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Abstract

We extend and analyse an enhanced approximate cloaking scheme, which was
recently introduced by Ammari, Kang, Lee, and Lim [3] to cloak a domain with a
fixed, homogeneous Neumann boundary condition. Subject to the solvability of a finite
set of algebraic equations we construct an approximate cloak for the two dimensional
transmission case, which achieves invisibility of the order p?*2 while maintaining the
same level of local anisotropy as earlier schemes of order p? [10]. The approximate
cloak and the invisibility estimate is independent of the objects being cloaked. Finally,
we present analytical as well as numerical evidence for the solvability of the required
algebraic equations.

1 Introduction

The central objective of cloaking is to create a domain in space, the presence of which,
and the contents of which is invisible or nearly invisible to any outside observer. In the
approach referred to as ”cloaking by mapping” this is achieved by surrounding the domain
one wants to hide by a material layer with very special properties. The material with the
appropriate properties is designed by a ”push forward” strategy, using a mapping that
typically has a very simple description. Cloaking by mapping schemes may be divided
into two different categories (1) those that achieve "perfect” invisibility, at the cost of
having to use materials with extreme aspect ratios [8 18], and (2) those that achieve only
"approximate” invisibility, but use materials with finite aspect ratios [7} O] 10} 13 [14].
This paper is entirely devoted to schemes of the second (approximate) kind. For the
present discussion we shall limit ourselves to the case in which the measurements available
to the outside observer are those of steady state voltages and currents. There is a vast,
and rapidly growing literature on cloaking (by mapping, or by other means) — we mention
for instance [4], 6, O, [13] 16] and the references therein.

A key observation that lies at the basis of ”cloaking by mapping” is the following
invariance of solutions to second order elliptic boundary value problems. Suppose €2 is a
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bounded, simply connected, smooth domain in R¢, d > 2, and F is a one-to-one Lipschitz
mapping of Q onto Q, with F|gpq = id. Let x — a(z) be a positive definite, symmetric
matrix valued function, with

colé]’ < (a(@)§, &) < Colé)> VEeR!, ae z€Q
for some positive constants ¢, Cp, and let u € H'(£2) be the solution to
V-(aVu)=0 inQ , with u=¢ondQ |,
for some given ¢ € HY/2(99). Then v = u o F~! is the solution to
V- (FwaVv) =0 inQ , with v=¢ondQ ,
where F,a denotes the ”"push forward of the coeflicient a by F”

DFaDF' |

Fag— 287" ,
“~ Tdet DF| °

and at the same time
(aVu) -v = (FuaVv)-v on 0

where v denotes the (outward) unit normal to 992. If we use A, to denote the Dirichlet to
Neumann data operator associated with a, then the previous identity expresses that

Aa = AF*a .

We also note that if B is a subdomain of 2, and F' = id in \ B, then the solutions u and
v agree in 2\ B, and A[(lB) = Agzl, where AB) refers to the Dirichlet to Neumann data
maps on 0B. These observations were originally made by Luc Tartar in connection with
discussions about the so-called Calderon problem, see [11 [12] for more details.

Consider the situation where 2 contains the ball of radius 2, and is mapped one-to-one

onto itself by the mapping

x x €N\ By,
Fpla) = sho+ 508 2 €B\ B, M
%az r€DB,.

This piecewise smooth Lipschitz mapping has the properties that F,(B,) = B1, F,(B2) =
Bs. In the "physical domain” we seek to hide the contents of the unit ball B; (represented
by the conductivity distribution azbj). This may approximately be accomplished by placing
the conductivity distribution (F},)./ in By \ Bi. In the "physical domain” we thus have
conductivity distribution

I x € \ Bs
Ap(:E) = (Fp)*I T € BQ \ Bl s (2)

ay,;(®) @ € By,



By a pull back to the "non-physical domain” (the one with the small inclusion B,) we
obtain the conductivity distribution

I reQ\B,,
ap(z) =
agpj(r) x€B,,

where aqp; is given by ap; = (F, b 1)*azbj. The relation between a, and A, is that

Ap = (Fp)sap

The solutions u, and v, corresponding to coefficients a, and A,, respectively, and the
common boundary data ¢, completely agree in Q \ By (where the mapping F), is the
identity). In other words, the outside observer (an observer in 2\ Bs) views the identical
effect of a, and A,. To assess how nearly we have cloaked azbj (i.e., how closely it resembles
the uniform conductivity 1 to the outside observer), it thus suffices to estimate the effect
of the small inhomogeneity B, with contents a.,;. Let K denote a compact subset of
2\ B, and let U denote the solution to AU = 0 in Q, with U = ¢ on 99Q. In [I0] it was
proven that [|U — u,| g1 (k) < C’deqSHHl/z(aQ), with a constant C' that is independent of
aobj (the same estimate thus holds for |[U — v,/ g1 k), with a constant that is independent
of the object we seek to hide, a(’;bj .

For the cloak (the region B\ By in the "physical domain”) described by () we calculate

DF,DF!

