements. At least theoretically this can
be achieved using the coordinate invariance of the underlying wave equation, through so-called
cloaking by mapping. However, a practical realization of the cloaking by mapping schemes
discussed in the literature frequently requires the design of highly anisotropic materials with
extreme dielectric properties. In this work we consider, in the electrostatic case, a regularized,
approximate cloaking by mapping scheme and discuss the problem of optimal choice of radial
maps, that determine the conductivity distribution of the cloak. We consider two different
optimality criteria: minimal maximal anisotropy and minimal mean anisotropy of this conduc-
tivity distribution. Using both criteria we show that it is possible to achieve significantly lower
anisotropy (for a prescribed level of invisibility) or significantly lower visibility (for a prescribed
level of anisotropy). For example, in two dimensions one may achieve exponentially small visi-
bility with a cloak, that in terms of anisotropy (and lowest and highest conductivity) is no worse
than the traditional affine map cloak, which only yields quadratically small visibility.
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1 Introduction

Electromagnetic (or acoustic) cloaking, and in particular the passive approach referred to as cloaking
by mapping [11, 12, 19, 30], has recently received a lot of attention, see for instance [4, 8, 9, 16]
and the references therein. Cloaking by mapping comes in two varieties, in terms of the invisibility
achieved: (i) perfect cloaking, and (ii) approximate cloaking. Very broadly speaking: in the perfect
case a point is “mapped” to a set of finite size, for example the unit ball, whereas in the approximate
case a “small” set is mapped to a larger set of finite size, for example the ball of radius ε is mapped
to the unit ball. Perfect cloaking by mapping will introduce media with degenerate and highly
anisotropic properties, whereas the approximate analogues restrict the degeneracy as well as the
anisotropy. In the perfect case the objects that are being cloaked are entirely invisible to an observer
outside the cloak, in the approximate case this is only asymptotically true.

∗Mathematisches Institut , Universität Leipzig, 04009 Leipzig, Germany (griesmaier@math.uni-leipzig.de)
†Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA (vogelius@math.rutgers.edu)

1



A most important problem for any approximate cloaking scheme is to estimate the degree of
invisibility that is achieved for a given level of anisotropy and degeneracy. Some estimates of this
kind are found in [15, 16, 20, 23, 24, 25, 27, 28] for approximate cloaking schemes in the context
of the electrical conductivity problem, the Helmholtz problem, and the time-dependent scalar wave
problem. Enhanced versions of these schemes have been analyzed in [1, 2, 3, 13, 21, 22]. Most of
the cloaking by mapping schemes that have been discussed so far are based on fairly simple affine,
radial mappings, though other radial mappings have been briefly mentioned in several places, see
e.g. [4, 5, 29]. There has been some preliminary work on the optimal design of cloaks, see for
instance [32], where the authors optimize the cloaking of a fixed, constant inclusion with respect
to scattering measurements, obtaining a better result with less complexity than for the traditional
affine, radial cloaking by mapping scheme.

However, to the best of our knowledge no one has systematically adressed any of the “optimality”
questions, for instance: given an acceptable amount of anisotropy, what is the maximal invisibility
achievable for an arbitrary object; or its dual formulation: given a desired level of invisibility,
what is the minimal amount of anisotropy required. Similar, natural questions pose themselves
concerning degeneracy. In this paper we shall provide an analysis of such questions of optimality
in a restricted setting. The physical problem we consider is that of electrical prospecting at zero
frequency, i.e., the electrical conductivity problem, and we restrict the class of cloaks to those of a
radially symmetric nature. Given those limitations we construct approximate cloaks that are based
on suitably chosen radial maps, and minimize two different measures of anisotropy, subject to a
given degree of invisibility: the maximal anisotropy and the mean anisotropy of the conductivity
distribution of the approximate cloak. We furthermore show that these optimal approximate cloaks
achieve exponential invisibility, with a level of anisotropy (and degeneracy) that is comparable to
those of [16] and [1, 13].

The paper is organized as follows. In Section 2 we briefly introduce the mathematical setting
and our notion of a cloak. Then in Section 3 we construct the two optimal radially symmetric
cloaks, discussed above. Finally in Section 4 we draw some analogies between our optimal cloaks
and those achieved by the cloak enhancement strategy introduced by Ammari et al. [1, 13].

2 Mathematical setting

Let Ω ⊂ R
n, n ≥ 2, be a bounded smooth domain and suppose

σ ∈ Σ(Ω) :=
{

γ ∈ L∞(Ω; Rn×n)
∣

∣ γ symm. and pos. definite a.e. in Ω, ess inf γ > 0
}

,

where
ess inf γ := sup

{

m ∈ R
∣

∣ m|ξ|2 ≤ ξTσ(x)ξ for all ξ ∈ R
n and a.e. x ∈ Ω

}

.

Throughout σ represents a conductivity distribution in Ω. We denote by ν the unit outward normal
to ∂Ω, and we write

H
±1/2
⋄ (∂Ω) :=

{

ϕ ∈ H±1/2(∂Ω)
∣

∣

∫

∂Ω
f ds = 0

}

.

The electrostatic potential u in Ω generated by some boundary current f ∈ H
−1/2
⋄ (∂Ω) satisfies

div(σ∇u) = 0 in Ω , (σ∇u) · ν = f on ∂Ω .
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This boundary value problem has a unique solution

u ∈ H1
⋄ (Ω) :=

{

v ∈ H1(Ω)
∣

∣

∫

∂Ω
v ds = 0

}

,

and the associated Neumann-to-Dirichlet operator

Λσ : H
−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂Ω) , f 7→ u|∂Ω ,

mapping boundary currents to the corresponding boundary voltages, is bounded. This operator
describes all possible outcomes of an idealized electromagnetic sensing experiment in the zero fre-
quency limit, with observations restricted to ∂Ω.

