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Abstract

We extend and analyse an enhanced approximate cloaking scheme, which was
recently introduced by Ammari, Kang, Lee, and Lim [3] to cloak a domain with a
fixed, homogeneous Neumann boundary condition. Subject to the solvability of a finite
set of algebraic equations we construct an approximate cloak for the two dimensional
transmission case, which achieves invisibility of the order ρ2N+2 while maintaining the
same level of local anisotropy as earlier schemes of order ρ2 [10]. The approximate
cloak and the invisibility estimate is independent of the objects being cloaked. Finally,
we present analytical as well as numerical evidence for the solvability of the required
algebraic equations.

1 Introduction

The central objective of cloaking is to create a domain in space, the presence of which,
and the contents of which is invisible or nearly invisible to any outside observer. In the
approach referred to as ”cloaking by mapping” this is achieved by surrounding the domain
one wants to hide by a material layer with very special properties. The material with the
appropriate properties is designed by a ”push forward” strategy, using a mapping that
typically has a very simple description. Cloaking by mapping schemes may be divided
into two different categories (1) those that achieve ”perfect” invisibility, at the cost of
having to use materials with extreme aspect ratios [8, 18], and (2) those that achieve only
”approximate” invisibility, but use materials with finite aspect ratios [7, 9, 10, 13, 14].
This paper is entirely devoted to schemes of the second (approximate) kind. For the
present discussion we shall limit ourselves to the case in which the measurements available
to the outside observer are those of steady state voltages and currents. There is a vast,
and rapidly growing literature on cloaking (by mapping, or by other means) – we mention
for instance [4, 6, 9, 13, 16] and the references therein.

A key observation that lies at the basis of ”cloaking by mapping” is the following
invariance of solutions to second order elliptic boundary value problems. Suppose Ω is a
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bounded, simply connected, smooth domain in R
d, d ≥ 2, and F is a one-to-one Lipschitz

mapping of Ω onto Ω, with F |∂Ω = id. Let x → a(x) be a positive definite, symmetric
matrix valued function, with

c0|ξ|
2 ≤ 〈a(x)ξ, ξ〉 ≤ C0|ξ|

2 ∀ξ ∈ R
d , a.e. x ∈ Ω ,

for some positive constants c0, C0, and let u ∈ H1(Ω) be the solution to

∇ · (a∇u) = 0 in Ω , with u = φ on ∂Ω ,

for some given φ ∈ H1/2(∂Ω). Then v = u ◦ F−1 is the solution to

∇ · (F∗a∇v) = 0 in Ω , with v = φ on ∂Ω ,

where F∗a denotes the ”push forward of the coefficient a by F”

F∗a =
DFaDF t

|detDF |
◦ F−1 ,

and at the same time
(a∇u) · ν = (F∗a∇v) · ν on ∂Ω ,

where ν denotes the (outward) unit normal to ∂Ω. If we use Λa to denote the Dirichlet to
Neumann data operator associated with a, then the previous identity expresses that

Λa = ΛF∗a .

We also note that if B is a subdomain of Ω, and F = id in Ω \B, then the solutions u and

v agree in Ω \ B, and Λ
(B)
a = Λ

(B)
F∗a

, where Λ(B) refers to the Dirichlet to Neumann data
maps on ∂B. These observations were originally made by Luc Tartar in connection with
discussions about the so-called Calderon problem, see [11, 12] for more details.

Consider the situation where Ω contains the ball of radius 2, and is mapped one-to-one
onto itself by the mapping

Fρ(x) =























x x ∈ Ω \B2 ,

1
2−ρx+ 2(1−ρ)

2−ρ
x
|x| x ∈ B2 \Bρ ,

1
ρx x ∈ Bρ .

(1)

This piecewise smooth Lipschitz mapping has the properties that Fρ(Bρ) = B1, Fρ(B2) =
B2. In the ”physical domain” we seek to hide the contents of the unit ball B1 (represented
by the conductivity distribution a∗obj). This may approximately be accomplished by placing
the conductivity distribution (Fρ)∗I in B2 \ B1. In the ”physical domain” we thus have
conductivity distribution

Aρ(x) =























I x ∈ Ω \B2 ,

(Fρ)∗I x ∈ B2 \B1 ,

a∗obj(x) x ∈ B1 ,

(2)
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By a pull back to the ”non-physical domain” (the one with the small inclusion Bρ) we
obtain the conductivity distribution

aρ(x) =







I x ∈ Ω \Bρ ,

aobj(x) x ∈ Bρ ,

where aobj is given by aobj = (F−1
ρ )∗a∗obj . The relation between aρ and Aρ is that

Aρ = (Fρ)∗aρ .

The solutions uρ and vρ, corresponding to coefficients aρ and Aρ, respectively, and the
common boundary data φ, completely agree in Ω \ B2 (where the mapping Fρ is the
identity). In other words, the outside observer (an observer in Ω \B2) views the identical
effect of aρ and Aρ. To assess how nearly we have cloaked a∗obj (i.e., how closely it resembles
the uniform conductivity 1 to the outside observer), it thus suffices to estimate the effect
of the small inhomogeneity Bρ with contents aobj . Let K denote a compact subset of
Ω \B2, and let U denote the solution to ∆U = 0 in Ω, with U = φ on ∂Ω. In [10] it was
proven that ‖U − uρ‖H1(K) ≤ Cρd‖φ‖H1/2(∂Ω), with a constant C that is independent of
aobj (the same estimate thus holds for ‖U − vρ‖H1(K), with a constant that is independent
of the object we seek to hide, a∗obj)

1.
For the cloak (the region B2\B1 in the ”physical domain”) described by (2) we calculate

(Fρ)∗I(x) =
DFρDF t

ρ

|detDFρ|
◦ F−1(x)

= (2− ρ)

(

2− ρ−
2(1− ρ)

|x|

)d−3







(

I −
xxt

|x|2

)

+

(

2− ρ− 2(1−ρ)
|x|

)2

(2− ρ)2
xxt

|x|2






,

which has eigenvalues

λmin = (2− ρ)−1

(

2− ρ−
2(1 − ρ)

|x|

)d−1

, and λmax = (2− ρ)

(

2− ρ−
2(1 − ρ)

|x|

)d−3

,

the latter of multiplicity d − 1. We may introduce, as a measure of the anisotropy of the
cloak, the number

χan := max
x∈B̄2\B1

λmax

λmin
(x) , (3)

and, as measures of the degeneracy of the cloak,

Λmax = max
x∈B̄2\B1

λmax(x) , and Λmin = min
x∈B̄2\B1

λmin(x) . (4)

1The estimate in [10] was stated in terms of the Neumann to Dirichlet data operator, but the H
1(K)

estimate is also a consequence of that analysis
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For this particular cloak we arrive at

χan = max
x∈B̄2\B1

(2− ρ)2
(

2− ρ− 2(1−ρ)
|x|

)2 =
(2− ρ)2

ρ2
, (5)

and

Λmin = (2− ρ)−1ρd−1 , Λmax =







(2− ρ)/ρ d = 2 ,

2− ρ d ≥ 3 .
. (6)

The minimal value Λmin is always achieved at |x| = 1, whereas Λmax is achieved at |x| = 1
for d = 2, 3, but at |x| = 2 for d > 3.