ISl R Al
|det DF,| ° ()

(Fp)+1 ()

2
2(1—
2(1—p)>d‘3 <I_:v_wt> N (2_p_ (|m|p)) zat
] R 2-p? 2?7

- <2—p><2—p—

which has eigenvalues

2(1-p)
|z

200y

||

d—1
hmin = 2= (2= 222 and d =2 ) (2 0
the latter of multiplicity d — 1. We may introduce, as a measure of the anisotropy of the
cloak, the number

)\ma:c
an ‘= Imax x) , 3
X r€B2\B1 )\min( ) ( )

and, as measures of the degeneracy of the cloak,

Mgz = max Apez(z) , and Apyp = min A (x) . (4)
(EGBQ\Bl IEGBQ\Bl

!The estimate in [I0] was stated in terms of the Neumann to Dirichlet data operator, but the H*'(K)
estimate is also a consequence of that analysis



For this particular cloak we arrive at

—_ )2 N2
Yon = max (2—-p) _2-p) , (5)

z€B,\By (2 _ 2(1—p)>2 p?

|z

and
Amin - (2 - P)_lpd_l ) Ama:c - . (6)
2—p d>3.

The minimal value A,,;, is always achieved at |z| = 1, whereas A,,4, is achieved at |z| =1
for d = 2,3, but at |z| =2 for d > 3.

The focus of this paper is on cloaking strategies that will allow for enhanced invisibility,
i.e., on strategies that lead to estimates that are strictly better than Cp?. A particular
point of interest is to what extent these may be realized without significantly worsening
the total anisotropy and/or the degeneracy of the cloak.

A trivial strategy would be to simply replace p by p"", in which case the visibility
estimate becomes p™?. At the same time the anisotropy measure becomes

92 _ m\2
Xan:% )
p

and the degeneracy measures become
Amin = (2 - pm)_lﬂ(d_l)m 5 Amam = . (7)

A natural goal is to try to understand to what extent we may do better.

There has recently been some very interesting work on enhanced cloaking of a domain
with a fixed, homogeneous Neumann boundary condition, both in the context of the two
dimensional conductivity-, and the two dimensional Helmholtz problem [2), 3] I5]. The
approach has been to combine the mapping F3, with a finite number of radial layers of
appropriately selected constant (finite and non-zero) conductivity, occupying the annulus
By, \ B,. The rationale behind this is that, in the "non-physical domain” it is well-known
that the solution to Au, = 0 in Q\ B,, % = 0 on dB,, and u, = ¢ on 0f), has an
expansion in terms of powers of p, starting with p¢ (see [I, 5]). The layered conductivity
structure in By, \ B, is now selected so that a finite number of these powers vanish, and the
corresponding solution starts with p®*%, for some positive N. In the ”physical domain”
(after mapping by Fj,) the cloak now occupies By \ By /2, and the objects being cloaked
are inside Byp. Even though it should in principle be possible to achieve any power of
p by adding sufficiently many layers, there is currently no proof of this. We discuss the
structure of the appropriate conductivities in detail in Section 3. This discussion naturally
builds on, and extends the work in [3].

The cloaking enhancement discussed so far only addresses the cloaking of a fixed do-
main with a fixed (say Neumann) boundary condition. A major goal of this paper is to



extend the enhancement strategy to the transmission setting, where we cloak arbitrary
objects, inside B4, by use of conducting materials occupying Bz \ Bj/4 (and in such a
way, that the enhanced cloak is independent of the objects). We achieve this goal by
combining the previous enhancement strategy with the addition of a layer of very small
conductivity occupying B, \ B, /2. Mathematically we then have to estimate how well this
poorly conducting layer simulates a Neumann boundary condition, uniformly with respect
to the conductivities selected for enhancement, and uniformly with respect to the objects
we are seeking to cloak. This analysis is the focus of Section 2. Finally, in Section 4 we
combine the enhancement estimates of Section 3 with this ”simulated Neumann boundary
condition estimate” to give an estimate of the effectivity of our enhanced approximate
cloaking strategy. We conclude with a discussion of the degeneracy and anisotropy of the
resulting approximate cloak.

2 Approximation of the homogeneous Neumann boundary
condition

For our application to cloaking we need a very precise result, that estimates how the
perfectly homogeneous Neumann boundary condition is approximated through the use
of poorly conducting materials. We suppose 2 is a bounded, simply connected, smooth
domain in R?, containing the origin, and we let B, denote the ball of radius p, centered
at the origin. Suppose p is sufficiently small that By, CC Q. The focus of our study in
this section will be the conductivity distribution

ag  in Q\B,,
Qep = € in B,\ By , (8)
Qobj in Bp/2 s

where ag is an L*>°-function that satisfies 0 < cg < ap(z) < Cp < oo for ae. z € Q\ B,
(for some fixed constants cy and Cp), € is a positive number, and aqp;(z) is an arbitrary
L*>-function, that is bounded away from zero (a.p; represents the "pull-back” of the object
we want to hide with our enhanced approximate cloak). By u. , we denote the solution to

V- (aepVie,) =0in Q , wuc,=¢ondQ 9)
and by ug , the solution to

V- (apVup,) =0in Q , wug,= ¢ on 0Q , ao%

=0on 0B, . (10)
The specific goal in this section is to establish an estimate for [luc, — uo,llg1(0\5,), that
is explicit in terms of both € and p, and uniform with respect to a,;. Since the domain
Q\ B, depends on p, and we seek to establish an estimate that is explicit in its dependence



on p, we must be precise in our definition of the H*(2\ B,) norm. We use

1/2
HUHHl(Q\BP) = (/ ’VUP dx —l—/ ‘UP dx)
Q\Bp Q\BP

Remark 1. At the final point in our analysis we shall use the fact that the expression

1/2
</ |Vol? dm)
O\B,

is indeed a p-uniformly equivalent norm on HY(Q\ B,)N{v : v =0 on OQ}. In other
words, we shall use the fact that there exists a constant C, independent of p, so that

/ |Vo|? dr < /
O\B, O\B

for allv e HY(Q\ B,), with v vanishing on 02. We leave the proof of this simple fact to
the reader.