Following [16] we say that a non-negative matrix-valued conductivity distribution σc in Ω \D
cloaks a subdomain D ⊂ Ω if for any A ∈ Σ(D) the Neumann-to-Dirichlet operator ΛσA

corre-
sponding to the conductivity distribution

σA(x) :=







A(x) , x ∈ D ,

σc(x) , x ∈ Ω \D ,
(2.1)

is well-defined and coincides with ΛIn , where In is the constant isotropic conductivity distribution
given by the n×n-identity matrix in Ω. In particular this implies that σA and In cannot be distin-
guished by observations of electrostatic currents and voltages on ∂Ω, and we call the conductivity
distribution σc in Ω \D a cloak for D.

Denoting by Br := {x ∈ R
n | |x| < r}, r > 0, the ball of radius r around the origin, we assume

for simplicity throughout this work that B2 ⊂ Ω and D ⊂ B1. We observe that if σc ∈ Σ(B2 \B1)
cloaks B1, then its extension to Ω\D by In cloaks D, too, and so we shall without loss of generality
in the following restrict the discussion to the special case Ω = B2 and D = B1.

The cloak construction approach we shall take here, frequently referred to as cloaking by mapping,
relies on the fact that the Neumann-to-Dirichlet map is invariant under certain changes of variables
in Ω, preserving points at the boundary ∂Ω. More precisely, let F : Ω → Ω be any Lipschitz
homeomorphism1 satisfying F (x) = x for all x ∈ ∂Ω, and define the push-forward of σ ∈ Σ(Ω) by
F

F∗σ(x) :=
1

|detDF (y)|
DF (y)σ(y)DF (y)T

∣

∣

∣

∣

y=F−1(x)

, x ∈ Ω , (2.2)

where DF denotes the Jacobian matrix of F , then

Λσ = ΛF∗σ .

This construction was originally introduced in [17] with an attribution to L. Tartar.
The change of variables formula (2.2) was used independently in [11, 12] and [30] (see also [19])

to construct a cloak of B1,

σc(x) := (F0)∗In(x) , x ∈ B2 \B1 , (2.3)

by means of the singular mapping

F0 : B2 \ {0} → B2 , F0(x) :=

(

1 +
1

2
|x|

)

x

|x|
, (2.4)

1This means F is bijective and F as well as F−1 are Lipschitz continuous.
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Figure 1: Change of variables Fρ expanding a small ball Bρ to the unit ball B1.

which “blows up” {0} to B1, maps B2 \ {0} onto B2 \ B1, and satisfies F0(x) = x for all x ∈ ∂B2.
Given an arbitrary A ∈ Σ(B1), the push-forward (F−1

0 )∗σA of σA from (2.1) coincides with In away
from the origin. Since, roughly speaking, the difference in the conductivity at a single point should
not affect the electrostatic potential, one expects that ΛσA

= Λ(F−1
0 )∗σA

= ΛIn . Indeed it has been

shown in [11, 16] that ΛσA
, with σc from (2.3), is well-defined and cloaks B1. However due to the

singular behavior of F0 at the origin this cloak is highly anisotropic and degenerate near ∂B1, which
in practice would require the design of materials with singular dielectric properties.

To avoid singular material behavior, several regular approximations of the perfect cloak from
(2.3) – so-called approximate or near cloaks – have been discussed in recent years. For instance,
such approximations have been obtained in [6, 7, 10, 18, 31] by restricting the perfect cloak from
(2.3) to an annulus B2 \ B1+ρ, 0 < ρ < 1, thereby truncating the singularity at ∂B1. In the limit
as ρ→ 0 these approximate cloaks converge to the perfect cloak from (2.3).

On the other hand, the piecewise smooth mapping

Fρ : B2 → B2 , Fρ(x) :=







x
ρ , x ∈ Bρ ,
(

2(1−ρ)
2−ρ + |x|

2−ρ

)

x
|x| , x ∈ B2 \Bρ ,

(2.5)

0 < ρ < 1, which constitutes a regularized version of the mapping in (2.4), and that expands Bρ to
B1, maps B2 \Bρ onto B2 \B1, and satisfies Fρ(x) = x for all x ∈ ∂B2 (see Figure 1 for a sketch),
has been used in [16] to construct a regular approximate cloak

σc,ρ(x) := (Fρ)∗In(x) , x ∈ B2 \B1 . (2.6)

Given A ∈ Σ(B1) and defining

σA,ρ(x) :=







A(x) , x ∈ B1 ,

σc,ρ(x) , x ∈ B2 \B1 ,
(2.7)

similar to (2.1), it follows immediately that (F−1
ρ )∗σA,ρ coincides with In in B2 \ Bρ. To estimate

the degree of invisibility of this approximate cloak it therefore suffices to estimate the effect on
the Neumann-to-Dirichlet map (on ∂B2) of a small inhomogeneity Bρ, 0 < ρ < 1, filled with an
arbitrary conductivity distribution a ∈ Σ(Bρ). Writing σa,ρ(x) := In + χBρ(x)(a(x) − In), x ∈ B2,
where χBρ denotes the characteristic function for Bρ, it has been shown in [26, Cor. 1] that there
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exists ρ0 > 0 and a constant C > 0 independent of a such that ‖Λσa,ρ − ΛIn‖ ≤ Cρn for all

0 < ρ < ρ0, where ‖ · ‖ denotes the operator norm on the space L(H
−1/2
⋄ (∂B2),H

1/2
⋄ (∂B2)) of

bounded linear operators from H
−1/2
⋄ (∂B2) to H

1/2
⋄ (∂B2). This immediately yields the following

invisibility estimate originally established in [16, Thm. 1].