The focus of this paper is on cloaking strategies that will allow for enhanced invisibility,
i.e., on strategies that lead to estimates that are strictly better than Cρd. A particular
point of interest is to what extent these may be realized without significantly worsening
the total anisotropy and/or the degeneracy of the cloak.

A trivial strategy would be to simply replace ρ by ρm, in which case the visibility
estimate becomes ρmd. At the same time the anisotropy measure becomes

χan =
(2− ρm)2

ρ2m
,

and the degeneracy measures become

Λmin = (2− ρm)−1ρ(d−1)m , Λmax =







(2− ρm)/ρm d = 2 ,

2− ρm d ≥ 3 .
. (7)

A natural goal is to try to understand to what extent we may do better.
There has recently been some very interesting work on enhanced cloaking of a domain

with a fixed, homogeneous Neumann boundary condition, both in the context of the two
dimensional conductivity-, and the two dimensional Helmholtz problem [2, 3, 15]. The
approach has been to combine the mapping F2ρ with a finite number of radial layers of
appropriately selected constant (finite and non-zero) conductivity, occupying the annulus
B2ρ \Bρ. The rationale behind this is that, in the ”non-physical domain” it is well-known

that the solution to ∆uρ = 0 in Ω \ Bρ,
∂uρ

∂n = 0 on ∂Bρ, and uρ = φ on ∂Ω, has an
expansion in terms of powers of ρ, starting with ρd (see [1, 5]). The layered conductivity
structure in B2ρ\Bρ is now selected so that a finite number of these powers vanish, and the
corresponding solution starts with ρd+N , for some positive N . In the ”physical domain”
(after mapping by F2ρ) the cloak now occupies B2 \ B1/2, and the objects being cloaked
are inside B1/2. Even though it should in principle be possible to achieve any power of
ρ by adding sufficiently many layers, there is currently no proof of this. We discuss the
structure of the appropriate conductivities in detail in Section 3. This discussion naturally
builds on, and extends the work in [3].

The cloaking enhancement discussed so far only addresses the cloaking of a fixed do-
main with a fixed (say Neumann) boundary condition. A major goal of this paper is to
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extend the enhancement strategy to the transmission setting, where we cloak arbitrary
objects, inside B1/4, by use of conducting materials occupying B2 \ B1/4 (and in such a
way, that the enhanced cloak is independent of the objects). We achieve this goal by
combining the previous enhancement strategy with the addition of a layer of very small
conductivity occupying Bρ \Bρ/2. Mathematically we then have to estimate how well this
poorly conducting layer simulates a Neumann boundary condition, uniformly with respect
to the conductivities selected for enhancement, and uniformly with respect to the objects
we are seeking to cloak. This analysis is the focus of Section 2. Finally, in Section 4 we
combine the enhancement estimates of Section 3 with this ”simulated Neumann boundary
condition estimate” to give an estimate of the effectivity of our enhanced approximate
cloaking strategy. We conclude with a discussion of the degeneracy and anisotropy of the
resulting approximate cloak.

2 Approximation of the homogeneous Neumann boundary

condition

For our application to cloaking we need a very precise result, that estimates how the
perfectly homogeneous Neumann boundary condition is approximated through the use
of poorly conducting materials. We suppose Ω is a bounded, simply connected, smooth
domain in R

d, containing the origin, and we let Bρ denote the ball of radius ρ, centered
at the origin. Suppose ρ is sufficiently small that B2ρ ⊂⊂ Ω. The focus of our study in
this section will be the conductivity distribution

aǫ,ρ =























a0 in Ω \Bρ ,

ǫ in Bρ \Bρ/2 ,

aobj in Bρ/2 ,

(8)

where a0 is an L∞-function that satisfies 0 < c0 ≤ a0(x) ≤ C0 < ∞ for a.e. x ∈ Ω \ Bρ

(for some fixed constants c0 and C0), ǫ is a positive number, and aobj(x) is an arbitrary
L∞-function, that is bounded away from zero (aobj represents the ”pull-back” of the object
we want to hide with our enhanced approximate cloak). By uǫ,ρ we denote the solution to

∇ · (aǫ,ρ∇uǫ,ρ) = 0 in Ω , uǫ,ρ = φ on ∂Ω , (9)

and by u0,ρ the solution to

∇ · (a0∇u0,ρ) = 0 in Ω , u0,ρ = φ on ∂Ω , a0
∂u0,ρ
∂ν

= 0 on ∂Bρ . (10)

The specific goal in this section is to establish an estimate for ‖uǫ,ρ − u0,ρ‖H1(Ω\Bρ), that
is explicit in terms of both ǫ and ρ, and uniform with respect to aobj . Since the domain
Ω\Bρ depends on ρ, and we seek to establish an estimate that is explicit in its dependence
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on ρ, we must be precise in our definition of the H1(Ω \Bρ) norm. We use

‖v‖H1(Ω\Bρ) :=

(

∫

Ω\Bρ

|∇v|2 dx+

∫

Ω\Bρ

|v|2 dx

)1/2

.

Remark 1. At the final point in our analysis we shall use the fact that the expression

(

∫

Ω\Bρ

|∇v|2 dx

)1/2

is indeed a ρ-uniformly equivalent norm on H1(Ω \ Bρ) ∩ {v : v = 0 on ∂Ω}. In other
words, we shall use the fact that there exists a constant C, independent of ρ, so that

∫

Ω\Bρ

|∇v|2 dx ≤

∫

Ω\Bρ

|∇v|2 dx+

∫

Ω\Bρ

|v|2 dx ≤ C

∫

Ω\Bρ

|∇v|2 dx , (11)

for all v ∈ H1(Ω \Bρ), with v vanishing on ∂Ω. We leave the proof of this simple fact to
the reader.