Vo2 da:+/ lv|* dx < C/ Vol do | (11)
Q\Bp Q\BP

P

For our analysis we shall need an estimate for the Dirichlet to Neumann data map
associated with an elliptic operator which equals the Laplacian near the boundary. We
formulate this as

Lemma 1. Let a in L>°(By) be given by
1 m Bl \Bl/2 5
b m Bl/2 N

where b is in L>°(By j3), positive, and strictly bounded away from zero. Let v € H'(By) be
a solution to V - (aVv) =0 in By. Then

v .
H%HH*lﬂ(aBl) < C%lelxg v+ kllmg2em,) - (12)

The constant C' is independent of b and v.

Proof. Let w be such that w = v on 9By, w vanishes identically in By, and [[w|| g1 (p,) <
Cllvllg172(98,)- By Dirichlet’s principle

/ Vol dr < / bVl d:n+/ Vof? da
Bi\By 2 B2 Bi\B1 2

= / a|Vu)? d:z:ﬁ/ alVw|? dz
B1 B1

_ /B\B Vul? de < Cllolpz o, - (13)
1\B1/2
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with C independent of b and v. It follows that

o5 (8\5,,) < C </ Vol do+ ”UHQLQ(@Bl)) < Clivom)
B1\By 2

with C independent of b and v. Since Av = 0 in By \ By s, a local elliptic energy estimate
thus yields
ov
15, l-1208,) < Cllvlm BB, < Cllvlmees,)
and insertion of v + k, k € R, in place of v now completes the proof of the lemma. O

We are now ready to prove the following result, that estimates quite precisely how
well u , approximates ug ,, the solution subject to a homogeneous Neumann boundary
condition on 0B,,.

Proposition 1. Let u., be the solution to (@) with ac, given by (8), and let ug, be the
solution to (I0), then

[tte,p = wopllr(\B,) < CElll 1200

The constant C' is independent of €, p, and the function a.;. C depends on cy and Co,
but it is otherwise also independent of ag.

Proof. For any v in H'(Q2\ B,), let v, denote the rescaled function v,(z) = v(pz), defined
on p~tQ\ By. The standard trace estimate

HwHH1/2(aBl) < CHwHHl(B2\Bl) )
immediately leads to
min lvo + Ellgir2om,) < C'min |vp + Ell a1 (Bo\Br) < ClIIVUllL2(By\B1)
_d _d
< Cp 2 |Volrzpans,) < Cp' 2|Vl 2, - (14)

Let w be a function in H'(Q) that is selected so that w = ¢ on 9Q, w vanishes on
some fixed B C ) that contains all B,, and [|wl|g1(0) < C[|@| g1/2(50)- Using Dirichlet’s
principle we now calculate

Hvuf,p“%Z(Q\Bp) < C ao|Ve,f* dz
Q\B,

< C / obj| Ve, p|? d:L"+/ €| Ve | d:z:—l—/ ao| Ve | dx
B, Bo\B, /2 O\B

P

= C’/ e p| Ve p|? dmﬁC’/aE,p|Vw|2 dx
Q Q

_ 0/ ao| Vul? dz < Cllwl3 ) < ClI613 2 o0
Q\B,

7
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By a combination with (I4]) (with v = u, ,) we have thus established the bound

. _d
min [ue,(pr) + kllpir20m,) < Cp' 2 ellmrzgn) - (15)
The function ve ,(x) = ue ,(pz) ,x € By, isin H'(By), it satisfies V- (e lac ,(pz) Ve ,) = 0,
with € tac ,(p) € L°°(By) and € lac ,(p-) identically equal to 1 in By \ Byjp. Lemma [I]
therefore applies to give the estimate

6U67p B M
1{(52) Moy < Ol + ipon,)

which in combination with (IH]) leads to

Ove ,\ W
| <—8V’p> HH71/2(631)§C/)1 2H¢|’H1/2(8Q) . (16)

The function u, , satisfies the jump relation
8U5 P B aue 14 *
: =la : on 0B, ,
<6 ov Y r

(853”)_ (x) =p (83:/’”)_ (pz)

it now follows from (I6) that

and since

e, \ " _d
I{ao—," ) (P)la-1r2(0m,) < Cep™ 2l Dl mr2a0) - (17)

Integration by parts, in combination with the fact that

8uep>+ / <8uep>_
a ’ z) ds, = € —r x) ds, =0
/[ ( 025 ) " (pa) [ (52)

therefore gives

/ ao|V (ue,p — ug,p)|* dzx
O\B,

8(”6, — U, ) *
= — /aBp(uw — Ug,p) <a0#> ds

_ O(e., —u *
= _pd ! /8B (ue,p - uO,p)(px) <QOW> (px) dsg
d—1 e, i
=—p - [(te,p — uo,0)(pz) + K] a0— = (px) dsy
1