Proposition 2.1. Given A ∈ Σ(B1) let ΛσA,ρ
be the Neumann-to-Dirichlet map corresponding to

the conductivity distribution σA,ρ from (2.7) with the regular near cloak σc,ρ from (2.6). Then there

exists ρ0 > 0 and a constant C > 0 independent of A such that

‖ΛσA,ρ
− ΛIn‖ ≤ Cρn for all 0 < ρ < ρ0 , (2.8)

where ‖·‖ denotes the operator norm on L(H
−1/2
⋄ (∂B2),H

1/2
⋄ (∂B2)), and ΛIn denotes the Neumann-

to-Dirichlet map corresponding to the constant conductivity distribution In.

Remark 2.1. As has recently been pointed out in [14], the approximate cloak obtained by truncating
the singularity in [6, 7, 10, 18, 31] can be rewritten as a near cloak obtained by expanding a small
ball using a Lipschitz change of variables similar to (2.5)–(2.7). This can then be used to establish
invisibility estimates similar to (2.8) for this class of cloaks, using the technique described above. ⋄

Observing that In−xx
T/|x|2 and xxT /|x|2 are the orthogonal projections onto the tangent space

of the sphere Sn−1 at x/|x| ∈ Sn−1 and its orthogonal complement, respectively, a short calculation
shows that the approximate cloak from (2.6) is given by

σc,ρ(x) =

(

2− ρ−
2− 2ρ

|x|

)n−2 (

αFρ(|x|)
xxT

|x|2
+

1

αFρ(|x|)

(

In −
xxT

|x|2

))

, x ∈ B2 \B1 , (2.9)

where

αFρ(r) := 1−
2− 2ρ

(2− ρ)r
, 1 < r < 2 . (2.10)

Thus, σc,ρ(x) has eigenvalues

λ
Fρ
r (x) =

(

2− ρ−
2− 2ρ

|x|

)n−2

αFρ(|x|) and λ
Fρ

t (x) =

(

2− ρ−
2− 2ρ

|x|

)n−2 1

αFρ(|x|)
,

(2.11)

where λ
Fρ
r (x) is of multiplicity 1 and corresponds to the eigenvector xxT/|x|2 in the radial direction,

while λ
Fρ

t (x) is of multiplicity n− 1 and corresponds to the eigenspace spanned by the columns of
In − xxT /|x|2, tangential to Sn−1. These eigenvalues carry all information about the material
properties that have to be implemented in practice, when actually building the near cloak device
characterized by σc,ρ. Following [13], we next introduce some degeneracy measures for these material
properties.

Definition 2.2. Let σ ∈ Σ(B2 \B1) represent a conductivity distribution in B2 \B1. Writing

λmin(x) := min{λ(x) | λ(x) eigenvalue of σ(x)} , x ∈ B2 \B1 ,

and
λmax(x) := max{λ(x) | λ(x) eigenvalue of σ(x)} , x ∈ B2 \B1 ,
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the maximal anisotropy of σ is defined by

χmax := ess sup
x∈B2\B1

λmax(x)

λmin(x)
, (2.12)

and the mean anisotropy of σc is defined by

χmean :=
1

|B2 \B1|

∫

B2\B1

λmax(x)

λmin(x)
dx , (2.13)

where |B2 \B1| denotes the volume of B2 \B1. Furthermore the minimal and maximal directional

conductivity are defined by

Λmin := ess inf
x∈B2\B1

λmin(x) and Λmax := ess sup
x∈B2\B1

λmax(x) .

The regular near cloak σc,ρ from (2.6) satisfies

χmax =
(2− ρ)2

ρ2
, χmean =

n

2n − 1

(

2

ρ
− (n+ 1) log(ρ)

)

+O(1) , (2.14a)

and

Λmin =
ρn−1

2− ρ
, Λmax =







(2− ρ)/ρ , n = 2 ,

2− ρ , n ≥ 3 .
(2.14b)

In this work we discuss some simple modifications of (2.5)–(2.7) that yield significantly enhanced
invisibility estimates when compared to (2.8) without worsening the maximal anisotropy and the
minimal and maximal directional conductivity too much, or even improving some of these measures,
when compared to (2.14). Of course replacing ρ by ρL, L ≥ 1, or even by e−1/ρ in (2.5)–(2.7) would
immediately give a better invisibility estimate of order ρnL or e−n/ρ. However, in this case χmax,
χmean, Λmin and Λmax would worsen tremendously.

In [1] (see also [2, 3]) enhanced approximate cloaks have been constructed by adding a finite
number of suitably selected isotropic layers of constant conductivity to the near cloak from (2.5)–
(2.7), leading to an invisibility estimate similar to (2.8) but of order ρ2L+2, where L ≥ 1 denotes
the number of additional layers. In order to determine the conductivities of these layers, a system
of algebraic equations has to be solved, and although numerical evidence suggests that it should
be possible to achieve arbitrary powers of ρ by adding sufficiently many layers (see [1, 13]), the
solvability of the corresponding systems of algebraic equations has so far only been established for
1 ≤ L ≤ 4. In [1] it has been assumed that either the conductivity distribution inside the cloaked
region B1 is constant and known, or that the boundary ∂B1 carries a perfectly conducting or per-
fectly insulating boundary condition. In [13] this enhanced near cloaking scheme has been extended
to obtain approximate cloaks for arbitrary, unknown spatially varying conductivity distributions in-
side B1, and a detailed analysis of the enhanced approximate cloaks has been provided. It has also
been pointed out that the layer construction neither significantly worsens the maximal anisotropy
nor the maximal directional conductivity of the enhanced approximate cloak when compared to
the approximate cloak from (2.6). However the minimal directional conductivity of the enhanced
approximate cloak is much smaller than the one from (2.14).
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3 Approximate cloaking by optimal radial coordinate stretching

In this section we discuss a new family of approximate cloaks that are obtained by a regular change
of variables in the radial direction, such that these cloaks satify a given invisibility estimate, but at
the same time are optimal, in the sense that they have either smallest possible maximal anisotropy
or smallest possible mean anisotropy.