For our analysis we shall need an estimate for the Dirichlet to Neumann data map
associated with an elliptic operator which equals the Laplacian near the boundary. We
formulate this as

Lemma 1. Let a in L∞(B1) be given by

a =







1 in B1 \B1/2 ,

b in B1/2 ,

where b is in L∞(B1/2), positive, and strictly bounded away from zero. Let v ∈ H1(B1) be
a solution to ∇ · (a∇v) = 0 in B1. Then

‖
∂v

∂ν
‖H−1/2(∂B1)

≤ Cmin
k∈R

‖v + k‖H1/2(∂B1)
. (12)

The constant C is independent of b and v.

Proof. Let w be such that w = v on ∂B1, w vanishes identically in B1/2 and ‖w‖H1(B1) ≤
C‖v‖H1/2(∂B1)

. By Dirichlet’s principle

∫

B1\B1/2

|∇v|2 dx ≤

∫

B1/2

b|∇v|2 dx+

∫

B1\B1/2

|∇v|2 dx

=

∫

B1

a|∇v|2 dx ≤

∫

B1

a|∇w|2 dx

=

∫

B1\B1/2

|∇w|2 dx ≤ C‖v‖2
H1/2(∂B1)

, (13)
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with C independent of b and v. It follows that

‖v‖2H1(B1\B1/2)
≤ C

(

∫

B1\B1/2

|∇v|2 dx+ ‖v‖2L2(∂B1)

)

≤ C‖v‖2
H1/2(∂B1)

,

with C independent of b and v. Since ∆v = 0 in B1 \B1/2, a local elliptic energy estimate
thus yields

‖
∂v

∂ν
‖H−1/2(∂B1)

≤ C‖v‖H1(B1\B1/2)
≤ C‖v‖H1/2(∂B1)

,

and insertion of v + k, k ∈ R, in place of v now completes the proof of the lemma.

We are now ready to prove the following result, that estimates quite precisely how
well uǫ,ρ approximates u0,ρ, the solution subject to a homogeneous Neumann boundary
condition on ∂Bρ.

Proposition 1. Let uǫ,ρ be the solution to (9) with aǫ,ρ given by (8), and let u0,ρ be the
solution to (10), then

‖uǫ,ρ − u0,ρ‖H1(Ω\Bρ) ≤ Cǫ‖φ‖H1/2(∂Ω) .

The constant C is independent of ǫ, ρ, and the function aobj . C depends on c0 and C0,
but it is otherwise also independent of a0.

Proof. For any v in H1(Ω \Bρ), let vρ denote the rescaled function vρ(x) = v(ρx), defined
on ρ−1Ω \B1. The standard trace estimate

‖w‖H1/2(∂B1)
≤ C‖w‖H1(B2\B1) ,

immediately leads to

min
k∈R

‖vρ + k‖H1/2(∂B1)
≤ Cmin

k∈R
‖vρ + k‖H1(B2\B1) ≤ C‖∇vρ‖L2(B2\B1)

≤ Cρ1−
d
2 ‖∇v‖L2(B2ρ\Bρ) ≤ Cρ1−

d
2 ‖∇v‖L2(Ω\Bρ) . (14)

Let w be a function in H1(Ω) that is selected so that w = φ on ∂Ω, w vanishes on
some fixed B ⊂ Ω that contains all Bρ, and ‖w‖H1(Ω) ≤ C‖φ‖H1/2(∂Ω). Using Dirichlet’s
principle we now calculate

‖∇uǫ,ρ‖
2
L2(Ω\Bρ)

≤ C

∫

Ω\Bρ

a0|∇uǫ,ρ|
2 dx

≤ C

(

∫

Bρ/2

aobj |∇uǫ,ρ|
2 dx+

∫

Bρ\Bρ/2

ǫ|∇uǫ,ρ|
2 dx+

∫

Ω\Bρ

a0|∇uǫ,ρ|
2 dx

)

= C

∫

Ω
aǫ,ρ|∇uǫ,ρ|

2 dx ≤ C

∫

Ω
aǫ,ρ|∇w|2 dx

= C

∫

Ω\Bρ

a0|∇w|2 dx ≤ C‖w‖2H1(Ω) ≤ C‖φ‖2
H1/2(∂Ω)

.
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By a combination with (14) (with v = uǫ,ρ) we have thus established the bound

min
k∈R

‖uǫ,ρ(ρ·) + k‖H1/2(∂B1)
≤ Cρ1−

d
2 ‖φ‖H1/2(∂Ω) . (15)

The function vǫ,ρ(x) = uǫ,ρ(ρx) , x ∈ B1, is inH1(B1), it satisfies∇·(ǫ−1aǫ,ρ(ρx)∇vǫ,ρ) = 0,
with ǫ−1aǫ,ρ(ρ·) ∈ L∞(B1) and ǫ−1aǫ,ρ(ρ·) identically equal to 1 in B1 \ B1/2. Lemma 1
therefore applies to give the estimate

‖

(

∂vǫ,ρ
∂ν

)−
‖H−1/2(∂B1)

≤ Cmin
k∈R

‖vǫ,ρ + k‖H1/2(∂B1)
,

which in combination with (15) leads to

‖

(

∂vǫ,ρ
∂ν

)−
‖H−1/2(∂B1)

≤ Cρ1−
d
2 ‖φ‖H1/2(∂Ω) . (16)

The function uǫ,ρ satisfies the jump relation

(

ǫ
∂uǫ,ρ
∂ν

)−
=

(

a0
∂uǫ,ρ
∂ν

)+

on ∂Bρ ,

and since
(

∂vǫ,ρ
∂ν

)−
(x) = ρ

(

∂uǫ,ρ
∂ν

)−
(ρx) ,

it now follows from (16) that

‖

(

a0
∂uǫ,ρ
∂ν

)+

(ρ·)‖H−1/2(∂B1)
≤ Cǫρ−

d
2 ‖φ‖H1/2(∂Ω) . (17)

Integration by parts, in combination with the fact that

∫

∂B1

(

a0
∂uǫ,ρ
∂ν

)+

(ρx) dsx = ǫ

∫

∂B1

(

∂uǫ,ρ
∂ν

)−
(ρx) dsx = 0 ,

therefore gives
∫

Ω\Bρ

a0|∇(uǫ,ρ − u0,ρ)|
2 dx

= −

∫

∂Bρ

(uǫ,ρ − u0,ρ)

(

a0
∂(uǫ,ρ − u0,ρ)

∂ν

)+

ds

= −ρd−1

∫

∂B1

(uǫ,ρ − u0,ρ)(ρx)

(

a0
∂(uǫ,ρ − u0,ρ)

∂ν

)+

(ρx) dsx

= −ρd−1

∫

∂B1

[(uǫ,ρ − u0,ρ)(ρx) + k]