_ duc,\ "
< p? lll(ue,p—UO,p)(p')+1€HH1/2(331)H <ao 8,/’p> (0 =172 0m,)

8



for any constant k. Minimization over k, and use of ([4) and (IT), the first with v =
Ue,p — Up,p, yields

/ ao|V (ue p — ug,p)|* dz
Q\B,

o Que,p\©
< p* 1151€1£|!(u5,p — ug,p)(p°) +/<5HH1/2(631)H <a0 af) (P‘)HH%/?(aBl)

< Cel|V(ue,p — o)l 2\ 5,) 19l 17200

1/2
g&(/ aOIV(u&p—uom)Pda:) I6llz17200) - (18)
Q\B,

The estimate (I8) in combination with the norm equivalence ([II) immediately leads to

1/2
l[we,p — “&pHHl(Q\B,,) < C (/ ao|V (ue,p — uO,p)|2 dx)
OB,

< Celoll g0y

as desired. ]

3 Enhanced cloaking of the homogeneous Neumann bound-
ary condition

Following the construction in [3] we introduce multiple, spherical layers of constant
conductivity in the annulus By, \ B, in order to enhance the approximate cloaking effect
of By \ B, (when pushed into the ”physical domain”). As in [3] we initially consider only
the case of a fixed homogeneous Neumann boundary condition at the interface between
the cloak and the cloaked area. However, by a combination with a low conductivity layer
(and the uniform estimates of the previous section) we show that the the enhancement
effect for this special case carries over to the general transmission case with an arbitrary
conducting object inside the cloak. We note that in the transmission case, the authors in
[3] consider only a constant conductivity object inside the cloak, and then the material
properties of the enhancement layers depend on the constant inside the cloak. As in [3]
we restrict our discussion to the case Q C R? (i.e., d = 2).

Let R be a fixed radius, with 2p < R and such that Br C Q. Let ag be the piecewise
constant conductivity distribution

7

1 inQ\ B,
o1 in Bpo \ Bp1 = 51

ap=4 (19)
o inB,, ,\ B, =5

ar, in BpL71 \BPL = SL



with p = pr < pr—1 < -+ < po = 2p, and o1,...,04,...01 € Ry = RN (0,00) (we
may think of there being a g, which equals 1). Note that the spherical layers are not
necessarily of same thickness. As before, ug , denotes the solution to (I0). The trace
¢ = ug plop, of this solution has the following Fourier representation

p(0) = R'g%cos(nf) + > R"glsin(nd) (20)
n=0 n=1

It follows immediately from the standard Sobolev trace estimate and the H' energy esti-
mate that

el ir1r20m,) < Clluwopllar@\sr) < Clluopllgirzoa) = Clolmz oo

Here the constants C' are independent of p and ¢ (but may depend on R). Let U denote
the solution to

AU=0 in Q@ , U=¢ ondd . (21)
By a combination of Proposition [ (with ¢ = p?) and Corollary 2 of [I7] we immediately

arrive at

Lemma 2. Let ag be as above, for a given choice of p = pr < pp—1 < ... < p1 < po=2p
and {o¢}, and let K be a fived compact subdomain of Q\ Ba,. There exists a constant C
independent of p and {ps} and L such that

U = wopll () < Coll gz oy

C depends on the set K and on maxy oy and ming oy, but is otherwise also independent of
the conductivities {oy}.

Proposition 2. With ay as defined above, the solution ug, to (I0) has the following
representation in Bg \ Ba,

[e.e]

ug,p(r,0) = Z (1 = R™2"M)r" + M,r~") g5 cos(nf)
" (22)

+ Z (1 = R™2"My,)r" + Myr~") g5 sin(nf)
n=1
where My =1, and

T
@ R, L(pL)R, L (pr-1) - Rua(p1)R;, | (00)Rino(p0) <(1)>
A= 0" 1 -1 R\ .
<1> Rn,L(pL)Rn,L(pL—l)"'Rn,l(pl)Rn,l(pO)Rn,O(PO)< ) >

2The result in Corrollary 2 of [I7] concerns the case of fixed Neumann boundary data on 99, but the
exact same method of proof applies to fixed Dirichlet boundary data

10



n > 1, with
7,,77/

rn
Rn,i(’r) = <O,ﬂ,n—1 —O'Z'T_n_1>

Proof. For simplicity of notation we assume that g; = 0, for all n. The general case follows
analogously. The solution ug , has the expansion:

S0 (Ar™m+ dhr~™) cos(nf) in Br\ Bo,
S0 (ehr™ + dhr™™) cos(nb) in Sy

n=1

uo,p(r,0) = g5 +
S0, (chr™ + dbr=m) cos(nf) in Sy,

n=1

The usual transmission conditions at the interfaces 0B,,,...0B,,,...0B,, |, and the
boundary condition at 0B, = 0B, yield the following linear system for the coefficients:

Ry.0(po) <§%> =Ry,1(po) <Ccl}f>

- (24)
L1 L
R, r-1(pr—1) (d%*) =R, r(pr-1) <d7i>
T
0 ck
() ()
After elimination of (cL,dl) ... (ck dL) this gives
0\" o
<1> R,.z(pL)R, L (pr-1) -+ Ru1(p) R, 1 (po) R0 (o) <d8> =0.
In terms of the Dirichlet data at 0B we have
R'gh = R'e)+ R
and hence
and
Cg = Gn — grczR_ann )
which immediately leads to the desired representation (22)). O