Let 0 < ε < 1 and consider a C1 diffeomorphism ψε : [1, 2] → [ε, 2] satisfying ψε(1) = ε,
ψε(2) = 2, and ψ′

ε(r) > 0 for all r ∈ (1, 2). We define the mapping

Hε : B2 → B2 , Hε(x) :=







x
ε , x ∈ Bε ,

ψ−1
ε (|x|) x

|x| , x ∈ B2 \Bε .
(3.1)

This is a Lipschitz homeomorphism that expands Bε to B1, maps B2 \Bε onto B2 \B1, and satisfies
Hε(x) = x for all x ∈ ∂B2. A short calculation shows, that the push-forward by Hε of the constant
conductivity distribution In in B2 \Bε, is given by

(Hε)∗In(x) =

(

ψε(|x|)

|x|

)n−2(

αHε(|x|)
xxT

|x|2
+

1

αHε(|x|)

(

In −
xxT

|x|2

))

, x ∈ B2 \B1 , (3.2)

where

αHε(r) :=
ψε(r)

rψ′
ε(r)

, 1 < r < 2 .2 (3.3)

Accordingly, (Hε)∗In(x), x ∈ B2 \B1, has eigenvalues

λr(x) =

(

ψε(|x|)

|x|

)n−2

αHε(|x|) and λt(x) =

(

ψε(|x|)

|x|

)n−2 1

αHε(|x|)
, (3.4)

the latter with multiplicity n− 1. We notice that

∂

∂r

(

ψε(r)

r

)

=
rψ′

ε(r)− ψε(r)

r2
=

(

1

αHε(r)
− 1

)

ψε(r)

r2
, 1 < r < 2 ,

and so, ψε(r)/r is monotonically increasing in r if 0 < αHε(r) < 1.

Remark 3.1. The transformation Fρ from (2.5) can also be written in the form (3.1) choosing ε = ρ
and

ψε(r) = ψρ(r) := (2− ρ)r − 2(1− ρ) , 1 ≤ r ≤ 2 . (3.5)

In this sense (2.9)–(2.11) is a special case of (3.2)–(3.4). ⋄

If we define
σc,ε(x) := (Hε)∗In(x) , x ∈ B2 \B1 , (3.6)

and

σA,ε(x) :=







A(x) , x ∈ B1 ,

σc,ε(x) , x ∈ B2 \B1 ,
(3.7)

for an arbitrary A ∈ Σ(B1), then we find that (H−1
ε )∗σA,ε coincides with In in B2 \Bε. Thus, using

[26, Cor. 1] as before, we obtain the following analogue of Proposition 2.1.

2Note that if we define ψε(r) = εr for 0 ≤ r < 1, then the formulas (3.2)–(3.3) hold in B1 as well.
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Proposition 3.1. Given A ∈ Σ(B1) let ΛσA,ε
be the Neumann-to-Dirichlet map corresponding to

the conductivity distribution σA,ε from (3.7) with the regular near cloak σc,ε from (3.6). There exists

ε0 > 0 and a constant C > 0 independent of A such that

‖ΛσA,ε
− ΛIn‖ ≤ Cεn for all 0 < ε < ε0 ,

where ‖·‖ denotes the operator norm on L(H
−1/2
⋄ (∂B2),H

1/2
⋄ (∂B2)), and ΛIn denotes the Neumann-

to-Dirichlet map corresponding to the constant conductivity distribution In.

3.1 Minimizing the maximal anisotropy χmax of the approximate cloak

A change of variables as in (3.1) with smallest possible maximal anisotropy χmax from (2.12) is
characterized by a mapping ψε : [1, 2] → [ε, 2] solving the constrained optimization problem

minimize sup
r∈(1,2)

{

(αHε(r))
2,

1

(αHε(r))
2

}

subject to ψε(1) = ε and ψε(2) = 2 (3.8)

with αHε from (3.3). On the other hand a diffeomorphism ψε ∈ C1([1, 2]) solves (3.8) if and only if

ψε(r) = εe
∫ r
1 (tαHε (t))

−1 dt , 1 ≤ r ≤ 2 ,

where αHε solves

minimize sup
r∈(1,2)

{

αHε(r),
1

αHε(r)

}

subject to αHε(r) > 0 for all r ∈ (1, 2) , and

∫ 2

1

1

rαHε(r)
dr = log

(

2

ε

)

. (3.9)

Given any admissible αHε satisfying the constraint from (3.9) and introducing

amin := inf
r∈(1,2)

αHε(r) ≤ αHε ≤ sup
r∈(1,2)

αHε(r) =: amax in (1, 2) ,

we find that
∫ 2

1

1

ramax
dr ≤

∫ 2

1

1

rαHε(r)
dr ≤

∫ 2

1

1

ramin
dr .

Thus there exists a∗ ∈ [amin, amax] such that

∫ 2

1

1

a∗r
dr = log

(

2

ε

)

,

namely

a∗ =
log(2)

log(2)− log(ε)
< 1 .

Since

sup
r∈(1,2)

{

αHε(r),
1

αHε(r)

}

= max

{

amax,
1

amin

}

≥ max

{

a∗,
1

a∗

}

,
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where the last inequality is strict unless αHε is constant, we get that the constant function a∗ in
(1, 2) is the unique solution of the constrained optimization problem (3.9).

The corresponding optimal radial coordinate transform ψε, 0 < ε < 1, satisfies

ψ′
ε(r)

ψε(r)
=

1

ra∗
, r ∈ (1, 2) , ψε(1) = ε , ψε(2) = 2 ,

and so

ψε(r) = εe
1
a∗

∫ r
1

1
t
dt = εr1/a∗ = εr

log(2)−log(ε)
log(2) .