(

a0
∂uǫ,ρ
∂ν

)+

(ρx) dsx

≤ ρd−1‖(uǫ,ρ − u0,ρ)(ρ·) + k‖H1/2(∂B1)
‖

(

a0
∂uǫ,ρ
∂ν

)+

(ρ·)‖H−1/2(∂B1)
,
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for any constant k. Minimization over k, and use of (14) and (17), the first with v =
uǫ,ρ − u0,ρ, yields

∫

Ω\Bρ

a0|∇(uǫ,ρ − u0,ρ)|
2 dx

≤ ρd−1 min
k∈R

‖(uǫ,ρ − u0,ρ)(ρ·) + k‖H1/2(∂B1)
‖

(

a0
∂uǫ,ρ
∂ν

)+

(ρ·)‖H−1/2(∂B1)

≤ Cǫ‖∇(uǫ,ρ − u0,ρ)‖L2(Ω\Bρ)‖φ‖H1/2(∂Ω)

≤ Cǫ

(

∫

Ω\Bρ

a0|∇(uǫ,ρ − u0,ρ)|
2 dx

)1/2

‖φ‖H1/2(∂Ω) . (18)

The estimate (18) in combination with the norm equivalence (11) immediately leads to

‖uǫ,ρ − u0,ρ‖H1(Ω\Bρ) ≤ C

(

∫

Ω\Bρ

a0|∇(uǫ,ρ − u0,ρ)|
2 dx

)1/2

≤ Cǫ‖φ‖H1/2(∂Ω) ,

as desired.

3 Enhanced cloaking of the homogeneous Neumann bound-

ary condition

Following the construction in [3] we introduce multiple, spherical layers of constant
conductivity in the annulus B2ρ \Bρ in order to enhance the approximate cloaking effect
of B2 \Bρ (when pushed into the ”physical domain”). As in [3] we initially consider only
the case of a fixed homogeneous Neumann boundary condition at the interface between
the cloak and the cloaked area. However, by a combination with a low conductivity layer
(and the uniform estimates of the previous section) we show that the the enhancement
effect for this special case carries over to the general transmission case with an arbitrary
conducting object inside the cloak. We note that in the transmission case, the authors in
[3] consider only a constant conductivity object inside the cloak, and then the material
properties of the enhancement layers depend on the constant inside the cloak. As in [3]
we restrict our discussion to the case Ω ⊂ R

2 (i.e., d = 2).
Let R be a fixed radius, with 2ρ < R and such that BR ⊂ Ω. Let a0 be the piecewise

constant conductivity distribution

a0 =











































1 in Ω \Bρ0

σ1 in Bρ0 \Bρ1 =: S1

. . .

σℓ in Bρℓ−1
\Bρℓ =: Sℓ

. . .

σL in BρL−1
\BρL =: SL

(19)
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with ρ = ρL < ρL−1 < · · · < ρ0 = 2ρ, and σ1, . . . , σℓ, . . . σL ∈ R+ = R ∩ (0,∞) (we
may think of there being a σ0, which equals 1). Note that the spherical layers are not
necessarily of same thickness. As before, u0,ρ denotes the solution to (10). The trace
ϕ = u0,ρ|∂BR

of this solution has the following Fourier representation

ϕ(θ) =

∞
∑

n=0

Rngcn cos(nθ) +

∞
∑

n=1

Rngsn sin(nθ) . (20)

It follows immediately from the standard Sobolev trace estimate and the H1 energy esti-
mate that

‖ϕ‖H1/2(∂BR) ≤ C‖u0,ρ‖H1(Ω\BR) ≤ C‖u0,ρ‖H1/2(∂Ω) = C‖φ‖H1/2(∂Ω) .

Here the constants C are independent of ρ and φ (but may depend on R). Let U denote
the solution to

∆U = 0 in Ω , U = φ on ∂Ω . (21)

By a combination of Proposition 1 (with ǫ = ρd) and Corollary 2 of [17] we immediately
arrive at 2

Lemma 2. Let a0 be as above, for a given choice of ρ = ρL < ρL−1 < . . . < ρ1 < ρ0 = 2ρ
and {σℓ}, and let K be a fixed compact subdomain of Ω \B2ρ. There exists a constant C
independent of ρ and {ρℓ} and L such that

‖U − u0,ρ‖H1(K) ≤ Cρd‖φ‖H1/2(∂Ω) .

C depends on the set K and on maxℓ σℓ and minℓ σℓ, but is otherwise also independent of
the conductivities {σℓ}.

Proposition 2. With a0 as defined above, the solution u0,ρ to (10) has the following
representation in BR \B2ρ

u0,ρ(r, θ) =
∞
∑

n=0

(

(1−R−2nMn)r
n +Mnr

−n
)

gcn cos(nθ)

+

∞
∑

n=1

(

(1−R−2nMn)r
n +Mnr

−n
)

gsn sin(nθ)

(22)

where M0 = 1, and

Mn =

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

1
0

)

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

R−2n

−1

)

, (23)

2The result in Corrollary 2 of [17] concerns the case of fixed Neumann boundary data on ∂Ω, but the
exact same method of proof applies to fixed Dirichlet boundary data
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n ≥ 1, with

Rn,i(r) =

(

rn r−n

σir
n−1 −σir

−n−1

)

.

Proof. For simplicity of notation we assume that gsn = 0, for all n. The general case follows
analogously. The solution u0,ρ has the expansion:

u0,ρ(r, θ) = gc0 +























∑∞
n=1

(

c0nr
n + d0nr

−n
)

cos(nθ) in BR \B2ρ
∑∞

n=1

(

c1nr
n + d1nr

−n
)

cos(nθ) in S1

. . .
∑∞

n=1

(

cLnr
n + dLnr

−n
)

cos(nθ) in SL

The usual transmission conditions at the interfaces ∂Bρ0 , . . . ∂Bρℓ , . . . ∂BρL−1
, and the

boundary condition at ∂Bρ = ∂BρL yield the following linear system for the coefficients:

Rn,0(ρ0)

(

c0n
d0n

)

= Rn,1(ρ0)

(

c1n
d1n

)

Rn,1(ρ1)

(

c1n
d1n

)

= Rn,2(ρ1)

(

c2n
d2n

)

. . .

Rn,L−1(ρL−1)

(

cL−1
n

dL−1
n

)

= Rn,L(ρL−1)

(

cLn
dLn

)

(

0
1

)T

Rn,L(ρL)

(

cLn
dLn

)

= 0 .

(24)

After elimination of (c1n, d
1
n) ... (c

L
n , d

L
n) this gives

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

c0n
d0n

)

= 0 .