11



Lemma 3. With notation as above we have that

R, ) (p-1)Rnz-1(pr-1) - Ru1(p1)R;, 1 (p0)Rn0(p0)

_ H Oup1t+ 0y |I|=2,4,...LL |7|=1,3,...LL (25)
20041 3 Asz"A() 1+ Y Ap —2nA(I)
|I|=1,3,...L [I|=2/4,...L

Here I = (Iy,...I11—1) € {0,1}F is an arbitrary ordered multi-index, and |I| denotes the

number of its non-zero entries. Furthermore Ay = %, 0</¢<L-1, and

Ar =X () Asa()Ass(D) - -

where 0 < s1(1),52(1),s3(1)...s7)(I) < L — 1 are the ordered indices of the non-zero
entries of I. A(I) € { — 1,41} is the multi-index that alternates between +1 and —1,
starting with +1, and p; = (ps, (1)> Pss(1)> - - - ,ps‘ﬂ(l)) e RII, so that

2nA(I
o = 2o Py - (26)

Proof. We prove this formula by induction in the number of layers L. First we recall

_ o tor (1 Npy "
Rn Z—l—l( )Rmé(pZ) = Tf—l—l </\€p%n 1

which (with ¢ = 0) verifies the base case, L = 1. The induction step follows from simple
matrix matrix multiplication and the definition of Ay, A(I) and p;. Suppose ([25]) holds

12



for L layers, then

(R;LH JRauL(pL)R, 1 (pr-1) - Rn,l(pl)R;,ll(pO)Rn,O(pO)>11

o +o0 n —on n
_ H 041 [4 ( Z A1p2 A(I) +)\LPL2 Z A1p2 A(I)

20
¢+l 1|=2,4,...L [1|=1,3,...L

2nA(I*
AI*p[:L (")

\1*\ 2 Ay L1

H Op+1 + 0y

20041

(R;LH )R L(pr)R, 7 (p11) - Rn,l(pl)R;,ll(pO)Rn,O(pO)>

_ H O¢+1+ 0y
20041

12

—2nA(I —2nA(I
Z Af 07 nA(l )+)\LpL2n +)\LPL 2n Z AIPI nA(I)
1|=1,3,...L 1|=2.4,...L

—2nA(I*
AI*PI*n (I*)

H Op+1 + 0y

20
t+1 |I*|= 13 L+1

(Rn 111(pL)Ra,L(pL) Ry (pr—1) - Rn,l(pl)R;,ll(pO)Rn,O(pO)>

21
+ n n
= H UZ; L A7 A V7 - U S Vil
+1 \I|=2.4,...L I|=1,3,...L
_ H Opy1 + 0y AI* 2nA(I*)
20041 |I*|= 13 L+1
(R;L—I—l )R L (pr)R,, 1 (pr—1) - Rn,l(pl)R;,ll(pO)Rn,O(pO)>22
Opy1 + 0 2n Z 2nA(I) 2nA(I)
= H Arp +1+ ) A
2001 ( 1I|=1,3,...L [[|=24,...L

H O¢+1+ 0y 14 Z Apep —2nA(I*)
n 20 I~
41 1%|=2,4,..+1

Here we have used the notation I for a multi-index from {0,1}*, and I* for a multi-index
from {0, 1}**!. These four identities together verify (23] for the case of L + 1 layers, and
this completes the proof of the lemma. O

The following lemma will be needed in order to estimate the constants M, in the
representation formula (22)) for g ,.

Lemma 4. The expression

|1|=1,3,...L |1|=2,4,...L

13



is different from zero for all choices of n, L, 1 = t;, < tp_1 < ... t1 < tg = 2, and

{o0}}_,. Heret; WAL 4 defined analogously to p; “mAD) i Lemma R

Proof. Suppose the expression (27]) vanished for some particular choice of n, L, 1 =t <
tr_1 < ... t1 <ty=2, and {UZ}zL:y A simple calculation with py = pt, gives

<(1)>TRn,L(PL)R L(p-1) - Ru1(p1)R; (00)Rano(p0) <(1)>

o1 0’@+1 + 0y —2nA(I) —2nA(I)
=p O'L E Art; —1- E Agt
g 20e+1 - !
|I|=1,3,...L |1|=2,4,...L

It would thus follow that
0\ " 0
(1) ReslonR L (on0) . Rus(oR 3 Resalon) () =0

for all p and this choice of n, L, 1 =ty < tp_1 < ... t1 <ty =2 and {UZ}gL:p with
pe = pty. According to Proposition @ we would now have M,, = R?" for any p and R with
2p < R, and this particular choice of data. The representation formula in Proposition
would imply that the solution, vy ,, to

v
V- (aoVv,) =0 in Bgr\ B, ,vy,=cos(nf) on 0Bg ,ag 80”) =0 on 0B, ,
v

is given by v ,(r,60) = R"r~"cos(nf) in Br \ By, independently of p, for this particular
choice of data: n, L, 1 =t < tp_1 < ... t; < to =2 and {0y}, with p, = pt,.
However this contradicts Lemma [, which asserts that vg , converges to R™"r"™ cos(n#), as
p — 0, on any fixed compact subset of Br \ Ba,. O