We therefore also obtain

χmax = χmean =
1

a2∗
=

(

log(2) − log(ε)

log(2)

)2

,

and

Λmin = εn−2 log(2)

log(2)− log(ε)
, Λmax =

log(2) − log(ε)

log(2)
.

Example 3.2. Let ε = ρL, L > 0. Then log(ε) = L log(ρ) and accordingly

a∗ =
log(2)

log(2) − L log(ρ)
, ψε(|x|) = ρL|x|

log(2)−L log(ρ)
log(2) ,

and

(Hε)∗In(x) =

(

ρL|x|
−

L log(ρ)
log(2)

)n−2( log(2)

log(2)− L log(ρ)

xxT

|x|2
+

log(2) − L log(ρ)

log(2)

(

In −
xxT

|x|2

))

for all x ∈ B2 \B1. Therefore, for 0 < ρ < 1:

χmax = χmean =

(

log(2)− L log(ρ)

log(2)

)2

and

Λmin = ρ(n−2)L log(2)

log(2)− L log(ρ)
, Λmax =

log(2) − L log(ρ)

log(2)
.

In particular, the maximal anisotropy, the mean anisotropy, and the maximal directional conduc-
tivity are less extreme, or very comparable to those in (2.14), but the invisibility estimate from
Proposition 3.1 is of order ρnL. ⋄

Example 3.3. Let ε = e−1/ρ, which corresponds to setting L = −1/(ρ log(ρ)) in Example 3.2.
Then log(ε) = −1/ρ and accordingly

a∗ =
log(2)

log(2) + 1/ρ
, ψε(|x|) = e−1/ρ|x|

log(2)+1/ρ
log(2) ,

and

(Hε)∗In(x) =
(

e−1/ρ|x|
1

ρ log(2)

)n−2
(

log(2)

log(2) + 1/ρ

xxT

|x|2
+

log(2) + 1/ρ

log(2)

(

In −
xxT

|x|2

))
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for all x ∈ B2 \B1. Therefore, for 0 < ρ < 1:

χmax = χmean =
1

a2∗
=

(

log(2) + 1/ρ

log(2)

)2

,

and

Λmin = e−
n−2
ρ

log(2)

log(2) + 1/ρ
, Λmax =

log(2) + 1/ρ

log(2)
.

In particular, the maximal anisotropy is comparable to that of (2.14). The maximal directional
conductivity is comparable to that of (2.14), for n = 2, and only slightly worse for n ≥ 3, but the

invisibility estimate from Proposition 3.1 is order e−
n
ρ ! ⋄

3.2 Minimizing the mean anisotropy χmean of the approximate cloak

Instead of minimizing the maximal anisotropy χmax of the approximate cloak we may also mini-
mize its mean anisotropy χmean from (2.13). This means we are looking for a C1 diffeomorphism
ψε : [1, 2] → [ε, 2] that solves the constrained optimization problem

minimize

∫ 2

1
max

{

(αHε(r))
2,

1

(αHε(r))
2

}

rn−1 dr subject to ψε(1) = ε and ψε(2) = 2

(3.10)
with αHε from (3.3). In this connection the following simple lemma will prove helpful.

Lemma 3.4. The optimization problem

minimize

∫ 2

1

1

(αHε(r))
2
rn−1 dr subject to ψε(1) = ε , ψε(2) = 2 , and ε ≤ ψε ≤ 2 , (3.11)

posed in H1((1, 2)) has the unique minimizer

ψ∗
ε(r) = e

− 2n log(2/ε)
rn(2n−1)

+log(2)+ log(2/ε)
2n−1 ,

a smooth diffeomorphism from [1, 2] to [ε, 2], with the associated α∗
Hε

(r) = (2n−1)rn/(n2n log(2/ε)).

Proof. Introducing βε = log(ψε) the minimization problem (3.11) is equivalent to

minimize

∫ 2

1
(β′ε(r))

2rn+1 dr s.t. βε(1) = log(ε) , βε(2) = log(2) , and log(ε) ≤ βε ≤ log(2) ,

(3.12)
also posed in H1((1, 2)). If we drop the constraint log(ε) ≤ βε ≤ log(2) from the latter optimization
problem then we get a simple variational problem whose unique minimizer β∗ε ∈ H1((1, 2)) is a weak
solution of

(rn+1(β∗ε )
′(r))′ = 0 , r ∈ (1, 2) , β∗ε (1) = log(ε) , β∗ε (2) = log(2) .

A simple calculation gives

β∗ε (r) = −
2n log(2/ε)

2n − 1
r−n + log(2) +

log(2/ε)

2n − 1
, 1 < r < 2 .
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Since the coefficient in front of r−n is negative β∗ε automatically satisfies log(ε) ≤ β∗ε ≤ log(2) and
so β∗ε is indeed the unique solution to the optimization problem (3.12). One easily calculates

ψ∗
ε(r) = e

−
2n log(2/ε)
rn(2n−1)

+log(2)+
log(2/ε)
2n−1 , 1 ≤ r ≤ 2 ,

and

α∗
Hε

(r) =
1

r(β∗ε )
′(r)

=
(2n − 1)rn

n2n log(2/ε)
, 1 < r < 2 ,

as desired.

We note that for ε < 2e(1−2n)/n < 1/2 we have that 0 < α∗
Hε

(r) < 1, and so

∫ 2

1
max

{

(α∗
Hε

(r))2,
1

(α∗
Hε

(r))2

}

rn−1 dr =

∫ 2

1

1

(α∗
Hε

(r))2
rn−1 dr .