In terms of the Dirichlet data at ∂BR we have

Rngcn = Rnc0n +R−nd0n ,

and hence

d0n = gcnMn ,

and
c0n = gcn − gcnR

−2nMn ,

which immediately leads to the desired representation (22).

11



Lemma 3. With notation as above we have that

R−1
n,L(ρL−1)Rn,L−1(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

=
L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1







1 +
∑

|I|=2,4,...L

ΛIρ
2nA(I)
I

∑

|I|=1,3,...L

ΛIρ
−2nA(I)
I

∑

|I|=1,3,...L

ΛIρ
2nA(I)
I 1 +

∑

|I|=2,4,...L

ΛIρ
−2nA(I)
I






(25)

Here I = (I0, . . . IL−1) ∈ {0, 1}L is an arbitrary ordered multi-index, and |I| denotes the
number of its non-zero entries. Furthermore λℓ =

σℓ+1−σℓ

σℓ+1+σℓ
, 0 ≤ ℓ ≤ L− 1, and

ΛI = λs1(I)λs2(I)λs3(I) . . .

where 0 ≤ s1(I), s2(I), s3(I) . . . s|I|(I) ≤ L − 1 are the ordered indices of the non-zero

entries of I. A(I) ∈ { − 1,+1}|I| is the multi-index that alternates between +1 and −1,
starting with +1, and ρI = (ρs1(I), ρs2(I), . . . , ρs|I|(I)) ∈ R

|I|, so that

ρ
2nA(I)
I = ρ2ns1(I)ρ

−2n
s2(I)

ρ2ns3(I) . . . (26)

Proof. We prove this formula by induction in the number of layers L. First we recall

R−1
n,ℓ+1(ρℓ)Rn,ℓ(ρℓ) =

σℓ+1 + σℓ
2σℓ+1

(

1 λℓρ
−2n
ℓ

λℓρ
2n
ℓ 1

)

which (with ℓ = 0) verifies the base case, L = 1. The induction step follows from simple
matrix matrix multiplication and the definition of ΛI , A(I) and ρI . Suppose (25) holds

12



for L layers, then
(

R−1
n,L+1(ρL)Rn,L(ρL)R

−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

)

11

=

L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1



1 +
∑

|I|=2,4,...L

ΛIρ
2nA(I)
I + λLρ

−2n
L

∑

|I|=1,3,...L

ΛIρ
2nA(I)
I





=
L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1



1 +
∑

|I∗|=2,4,...L+1

ΛI∗ρ
2nA(I∗)
I∗





(

R−1
n,L+1(ρL)Rn,L(ρL)R

−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

)

12

=

L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1





∑

|I|=1,3,...L

ΛIρ
−2nA(I)
I + λLρ

−2n
L + λLρ

−2n
L

∑

|I|=2,4,...L

ΛIρ
−2nA(I)
I





=
L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1





∑

|I∗|=1,3,...L+1

ΛI∗ρ
−2nA(I∗)
I∗





(

R−1
n,L+1(ρL)Rn,L(ρL)R

−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

)

21

=

L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1



λLρ
2n
L + λLρ

2n
L

∑

|I|=2,4,...L

ΛIρ
2nA(I)
I +

∑

|I|=1,3,...L

ΛIρ
2nA(I)
I





=
L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1





∑

|I∗|=1,3,...L+1

ΛI∗ρ
2nA(I∗)
I∗





(

R−1
n,L+1(ρL)Rn,L(ρL)R

−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

)

22

=

L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1



λLρ
2n
L

∑

|I|=1,3,...L

ΛIρ
−2nA(I)
I + 1 +

∑

|I|=2,4,...L

ΛIρ
−2nA(I)
I





=
L
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1



1 +
∑

|I∗|=2,4,...L+1

ΛI∗ρ
−2nA(I∗)
I∗





Here we have used the notation I for a multi-index from {0, 1}L, and I∗ for a multi-index
from {0, 1}L+1. These four identities together verify (25) for the case of L+ 1 layers, and
this completes the proof of the lemma.

The following lemma will be needed in order to estimate the constants Mn in the
representation formula (22) for u0,ρ.

Lemma 4. The expression
∑

|I|=1,3,...L

ΛIt
−2nA(I)
I − 1−

∑

|I|=2,4,...L

ΛIt
−2nA(I)
I (27)

13



is different from zero for all choices of n, L, 1 = tL < tL−1 < . . . t1 < t0 = 2, and

{σℓ}
L
ℓ=1. Here t

−2nA(I)
I is defined analogously to ρ

−2nA(I)
I in Lemma 3.

Proof. Suppose the expression (27) vanished for some particular choice of n, L, 1 = tL <
tL−1 < . . . t1 < t0 = 2, and {σℓ}

L
ℓ=1. A simple calculation with ρℓ = ρtℓ gives

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

0
1

)

= ρ−n−1σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1





∑

|I|=1,3,...L

ΛIt
−2nA(I)
I − 1−

∑

|I|=2,4,...L

ΛIt
−2nA(I)
I



 .

It would thus follow that

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

0
1

)

= 0 ,

for all ρ and this choice of n, L, 1 = tL < tL−1 < . . . t1 < t0 = 2 and {σℓ}
L
ℓ=1, with

ρℓ = ρtℓ. According to Proposition 2 we would now have Mn = R2n for any ρ and R with
2ρ < R, and this particular choice of data. The representation formula in Proposition 2
would imply that the solution, v0,ρ, to

∇ · (a0∇v0,ρ) = 0 in BR \Bρ , v0,ρ = cos(nθ) on ∂BR , a0
∂v0,ρ
∂ν

= 0 on ∂Bρ ,

is given by v0,ρ(r, θ) = Rnr−n cos(nθ) in BR \ B2ρ, independently of ρ, for this particular
choice of data: n, L, 1 = tL < tL−1 < . . . t1 < t0 = 2 and {σℓ}

L
ℓ=1, with ρℓ = ρtℓ.

However this contradicts Lemma 2, which asserts that v0,ρ converges to R−nrn cos(nθ), as
ρ → 0, on any fixed compact subset of BR \B2ρ.

We are now in a position to estimate the constants Mn in the representation formula
for u0,ρ.