We are now in a position to estimate the constants M, in the representation formula
for g,
Proposition 3. Suppose p = pr < pr—1 < ... < p1 < po = 2p, with pg/p =

a fixed constant ty, 1 < t; < 2,0 < ¢ < L, and suppose R is fized with R > 2p. Then
there exist positive constants Cyx and ¢, independent of p and n (but dependent on L, R,
and the constants {oy¢}, {ts}) such that

T
0 _ _ 1
(1) Ruslo R orms)- Rslor R (o0 Resalo) )
|Mn| = é Cfpzn ’

T —2n
(1) Ruslo R o) Rslon R (oo Renalon) (7))

for p <4, and alln > 1.
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Proof. Using Lemma [B] and the alternating nature of A([), we find

T
(2) Rt ()R (0n1) - B (91 R (00 R 00) (3) ‘

o* +o o n —n— n

2001 \1|=2,4,.. 1]=1,3,...L
. gut1 0y 1 2nA(I) 2nA(I)
=0y H % n 1+ Z A[tI — Z A[tI
b+l [|=2,4,...L 1]=1,3,...L
<o [Tt @
and
0 T 1 1 R—2n
1) Bar(pr)Ry p(pr—1) - Ra1(p1)Ry 1 (po)Rano(po) {
L-1
) + o _ _ n—
—or H 45-01 4 R2n o 114 Z A[p2nA( )| _ o™ 1 Z A[p2nA( )
=0 e+l \1|=2,4,.. 1|=1,3,...L
_ pn—l Z A[pl_2nA(I) _ p—n—l 1+ Z A[p_znA( ) '
[11=1,3,...L [T1=2/4,...L
o +or _ _
—op, H K;; é n=ll p2np=2n (1 4 Z Aﬂf?nA(I)— Z Alt%A()
1 \1|=2.4,..L 11|=1,3,..L
D DR VT RN Vs
1I|=1,3,...L I|=2,4,...L
L-1
O¢+1+00 _p g 1 n 2n p—2n
> e - —-C R
Z20L 20011 P <2 P >
£=0
L—
1 Ol 00 g
> Zerl Tt 2
= 4UL H 20_[_{_1 P ) ( 9)
=0
for p < and n > Ny. In the next to last inequality we have used that tA(I) > 1 and

\/57
|A7| <1 for any |I| > 1, to conclude that

_ Z A t[ 2nA(I) +1+ Z A; t—2nA(I)

1
=2
11|=1,3,...L |1|=2,4,...L

15



for n > Ny, where Ny is independent of p and the {0y}, but depends on L and the {t,}.
According to Lemma [] we have that

|1|=1,3,...L |I|=2,4,...L

does not vanish for 1 < n < Ny, and any choice of t; and o,. It now follows from the
second identity in (29) that there exists positive constants ¢ and ¢, dependent on the oy,
the ¢y, L and R, but independent of p, such that

T
0 _ _ R0 .
(1) ReslowR i) Rus(onR 3 Ralon) (7)) 2 ot L 0

for p < ¢ and 1 < n < Ny. By a combination of the estimates ([28) and (29)), (30) we now
obtain

T
(?) Ry (p2)R S (1) - R (01) R (o) R (0) (})) -

< Cip™

T —2n
<?> R,.z(pr)R, L (pr-1) .- Ru1(p) R, (po) R o(po) <R_i >

for p<d = min{%, o'}, and all n > 1. This completes the proof of the proposition. O

Given the formula for M,, and the second identity in (28]), it follows that M, = 0 if
and only if

1+ > A D) - S AP =0 . (31)
|[|=2,4,...L [[|=1,3,...L

In principle there are 2L — 1 free parameters in the equation, however, we think of the
relative layer position variables 1 =t; <tp_1 < ... <t <ty =2 as fixed and consider
BI)) an equation in the L conductivities {o,}!. The following result, a version of which is
originally found in [3], generalizes the estimate in Lemma

Proposition 4. Let L and 1 =1t <t;_1 < ... <ty <tyg=2 be given. Set py = pty for
p sufficiently small that By, CC ). Let R be fized, with Bs, C Bg C Q. Suppose {o,}_,
solve the equations (31) forn =1, ... ,N. Let ug, be the solution to (I0) with ay given

by (I9), with this choice of {ps}t_y and {os}}f_,. Let U be the (background) solution to
(21). There exists a constant C, independent of p and ¢, such that

1U = wopll @) < CO*N 20l 51172 00 (32)

Proof. Let ¢ = ugplopy = > peo R"g5 cosnf +> 07 | R"gS sinnf. From comments at the
beginning of this section it follows that

el a2 @Br) < Clolmrzon)

16



A simple calculation gives that

o0

H‘F’H%!W(aBR) is equivalent to Zn (\R”gff + \R”gff) +1g51*

n=1

with constants depending on R. Let U, denote the solution to
AU,=0 in B, , U,=wup, ondBr . (33)

From the representation formula in Proposition 2], and the fact that U, = >~>7 ;" g, cos nf+
Yon rgs sinnb, we get