Since
∫ 2

1

1

(α∗
Hε

(r))2
rn−1 dr ≤

∫ 2

1

1

(αHε(r))
2
rn−1 dr ≤

∫ 2

1
max

{

(αHε(r))
2,

1

(αHε(r))
2

}

rn−1 dr ,

for any other C1 diffeomorphism ψε, it follows immediately that ψ∗
ε is also the unique minimizer for

(3.10), provided that ε < 2e(1−2n)/n. We now calculate that for this transformation which minimizes
the mean anisotropy

χmax =
1

(α∗
Hε

(1))2
=

(

n2n log(2/ε)

2n − 1

)2

, χmean =
n22n(log(2/ε))2

(2n − 1)2
,

and

Λmin = εn−2 2n − 1

n2n log(2/ε)
, Λmax ≤

n2n log(2/ε)

2n − 1
.

Example 3.5. Let ε = ρL, L > 0. Then log(ε) = L log(ρ) and accordingly

αHε(|x|) =
(2n − 1)|x|n

n2n(log(2)− L log(ρ))
, ψε(|x|) = e

−
2n(log(2)−L log(ρ))

|x|n(2n−1)
+log(2)+

log(2)−L log(ρ)
2n−1 ,

and

(Hε)∗In(x) =

(

ψε(|x|)

|x|

)n−2( (2n − 1)|x|n

n2n(log(2)− L log(ρ))

xxT

|x|2
+
n2n(log(2) − L log(ρ))

(2n − 1)|x|n

(

In −
xxT

|x|2

))

for all x ∈ B2 \B1. Furthermore,

χmax =

(

n2n(L log(ρ)− log(2))

2n − 1

)2

, χmean =
n22n(log(2) − L log(ρ))2

(2n − 1)2
,

which is better than (2.14), and

Λmin = ρ(n−2)L 2n − 1

n2n(log(2)− L log(ρ))
, Λmax ≤

n2n(log(2) − L log(ρ))

2n − 1
,

which is also better than (2.14) for n = 2, and not much worse (at least for Λmax) for n ≥ 3. But
the invisibility estimate from Proposition 3.1 is of the order ρnL. ⋄
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Example 3.6. Let ε = e−1/ρ, which corresponds to setting L = −1/(ρ log(ρ)) in Example 3.5.
Then log(ε) = −1/ρ and accordingly

αHε(|x|) =
(2n − 1)|x|n

n2n(log(2) + 1/ρ)
, ψε(|x|) = e

−
2n(log(2)+1/ρ)

|x|n(2n−1)
+log(2)+

log(2)+1/ρ
2n−1 ,

and

(Hε)∗In(x) =

(

ψε(|x|)

|x|

)n−2( (2n − 1)|x|n

n2n(log(2) + 1/ρ)

xxT

|x|2
+
n2n(log(2) + 1/ρ)

(2n − 1)|x|n

(

In −
xxT

|x|2

))

for all x ∈ B2 \B1. Therefore,

χmax =

(

n2n(log(2) + 1/ρ)

2n − 1

)2

, χmean =
n22n(log(2) + 1/ρ)2

(2n − 1)2
,

which is comparable to (2.14) (at least for χmax), and

Λmin = e−(n−2)/ρ 2n − 1

n2n(log(2) + 1/ρ)
, Λmax ≤

n2n(log(2) + 1/ρ)

2n − 1
,

which is comparable to (2.14) for n = 2, and only slightly worse (at least for Λmax) for n ≥ 3. But

the invisibility estimate from Proposition 3.1 is of the order e−
n
ρ ! ⋄

Note that the χmax, χmean, Λmin and Λmax obtained in Sections 3.1 and 3.2 are equivalent (up
to constants) as functions of ε (or ρ), in spite of the fact that the optimality criteria are different.
Note that unlike the affine ψε defined in (3.5), the optimal ψε in Sections 3.1 and 3.2 do not have
regular function limits as ε → 0; in other words there is no corresponding “limiting perfect cloak”.
Indeed the optimal ψε from Sections 3.1 and 3.2 converge to 0 for any 1 ≤ r < 2. The eigenvalues
of the cloak converge to 0 and ∞ (for n = 2) and 0 (for n ≥ 3) everywhere in 1 ≤ r < 2, whereas
the local anisotropy measure 1/α2

Hε
converges to ∞ everywhere in 1 ≤ r ≤ 2.

4 Near cloak enhancing layers

Inspired by the layering approach from [1, 13], we discuss in this section a simple strategy to improve
the near cloak from (2.6) by adding a cloak enhancing layer. To this end we compose the regular
change of variables Fρ on B2, which is used in the push-forward construction to obtain the near
cloak in (2.6), with another suitably defined regular change of variables Gρ,ε on B2, that significantly
enhances the cloaking effect of this near cloak.

Let 0 < ρ < 1 and 0 < ε < ρ/2, and consider a Lipschitz homeomorphism φρ,ε : [ρ/2, ρ] → [ε, ρ]
satisfying φρ,ε(ρ/2) = ε and φρ,ε(ρ) = ρ. Similar to (3.1) we define the mapping

Gρ,ε : B2 → B2 , Gρ,ε(x) :=



















ρ
2
x
ε , x ∈ Bε ,

φ−1
ρ,ε(|x|)

x
|x| , x ∈ Bρ \Bε ,

x , x ∈ B2 \Bρ ,

that expands Bε to Bρ/2, maps B2 \Bε onto B2 \Bρ/2, and satisfies Gε,ρ(x) = x for all x ∈ B2 \Bρ.
If we extend φρ,ε by φρ,ε(r) = r, for ρ < r ≤ 2, then Gρ,ε may be written as Gρ,ε(x) = φ−1