Proposition 3. Suppose ρ = ρL < ρL−1 < . . . < ρ1 < ρ0 = 2ρ, with ρℓ/ρ =
a fixed constant tℓ, 1 ≤ tℓ ≤ 2, 0 ≤ ℓ ≤ L, and suppose R is fixed with R > 2ρ. Then
there exist positive constants C∗ and δ, independent of ρ and n (but dependent on L, R,
and the constants {σℓ}, {tℓ}) such that

|Mn| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

1
0

)

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

R−2n

−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Cn
∗ ρ

2n ,

for ρ ≤ δ, and all n ≥ 1.
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Proof. Using Lemma 3, and the alternating nature of A(I), we find

∣

∣

∣

∣

∣

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

1
0

)

∣

∣

∣

∣

∣

= σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

∣

∣

∣

∣

∣

∣

ρn−1



1 +
∑

|I|=2,4,...L

ΛIρ
2nA(I)
I



− ρ−n−1
∑

|I|=1,3,...L

ΛIρ
2nA(I)
I

∣

∣

∣

∣

∣

∣

= σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

ρn−1

∣

∣

∣

∣

∣

∣



1 +
∑

|I|=2,4,...L

ΛIt
2nA(I)
I



−
∑

|I|=1,3,...L

ΛIt
2nA(I)
I

∣

∣

∣

∣

∣

∣

≤ σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

Cnρn−1 , (28)

and
∣

∣

∣

∣

∣

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

R−2n

−1

)

∣

∣

∣

∣

∣

= σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

∣

∣

∣

∣

∣

R−2n



ρn−1



1 +
∑

|I|=2,4,...L

ΛIρ
2nA(I)
I



− ρ−n−1
∑

|I|=1,3,...L

ΛIρ
2nA(I)
I





−



ρn−1
∑

|I|=1,3,...L

ΛIρ
−2nA(I)
I − ρ−n−1



1 +
∑

|I|=2,4,...L

ΛIρ
−2nA(I)
I









∣

∣

∣

∣

∣

= σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

ρ−n−1

∣

∣

∣

∣

∣

ρ2nR−2n



1 +
∑

|I|=2,4,...L

ΛIt
2nA(I)
I −

∑

|I|=1,3,...L

ΛIt
2nA(I)
I





−
∑

|I|=1,3,...L

ΛIt
−2nA(I)
I + 1 +

∑

|I|=2,4,...L

ΛIt
−2nA(I)
I

∣

∣

∣

∣

∣

≥ σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

ρ−n−1

(

1

2
−Cnρ2nR−2n

)

≥
1

4
σL

L−1
∏

ℓ=0

σℓ+1 + σℓ
2σℓ+1

ρ−n−1 , (29)

for ρ < R
2
√
C
, and n ≥ N0. In the next to last inequality we have used that t

A(I)
I > 1 and

|ΛI | < 1 for any |I| ≥ 1, to conclude that

−
∑

|I|=1,3,...L

ΛIt
−2nA(I)
I + 1 +

∑

|I|=2,4,...L

ΛIt
−2nA(I)
I ≥

1

2
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for n ≥ N0, where N0 is independent of ρ and the {σℓ}, but depends on L and the {tℓ}.
According to Lemma 4 we have that

−
∑

|I|=1,3,...L

ΛIt
−2nA(I)
I + 1 +

∑

|I|=2,4,...L

ΛIt
−2nA(I)
I

does not vanish for 1 ≤ n ≤ N0, and any choice of tℓ and σℓ. It now follows from the
second identity in (29) that there exists positive constants c and δ′, dependent on the σℓ,
the tℓ, L and R, but independent of ρ, such that

∣

∣

∣

∣

∣

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

R−2n

−1

)

∣

∣

∣

∣

∣

≥ cρ−n−1 , (30)

for ρ < δ′ and 1 ≤ n < N0. By a combination of the estimates (28) and (29), (30) we now
obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

1
0

)

(

0
1

)T

Rn,L(ρL)R
−1
n,L(ρL−1) . . .Rn,1(ρ1)R

−1
n,1(ρ0)Rn,0(ρ0)

(

R−2n

−1

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ Cn
∗ ρ

2n ,

for ρ < δ = min{ R
2
√
C
, δ′}, and all n ≥ 1. This completes the proof of the proposition.

Given the formula for Mn and the second identity in (28), it follows that Mn = 0 if
and only if



1 +
∑

|I|=2,4,...L

ΛIt
2nA(I)
I



−
∑

|I|=1,3,...L

ΛIt
2nA(I)
I = 0 . (31)

In principle there are 2L − 1 free parameters in the equation, however, we think of the
relative layer position variables 1 = tL < tL−1 < . . . < t1 < t0 = 2 as fixed and consider
(31) an equation in the L conductivities {σℓ}

L
1 . The following result, a version of which is

originally found in [3], generalizes the estimate in Lemma 2.

Proposition 4. Let L and 1 = tL < tL−1 < . . . < t1 < t0 = 2 be given. Set ρℓ = ρtℓ for
ρ sufficiently small that B2ρ ⊂⊂ Ω. Let R be fixed, with B2ρ ⊂ BR ⊂ Ω. Suppose {σℓ}

L
ℓ=1

solve the equations (31) for n = 1, . . . , N . Let u0,ρ be the solution to (10) with a0 given
by (19), with this choice of {ρℓ}

L
ℓ=0 and {σℓ}

L
ℓ=1. Let U be the (background) solution to

(21). There exists a constant C, independent of ρ and φ, such that

‖U − u0,ρ‖H1(Ω\BR) ≤ Cρ2N+2‖φ‖H1/2(∂Ω) (32)

Proof. Let ϕ = u0,ρ|∂BR
=
∑∞

n=0R
ngcn cosnθ+

∑∞
n=1R

ngsn sinnθ. From comments at the
beginning of this section it follows that

‖ϕ‖H1/2(∂BR) ≤ C‖φ‖H1/2(∂Ω) .
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A simple calculation gives that

‖ϕ‖2
H1/2(∂BR)

is equivalent to
∞
∑

n=1

n
(

|Rngcn|
2 + |Rngsn|

2
)

+ |gc0|
2 ,

with constants depending on R. Let Uρ denote the solution to

∆Uρ = 0 in Bρ , Uρ = u0,ρ on ∂BR . (33)

From the representation formula in Proposition 2, and the fact that Uρ =
∑∞

n=0 r
ngcn cosnθ+

∑∞
n=1 r

ngsn sinnθ, we get

Uρ − u0,ρ =
∞
∑

n=0

(

R−2nrn − r−n
)

Mng
c
n cosnθ +

∞
∑

n=1

(

R−2nrn − r−n
)

Mng
s
n sinnθ ,

in BR \B2ρ, and so

‖
∂(Uρ − u0,ρ)

−

∂ν
‖2
H−1/2(∂BR)

is equivalent to

∞
∑

n=1

n−1
(

|nR−n−1Mng
c
n|

2 + |nR−n−1Mng
s
n|

2
)

,

with constants depending on R. Since we suppose M1 = · · · = MN = 0, it follows that

‖
∂(Uρ − u0,ρ)

−

∂ν
‖2
H−1/2(∂BR)

≤ C

∞
∑

n=N+1

n−1
(

|nR−n−1Mng
c
n|

2 + |nR−n−1Mng
s
n|

2
)

.