[e.9] o0
Up —ug,p = Z (R_2"7‘" —77") Mygs, cos nf + Z (R_2"r" —r7") Mg sinnd
n=0 n=1

in Br \ Bz, and so

oU, —ug,)~
(pa—yo’p)H?{uQ(aBR) is equivalent to

(o]
Zn_l (InR™" "My gS|* + InR™" ' Mogi|?)
n=1

with constants depending on R. Since we suppose My = --- = My = 0, it follows that

OU, —ug,)” - —n— c - ;
(W=t oS (IR Mg+ B Mgl ?)
ov (@Br)

n=N-+1

Using the fact that ) anb, <>, an ), by for sums of positive numbers, we conclude

OUp —u0,p)” 12

==, W12 (085
- 2 AL
el 3 I

The bound |M,| < C?p?" from Proposition B now implies that

O(U — U, )_
H%HH*UZ(@BR) < CpPPM 2ol g ony < COPN 2SN iz oa) (34)

for p < §, where § and C depend on R and C, (and thus on R, L and the constants {0},
{te}). Let w, € H'(Q) denote the function

w, — U()7p iIlQ\BR
p Up in BR .

17



It follows immediately from (I0), (I9) and (B3] that

- +
/ Vw,Vv de = / <%> vds — / <8u0,p> v ds
0 oBg \ OV oBp \ OV

— / —8((]” — Uo,p)” v ds
OBgr 81/ ’

for any v € H(Q). As a consequense of this and (ZI)) we therefore get

/V(U—wp)Vv dx:—/ OWUp = iop)” vds Yve Hi(Q),
Q OBR v

which by insertion of v = U — w, (remember: U = w, = ¢ on 02), and use of ([B4) yields

/ V(U —wp)|? dx —/ M(U —w)) ds
Q OBg

ov
oU, —ug,)”
< 0 t0n) s U — wpllneony
ov
< CPM 28l rz ooy IU = wpll o

An application of Poincaré’s inequality now gives

U — prHl(Q) < CP2N+2||¢HH1/2(89) ’

and since w, = g, in Q\ Br

U = o pll sy < Co*N 20l 2 o0y

as desired. O

The simultaneous solvability of the algebraic equations BIl), 1 < n < N, for any
given integer NV, has not been established. Some evidence of this solvability has already
been presented in [3]. In the next section we add to this evidence of solvability, and the
emergence of asymptotic shapes.

3.1 Numerical Results

When employing L layers of fixed thickness in the enhanced cloak construction de-
scribed in the previous section, one is left with L ”"free” variables, the conductivities
{Jg}%zl, and so it is quite natural to hope to be able to solve the equations (3II) simul-
taneously for n = 1,2, ... ,L. In this section we shall present some evidence of the
feasibility of this. In doing so we display the conductivity values oy ...o7 of numerous

enhanced cloaks, as well as the ratios A\g...Ap_1, with Ay = %, 0<¢<L-—1,

09 = 1 (which more directly emerge from solving the system of algebraic equations (B1I)
withn =1,...L).

For the cases L < 4 we are able to obtain analytical solutions (using the symbolic
calculation package MATHEMATICA). Note that for L = 3,4 the precise expressions are
quite lengthy, and we present only rounded numerical values. In the case of equidistant

layers, i.e., py = %‘é p, our results are as follows:

18



o [L=1: 5 1
o) = (=, —
is the solution to
1-2"")\g=0 withn=1.

o [ =2:

357 2048
43072—25+/1613257  —55514-5v/1613257
3315 1224

N (0.71586 —0.165596>

o2 M

(Ul )\0> (—4825-1—4\/ 1613257) 931—+/1613257 )

~\3.41432  0.653352

is a solution to

4 2n 4 2n 3 2n
1+ <§> Ao — <—> Ao — <—> AM =0, withn=1,2and ‘)\0’, ‘)\1’ <1.

2 2
o [ =3:
o1 Ao 1.22827 0.102444
o9 A1 | =~ | 0.42636 —0.484645
o3 Ay 5.51582  0.856496

is a solution to
6 2n 6 2n 5 2n 6 2n
1 - Ao - Ao - AMAg — [ = A
#(3) 2o (3) e+ (5) - (3)
5 2n 4 2n 24 2n
- (3) n-(5) mo(R) o

with n =1,2,3 and ‘)\0’, ‘)\1’, ‘)\2‘ <1

o [ =4:
o1 o 0.883265 —0.0619857
oy A1 | _ | 1.832611  0.349555
o5 Ao | 7 10.281192 —0.733947
o1 A3 7.602646  0.928666

is a solution to
1+ <§>2" AoA1L + <%>2n AoA2 + <§>2" AoA3 + (g)Qn A2 + <£>2n A1 A3
+ <g>2n A2z + <%>2n A0A1A2A3 — (g)Z" Ao — <£>2n AL — <§>2n A2
- <Z>2n Az — <§>2n AoA1 A2 — (g)Zn AoA2Az — (;%))2" A0A1A3

35 2n
- <ﬂ> MAsAz =0,

with n=1,2,3,4 and [Ao, [A1], [Ao], [As] < 1
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Figure 1: The solutions (Ar—1,Ar—3...) (left) and (A—2, A\p—4...) (right) for L = 3,...14
for the algebraic system (BI) as functions of the equidistant rescaled layer interfaces t;, =

LL_Z. For visualization purposes we use linear interpolation between the discrete values.