ρ,ε(|x|)x/|x|
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replacements

B2B2B2

Bρ Bρ

Bε Bρ/2

B1

FρGρ,ε

B1/2

Figure 2: Change of variables Hρ,ε = Fρ ◦Gρ,ε expanding a very small ball Bε to the ball B1/2.

for all x ∈ B2 \Bε. Accordingly, the push-forward by Gρ,ε of the constant conductivity distribution
In in B2 \Bε is given by

(Gρ,ε)∗In(x) =

(

φρ,ε(|x|)

|x|

)n−2 (

αGρ,ε(|x|)
xxT

|x|2
+

1

αGρ,ε(|x|)

(

In −
xxT

|x|2

))

, x ∈ B2 \Bρ/2 ,

where, analogously to (3.3),

αGρ,ε(r) :=
φρ,ε(r)

rφ′ρ,ε(r)
, ρ/2 < r < 2 . (4.1)

Composing Gρ,ε with Fρ from (2.5) yields another regular Lipschitz change of variables

Hρ,ε := Fρ ◦Gρ,ε

on B2 that expands Bε to B1/2, maps B2 \ Bε onto B2 \ B1/2, and satisfies Hρ,ε(x) = x for all
x ∈ ∂B2 (see Figure 2 for a sketch). Defining

σc,ρ,ε(x) := (Hρ,ε)∗In(x) , x ∈ B2 \B1/2 , (4.2)

and correspondingly

σA,ρ,ε(x) =







A(x) , x ∈ B1/2 ,

σc,ρ,ε(x) , x ∈ B2 \B1/2 ,
(4.3)

for an arbitrary A ∈ Σ(B1/2), we obtain that (H−1
ρ,ε )∗σA,ρ,ε coincides with In in B2\Bε, and therefore

this near cloak satisfies the same invisibility estimate as in Proposition 3.1.

Proposition 4.1. Given A ∈ Σ(B1/2) let ΛσA,ρ,ε
be the Neumann-to-Dirichlet map corresponding

to the conductivity distribution σA,ρ,ε from (4.3) with the enhanced regular near cloak σc,ρ,ε from

(4.2). Then there exists ε0 > 0 and a constant C > 0 independent of A such that

‖ΛσA,ρ,ε
− ΛIn‖ ≤ Cεn for all 0 < ε < ε0 ,

where ‖·‖ denotes the operator norm on L(H
−1/2
⋄ (∂B2),H

1/2
⋄ (∂B2)), and ΛIn denotes the Neumann-

to-Dirichlet map corresponding to the constant conductivity distribution In.
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The push-forward of the constant conductivity distribution In in B2 \Bε by Hρ,ε is given by

(Hρ,ε)∗In(x) = (Fρ)∗(Gε,ρ)∗In(x)

=

(

φρ,ε(ψρ(|x|))

|x|

)n−2 (

αFρ(|x|)αGρ,ε(ψρ(|x|))
xxT

|x|2

+
1

αFρ(|x|)αGρ,ε(ψρ(|x|))

(

In −
xxT

|x|2

))

(4.4)

for x ∈ B2 \B1/2, with ψρ from (3.5) and αFρ from (2.10) (extended by ψρ(r) = ρr and αFρ(r) = 1
for 1/2 < r < 1).

The fact that αFρ(r) = 1 for all 1/2 < r < 1 implies that to control the maximal anisotropy
or the mean anisotropy of the enhanced near cloak σc,ρ,ε in B1 \ B1/2, it suffices to control the

maximal anisotropy or the mean anisotropy of (Gρ,ε)∗In in Bρ \ Bρ/2. Furthermore, the fact that

αGρ,ε(r) = 1 and φρ,ε(r) = r for all ρ < r < 2, implies that σc,ρ,ε = (Fρ)∗In in B2 \ B1 (and thus
σc,ρ,ε is independent of Gρ,ε in B2 \B1).

Example 4.1. Similar to Section 3 we consider cloak enhancing layers that meet a prescribed cloak
enhancement (ε/ρ)n and have at the same time minimal maximal anisotropy χmax or minimal mean
anisotropy χmean.

To obtain a cloak enhancing layer of minimal maximal anisotropy, we seek a C1 diffeomor-
phism φρ,ε : [ρ/2, ρ] → [ε, ρ] such that the corresponding αGρ,ε from (4.1) solves the constrained
optimization problem

minimize sup
r∈(ρ/2,ρ)

{

αGρ,ε(r),
1

αGρ,ε(r)

}

subject to αGρ,ε(r) > 0 for all r ∈ (ρ/2, ρ) , and

∫ ρ

ρ/2

1

rαGρ,ε(r)
dr = log

(ρ

ε

)

(4.5)

(cf. (3.9)). As in Section 3.1 we find that the solution α∗
Gρ,ε

to (4.5) is given by the constant function

α∗
Gρ,ε

(r) =
log(2)

log(ρ)− log(ε)
, ρ/2 < r < ρ ,

and that the corresponding optimal diffeomorphism φ∗ρ,ε satisfies

φ∗ρ,ε(r) =

(

2ε

ρ

)log(ρ)/ log(2)

r
log(ρ)−log(ε)

log(2) , ρ/2 ≤ r ≤ ρ .

Accordingly, recalling (4.4), we obtain that

αHρ,ε(r) := αFρ(r)α
∗
Gρ,ε

(ψρ(r)) =
log(2)

log(ρ)− log(ε)
, 1/2 < r < 1 . (4.6)

On the other hand, minimizing the mean anisotropy of the cloak enhancing layer, for ε <
ρe(1−2n)/n amounts to constructing a C1 diffeomorphism φρ,ε : [ρ/2, ρ] → [ε, ρ], such that the
corresponding α∗

Gρ,ε
from (4.1) solves the constrained optimization problem

minimize

∫ ρ

ρ/2

1

(αGρ,ε(r))
2
rn−1 dr subject to φρ,ε(ρ/2) = ε and φρ,ε(ρ) = ρ (4.7)
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Figure 3: The conductivities of 8 (left) and 16 (right) isotropic cloak enhancing sublayers from [13] in
comparison with two anisotropic cloak enhancing layers described in Example 4.2.