Using the fact that
∑

n anbn ≤
∑

n an
∑

n bn for sums of positive numbers, we conclude

‖
∂(Uρ − u0,ρ)

−

∂ν
‖2
H−1/2(∂BR)

≤ C‖ϕ‖2
H

1
2 (∂BR)

∞
∑

n=N+1

|R−2n−1Mn|
2 .

The bound |Mn| ≤ Cn
∗ ρ

2n from Proposition 3 now implies that

‖
∂(Uρ − u0,ρ)

−

∂ν
‖H−1/2(∂BR) ≤ Cρ2N+2‖ϕ‖H1/2(∂BR) ≤ Cρ2N+2‖φ‖H1/2(∂Ω) , (34)

for ρ ≤ δ, where δ and C depend on R and C∗ (and thus on R, L and the constants {σℓ},
{tℓ}). Let wρ ∈ H1(Ω) denote the function

wρ =

{

u0,ρ in Ω \BR

Uρ in BR .

17



It follows immediately from (10), (19) and (33) that
∫

Ω
∇wρ∇v dx =

∫

∂BR

(

∂Uρ

∂ν

)−
v ds−

∫

∂BR

(

∂u0,ρ
∂ν

)+

v ds

=

∫

∂BR

∂(Uρ − u0,ρ)
−

∂ν
v ds ,

for any v ∈ H1
0 (Ω). As a consequense of this and (21) we therefore get
∫

Ω
∇(U − wρ)∇v dx = −

∫

∂BR

∂(Uρ − u0,ρ)
−

∂ν
v ds ∀v ∈ H1

0 (Ω),

which by insertion of v = U − wρ (remember: U = wρ = φ on ∂Ω), and use of (34) yields
∫

Ω
|∇(U − wρ)|

2 dx = −

∫

∂BR

∂(Uρ − u0,ρ)
−

∂ν
(U − wρ) ds

≤ ‖
∂(Uρ − u0,ρ)

−

∂ν
‖H−1/2(∂BR)‖U − wρ‖H1/2(∂BR)

≤ Cρ2N+2‖φ‖H1/2(∂Ω)‖U − wρ‖H1(Ω) .

An application of Poincaré’s inequality now gives

‖U − wρ‖H1(Ω) ≤ Cρ2N+2‖φ‖H1/2(∂Ω) ,

and since wρ = u0,ρ in Ω \BR

‖U − u0,ρ‖H1(Ω\BR) ≤ Cρ2N+2‖φ‖H1/2(∂Ω) ,

as desired.

The simultaneous solvability of the algebraic equations (31), 1 ≤ n ≤ N , for any
given integer N , has not been established. Some evidence of this solvability has already
been presented in [3]. In the next section we add to this evidence of solvability, and the
emergence of asymptotic shapes.

3.1 Numerical Results

When employing L layers of fixed thickness in the enhanced cloak construction de-
scribed in the previous section, one is left with L ”free” variables, the conductivities
{σℓ}

L
ℓ=1, and so it is quite natural to hope to be able to solve the equations (31) simul-

taneously for n = 1, 2, . . . , L. In this section we shall present some evidence of the
feasibility of this. In doing so we display the conductivity values σ1 . . . σL of numerous
enhanced cloaks, as well as the ratios λ0 . . . λL−1, with λℓ =

σℓ+1−σℓ

σℓ+1+σℓ
, 0 ≤ ℓ ≤ L − 1,

σ0 = 1 (which more directly emerge from solving the system of algebraic equations (31)
with n = 1, . . . L).

For the cases L ≤ 4 we are able to obtain analytical solutions (using the symbolic
calculation package MATHEMATICA). Note that for L = 3, 4 the precise expressions are
quite lengthy, and we present only rounded numerical values. In the case of equidistant
layers, i.e., ρℓ =

2L−ℓ
L ρ, our results are as follows:
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• L = 1:

(σ1, λ0) = (
5

3
,
1

4
)

is the solution to
1− 22nλ0 = 0 with n = 1 .

• L = 2:
(

σ1 λ0

σ2 λ1

)

=

(

−4825+4
√
1613257)

357
931−

√
1613257

2048
43072−25

√
1613257

3315
−5551+5

√
1613257

1224

)

≈

(

0.71586 −0.165596
3.41432 0.653352

)

is a solution to

1 +

(

4

3

)2n

λ0λ1 −

(

4

2

)2n

λ0 −

(

3

2

)2n

λ1 = 0 , with n = 1, 2 and |λ0|, |λ1| < 1 .

• L = 3:




σ1 λ0

σ2 λ1

σ3 λ2



 ≈





1.22827 0.102444
0.42636 −0.484645
5.51582 0.856496





is a solution to

1 +

(

6

5

)2n

λ0λ1 +

(

6

4

)2n

λ0λ2 +

(

5

4

)2n

λ1λ2 −

(

6

3

)2n

λ0

−

(

5

3

)2n

λ1 −

(

4

3

)2n

λ2 −

(

24

15

)2n

λ0λ1λ2 = 0 ,

with n = 1, 2, 3 and |λ0|, |λ1|, |λ2| < 1

• L = 4:








σ1 λ0

σ2 λ1

σ3 λ2

σ4 λ3









≈









0.883265 −0.0619857
1.832611 0.349555
0.281192 −0.733947
7.602646 0.928666









is a solution to

1 +

(

8

7

)2n

λ0λ1 +

(

8

6

)2n

λ0λ2 +

(

8

5

)2n

λ0λ3 +

(

7

6

)2n

λ1λ2 +

(

7

5

)2n

λ1λ3

+

(

6

5

)2n

λ2λ3 +

(

48

35

)2n

λ0λ1λ2λ3 −

(

8

4

)2n

λ0 −

(

7

4

)2n

λ1 −

(

6

4

)2n

λ2

−

(

5

4

)2n

λ3 −

(

48

28

)2n

λ0λ1λ2 −

(

40

24

)2n

λ0λ2λ3 −

(

40

28

)2n

λ0λ1λ3

−

(

35

24

)2n

λ1λ2λ3 = 0 ,

with n = 1, 2, 3, 4 and |λ0|, |λ1|, |λ2|, |λ3| < 1
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Figure 1: The solutions (λL−1, λL−3 . . . ) (left) and (λL−2, λL−4 . . . ) (right) for L = 3, . . . 14
for the algebraic system (31) as functions of the equidistant rescaled layer interfaces tℓ =
2L−ℓ
L . For visualization purposes we use linear interpolation between the discrete values.
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Figure 2: The modulus of the solutions (λL−1, λL−2 . . . ) for L = 3, . . . 15 for the algebraic
system (31) as functions of the equidistant rescaled layer interfaces tℓ =

2L−ℓ
L (left) and

non-equidistant rescaled layer interfaces (right).