120 —— —— —— —— — ] 12F —— —— —— —— — ]

Figure 2: The modulus of the solutions (Ap_1,Ap—2...) for L = 3,...15 for the algebraic
system (BI]) as functions of the equidistant rescaled layer interfaces t, = % (left) and
non-equidistant rescaled layer interfaces (right).

In the latter three cases it appears very likely that these solutions are indeed the unique
solutions with moduli smaller than 1. These first numbers seem to suggest the general
existence of solutions for which (Ar—1,Az—3...) are positive and decreasing, and for which
AL—2,A\L—4 ... are negative and increasing. This observation is confirmed (see Figure [I]),
if we use numerical methods to determine approximate solutions Ag,...Ar_1 for L > 4.
Moreover, we observe that (|A¢|)f,, with A\, = 1 converges to a sigmoidal curve (see
Figure [2 left). The shape of this curve changes, if we choose a different grading for the
layers (see Figure 2 right).

Finally, in Figure ] we show the numerical approximations of the conductivity coef-
ficients for 6,9,12,15 and 18 enhancement layers. MATHEMATICA allows the use of
arbitrarily high order precision for numerical functions. We use this feature to push the
size of the coefficients M,,, that are supposed to vanish, below 10759,
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Figure 3: Numerical approximations of conductivity coefficients for 6,9,12,15 and 18
enhancement layers (top to bottom, left), and the corresponding values of Mj, ... My

from (23), with R = 2.
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4 Main result and conclusions
Let ag,, be a family L*>-functions that satisfy

0<co<app(x)<Co<oo forae xzeQ\B,,
with ag ,(z) =1 for a.e. € Q\ By (35)

for some fixed constants cp, Cp. Define Ag, = (Fyp)«a0, on Q\ By, and let Up,
(=wuopo Fz_pl) denote the solution to

V- (A, VUy,) = 0in Q\ By Uy = ¢ on 00 ,
oUy,,
0r "5y

As ag, we may for example take the piecewise constant conductivity distributions con-
structed in Section 3. Ag, = (Fp)«a0, in By \ Byy (in physical space) thus represents
one of the enhanced approximate cloaks, that have been designed to cloak the perfectly
insulated ball By /y. Let ae, denote the conductivity distribution

= (A0, VUo,) - v=00n 0By . (36)

ag, inQ\B,,
Qep = € in B, \ B, ,
Gobj in Bp/2 s

where € is a positive constant, and a.,; is an arbitrary, strictly positive L> function
in By Acp i= (F2p)«ac, in By \ By (of physical space) thus represents one of our
enhanced approximate cloaks, that have been designed to cloak any conducting object
aij := (F2p)«a0pj, placed inside B4 Indeed, let U, , (= uep o F2_p1) denote the solution
to

V(A ,VUp) =0in Q U, p=¢ondQ . (37)

The extent to which we have been able to achieve the enhanced approximate cloaking of
aij is measured by the closeness of U , to U, the solution of

AU=0 inQ, U=¢ ond, (38)
strictly outside Bs. An estimate of this closeness is the contents of our main theorem

Theorem 1. Let Uy p, Uep, and U be the solutions to (36), (37), and (38), respectively,
with coefficients as described above. Let K be any compact subdomain of 0\ By. There
exists a constant C, independent of p, €, ¢ and azbj such that

IU = Uepllmxy < Celldll gz an) + U = Uopllmx) - (39)

C depends on cy and Cy of (33), but is otherwise also independent of ag ,, and thus also
of the physical cloak AE,,,]BQ\BM.
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Proof. This theorem follows directly by a combination of the triangle inequality and Propo-
sition Il Here we use that Uy, = ug,, and U, = uc, in Q\ By, since Fy, equals the
identity there. U

We note that since the coefficients of the three PDEs, involved in (36]), [87), and (38]),
are all constantly equal to 1 in €\ By, the functions U, ,, Uy, and U are all harmonic
there; consequently the H' norm on the left side of ([8%) may be replaced by any H* norm
k > 1, and the H' norm on the right hand side may be replaced by any H* norm k < 1
(at the cost of replacing K in the right hand side by K/, with K cC K’ C Q\ Bs).

As we saw in Section 3 (and [3]), it is in two dimension almost certainly possible to
design ag ,, so that

U = Uopll () < CN92N+2||¢HH1/2(8Q) )

for any N > 1. This is rigorously verified for 1 < N < 4 (due to the demonstrated presence
of analytic solution to (31)), and it is very strongly indicated by the numerics for any N.
The estimate ([B9) thus leads to

1Uep = Ullgny < Cnle+ o )6l a2 00)

which suggests that a good choice for € would be € = p?VN*+2. With this choice of €, the
resulting approximate cloak will have anisotropy measure

* —2
Xan = O(p ) )
and degeneracy measures

jm'n = O(p2N+2) ) and A:nam = O(Io_l)

Two of these measures, the measure of anisotropy x%,,, and the degeneracy measure A%, ..,

are much more favorable than those associated with the approximate scheme using p™¥ !
in place of p (which also has a visibility of the order p?*? in two dimension). However,
the degeneracy measure A* . is worse than that obtained by replacing p by pN*t!.

min
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