(cf. Lemma 3.4 and the remarks following). As in Section 3.2 we find that the solution to (4.7) is
given by

α∗
Gρ,ε

(r) =
(2n − 1)rn

nρn log(ρ/ε)
, ρ/2 < r < ρ ,

and that the corresponding optimal diffeomorphism φρ,ε satisfies

φ∗ρ,ε(r) = e
− ρn log(ρ/ε)

rn(2n−1)
+log(ρ)+ log(ρ/ε)

2n−1 , ρ/2 ≤ r ≤ ρ .

Accordingly, we obtain from (4.4) that

αHρ,ε(r) := αFρ(r)α
∗
Gρ,ε

(ψρ(r)) =
(2n − 1)rn

n log(ρ/ε)
, 1/2 < r < 1 . (4.8)

Note that in both cases φ∗ρ,ε, α
∗
Gρ,ε

as well as αHρ,ε depend non-trivially on the characteristic
parameter ρ of the near cloak to be enhanced. ⋄

Example 4.2. Finally we compare qualitative properties of examples of (continuous) anisotropic
cloak enhancing layers as discussed above to the corresponding properties of the two dimensional
(piecewise constant) isotropic cloak enhancing layers developed in [1, 13].

The solid lines in Figure 3 are graphs of numerical approximations of the conductivity distribu-
tions of two radially symmetric isotropic cloak enhancing layers from [13], consisting of 8 and 16
sublayers of constant conductivity in B1 \B1/2. As has been shown in [13] (subject to the solvability
of a finite set of algebraic equations), combining these conductivity distributions with the regular
near cloak σc,ρ (cf. (2.6)) in B2 \ B1, and with an additional layer of very small conductivity in
B1/2 \B1/4, we obtain an approximate cloak satisfying a visibility estimate similar to (2.8), with a

right hand side of order O(ρ2L+2). Here L denotes the number of cloak enhancing layers – for more
details see the remarks following Theorem 1 of [13]. To compare qualitatively the shape of these
isotropic conductivity distributions with shapes of anisotropic cloak enhancing layers, we also add to
Figure 3 solid dots, indicating the arithmetic and harmonic averages of the constant conductivities
of adjacent sublayers of the isotropic conductivity distributions. These averages are well known
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asymptotically to approximate the eigenvalues of a homogenized anisotropic conductivity distribu-
tion with similar dielectric properties as the isotropic conductivity distributions themselves. The
fact that the isotropic layers jump between a and 1/a is consistent with the fact that the anisotropic
cloak enhancing layers discussed above have eigenvalues α∗

Gρ,ε
(r) and 1/α∗

Gρ,ε
(r) (in dimension two).

First we compare these isotropic layers to the optimal cloak enhancing layers from Example 4.1.
In contrast to the isotropic layers from [13], the optimal anisotropic layers from Example 4.1 depend
non-trivially on the parameter ρ of the near cloak to be enhanced and degenerate as ρ tends to zero.
For fixed ρ > 0 the eigenvalues of the cloak enhancing layer of minimal maximal anisotropy from (4.6)
are constant with respect to the radial variable, i.e., the corresponding conductivity distributions
look qualitatively very different from the isotropic cloak enhancing layers from [13], and are thus not
shown in Figure 3. On the other hand, the eigenvalues of the cloak enhancing layer of minimal mean
anisotropy from (4.8) are monotonically decreasing and increasing with respect to the radial variable,
respectively. The dotted lines in Figure 3, corresponding to the functions r 7→ r2 and r 7→ 1/r2,
visualize the qualitative behavior of these eigenvalues (see (4.8)), omitting the dependency on ρ by
neglecting the constant factor in (4.8). These plots indicate that the eigenvalues of this optimal
cloak enhancing layer change at a slightly slower rate than the corresponding isotropic conductivities
from [13] would warrant, as the radial variable decreases (i.e., as we approach ∂B1/2)

One way to obtain anisotropic cloak enhancing layers that do not depend on the parameter ρ
of the cloak to be enhanced is to consider perfect cloak enhancing layers. Such a layer can, e.g.,
be obtained by means of the radial coordinate transform ψ : [1/2, 1] → [0, 1], ψ(r) := 2(r − 1/2),
which satisfies ψ(1/2) = 0 and ψ(1) = 1. In this fashion we obtain

σc(x) :=

(

ψ(|x|)

|x|

)n−2(

α(|x|)
xxT

|x|2
+

1

α(|x|)

(

In −
xxT

|x|2

))

, x ∈ B1 \B1/2 ,

with α(r) := 1 − 1/(2r), 1/2 < r < 1, which is just a rescaled version of the perfect cloak from
(2.3). The eigenvalues of this anisotropic conductivity distribution, shown in Figure 3 in dashes,
are relatively close to the arithmetic and harmonic averages of the isotropic layers from [13], for
1/2 < |x| < 3/4. ⋄

Conclusions

We have considered a slightly generalized version of the cloaking by mapping scheme from [16],
replacing the traditional affine, radial map by more general radial coordinate transforms. We have
studied the optimization problem of choosing those transforms which lead to minimal (maximal
or mean) anisotropy for the resulting approximate cloak, given a prescribed upper bound for the
visibility. We have demonstrated that the corresponding optimal transformations yield significantly
enhanced approximate cloaks, when compared to the traditional approximate cloak from [16]. These
results are relevant in practice, since they characterize the level of anisotropy that is necessary in
order to obtain a certain level of invisibility.
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