In the latter three cases it appears very likely that these solutions are indeed the unique
solutions with moduli smaller than 1. These first numbers seem to suggest the general
existence of solutions for which (λL−1, λL−3 . . . ) are positive and decreasing, and for which
λL−2, λL−4 . . . are negative and increasing. This observation is confirmed (see Figure 1),
if we use numerical methods to determine approximate solutions λ0, . . . λL−1 for L > 4.
Moreover, we observe that (|λℓ|)

L
ℓ=0, with λL = 1 converges to a sigmoidal curve (see

Figure 2 left). The shape of this curve changes, if we choose a different grading for the
layers (see Figure 2 right).

Finally, in Figure 3 we show the numerical approximations of the conductivity coef-
ficients for 6, 9, 12, 15 and 18 enhancement layers. MATHEMATICA allows the use of
arbitrarily high order precision for numerical functions. We use this feature to push the
size of the coefficients Mn, that are supposed to vanish, below 10−50.
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Figure 3: Numerical approximations of conductivity coefficients for 6, 9, 12, 15 and 18
enhancement layers (top to bottom, left), and the corresponding values of M1, . . .M20

from (23), with R = 2.
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4 Main result and conclusions

Let a0,ρ be a family L∞-functions that satisfy

0 < c0 ≤ a0,ρ(x) ≤ C0 < ∞ for a.e. x ∈ Ω \Bρ ,

with a0,ρ(x) = 1 for a.e. x ∈ Ω \B2 , (35)

for some fixed constants c0, C0. Define A0,ρ = (F2ρ)∗a0,ρ on Ω \ B1/2, and let U0,ρ

(= u0,ρ ◦ F
−1
2ρ ) denote the solution to

∇ · (A0,ρ∇U0,ρ) = 0 in Ω \B1/2 , U0,ρ = φ on ∂Ω ,

A0,ρ
∂U0,ρ

∂ν
= (A0,ρ∇U0,ρ) · ν = 0 on ∂B1/2 . (36)

As a0,ρ we may for example take the piecewise constant conductivity distributions con-
structed in Section 3. A0,ρ = (F2ρ)∗a0,ρ in B2 \ B1/2 (in physical space) thus represents
one of the enhanced approximate cloaks, that have been designed to cloak the perfectly
insulated ball B1/2. Let aǫ,ρ denote the conductivity distribution

aǫ,ρ =























a0,ρ in Ω \Bρ ,

ǫ in Bρ \Bρ/2 ,

aobj in Bρ/2 ,

where ǫ is a positive constant, and aobj is an arbitrary, strictly positive L∞ function
in Bρ/2. Aǫ,ρ := (F2ρ)∗aǫ,ρ in B2 \ B1/4 (of physical space) thus represents one of our
enhanced approximate cloaks, that have been designed to cloak any conducting object
a∗obj := (F2ρ)∗aobj , placed inside B1/4. Indeed, let Uǫ,ρ (= uǫ,ρ ◦ F

−1
2ρ ) denote the solution

to
∇ · (Aǫ,ρ∇Uǫ,ρ) = 0 in Ω , Uǫ,ρ = φ on ∂Ω . (37)

The extent to which we have been able to achieve the enhanced approximate cloaking of
a∗obj is measured by the closeness of Uǫ,ρ to U , the solution of

∆U = 0 in Ω , U = φ on ∂Ω , (38)

strictly outside B2. An estimate of this closeness is the contents of our main theorem

Theorem 1. Let U0,ρ, Uǫ,ρ, and U be the solutions to (36), (37), and (38), respectively,
with coefficients as described above. Let K be any compact subdomain of Ω \ B2. There
exists a constant C, independent of ρ, ǫ, φ and a∗obj such that

‖U − Uǫ,ρ‖H1(K) ≤ Cǫ‖φ‖H1/2(∂Ω) + ‖U − U0,ρ‖H1(K) . (39)

C depends on c0 and C0 of (35), but is otherwise also independent of a0,ρ, and thus also
of the physical cloak Aǫ,ρ|B2\B1/4

.
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Proof. This theorem follows directly by a combination of the triangle inequality and Propo-
sition 1. Here we use that U0,ρ = u0,ρ, and Uǫ,ρ = uǫ,ρ in Ω \ B2, since F2ρ equals the
identity there.

We note that since the coefficients of the three PDEs, involved in (36), (37), and (38),
are all constantly equal to 1 in Ω \ B2, the functions Uǫ,ρ, U0,ρ and U are all harmonic
there; consequently the H1 norm on the left side of (39) may be replaced by any Hk norm
k > 1, and the H1 norm on the right hand side may be replaced by any Hk norm k < 1
(at the cost of replacing K in the right hand side by K ′, with K ⊂⊂ K ′ ⊂ Ω \B2).

As we saw in Section 3 (and [3]), it is in two dimension almost certainly possible to
design a0,ρ, so that

‖U − U0,ρ‖H1(K) ≤ CNρ2N+2‖φ‖H1/2(∂Ω) ,

for any N ≥ 1. This is rigorously verified for 1 ≤ N ≤ 4 (due to the demonstrated presence
of analytic solution to (31)), and it is very strongly indicated by the numerics for any N .
The estimate (39) thus leads to

‖Uǫ,ρ − U‖H1(K) ≤ CN (ǫ+ ρ2N+2)‖φ‖H1/2(∂Ω) ,

which suggests that a good choice for ǫ would be ǫ = ρ2N+2. With this choice of ǫ, the
resulting approximate cloak will have anisotropy measure

χ∗
an = O(ρ−2) ,

and degeneracy measures

Λ∗
min = O(ρ2N+2) , and Λ∗

max = O(ρ−1) .

Two of these measures, the measure of anisotropy χ∗
an, and the degeneracy measure Λ∗

max,
are much more favorable than those associated with the approximate scheme using ρN+1

in place of ρ (which also has a visibility of the order ρ2N+2 in two dimension). However,
the degeneracy measure Λ∗

min is worse than that obtained by replacing ρ by ρN+1.
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