
Approximate cloaking for the full wave equation via change

of variables

Hoai-Minh Nguyen ∗and Michael S. Vogelius†

May 5, 2011

Abstract

We study, in the context of the full wave equation, an approximate cloaking scheme,
that was previously considered for the Helmholtz equation [8], [17]. This cloaking
scheme consists in a combination of an absorbing layer with an anisotropic layer,
obtained by so-called transformation optics. We give optimal bounds for the visibility
that tend to zero as a certain regularization parameter approaches 0. Our bounds
are based on recent estimates for the Helmholtz equation [17], some low frequency
improvements of these estimates, and the use of Fourier Transformation in time.
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1 Introduction and statement of main results

Cloaking via change of variables (sometimes referred to as “cloaking by mapping”)
has received quite a bit of attention since the 2006 papers by Pendry, Schurig, and
Smith [18] and Leonhardt [11]. Pendry, Schurig, and Smith approached the problem
in terms of the Helmholtz equation (describing monochromatic light) whereas Leon-
hardt took the “ray-optics” approach. In both cases the fundamental idea was to use
a singular change of variables to create a cloaked region from a single point. This
idea had already in 2003 been used by Greenleaf, Lassas, Uhlmann to generate ex-
treme examples of non-uniqueness for the zero frequency Helmholtz inverse coefficient
problem, the so-called Calderon Problem [5].

In the case of perfect cloaking the objective is to construct a region (the cloaked
region), in which the fields trivialize in such a way that they are completely insensitive
to changes in the coefficients inside this region. Furthermore, the presence of the cloak
(the “shield” that surrounds the cloaked region) should not perturbe the fields outside
the cloak. The need for very singular (and anisotropic) materials is not only the
primary practical difficulty, it is also at the very heart of the theoretical difficulties
of this cloaking problem. The main theoretical task is to define and analyze the
properties of the appropriate notion of weak (and physical) solution [2], [22]. To avoid
the use of singular materials, regularized schemes have been proposed in [1], [3], [9],
[19], [20], [24]. The trade-off is that one no longer attains perfect cloaking, but only
approximate cloaking. The approach originated in [9] appears particularly well-suited
for rigorous estimation of the degree of approximate cloaking (near-invisibility). In
this approach the regularization parameter ε > 0 represents the diameter of a small
ball that is mapped to the (approximately) cloaked region by a change of variables.
When ε approaches zero, one reaches the singular situation of a point being mapped to
the (perfectly) cloaked region. The reader may find more information and references
related to cloaking in the works mentioned above, and in the review articles [4] and
[23].

Let us briefly review some facts about approximate cloaking for the Helmholtz
equation for a finite range, and for the full range of frequencies. In order to succesfully
achieve approximate cloaking it is often advantageous to introduce a lossy layer in
addition to the standard (mapped) cloak. Using an appropriate lossy layer, it is
proven in [8] that approximate cloaking works well on a bounded domain regardless
of the contents of the cloaked region. In [12], the author proved that approximate
cloaking works well for exterior problems with a zero Dirichlet boundary condition.
In [15], the author established that approximate cloaking works well in the whole
space regardless of the contents of the cloaked region (using a fixed lossy-layer). The
result in [12] is very related to the results in [15], since a highly conducting media (as
in a lossy layer) enforces the zero Dirichlet boundary condition approximately (see
e.g. [6]). In both [8] and [15] the authors demonstrated the necessity of the lossy
layer, in order to obtain a degree of approximate cloaking (near-invisibility) that is
independent of the contents of the cloaked region. The paper [17] establishes precise
estimates for the degree of near-invisibility at all frequencies, where the dependence
on frequency is explicit. These estimates are sharp and independent of the contents
of the cloaked region. To be a little more specific: in the high frequency case, our
“lossy” approximate cloaking scheme works as well as in the finite frequency case.
However, the estimates degenerate as frequency tends to 0. This follows from (or can
be explained by) the fact that the effect of the lossy layer becomes weaker and weaker,
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as frequency tends to 0. Without a lossy layer the situation becomes quite complicated,
as explored in [16]. For example, in the 3d non-resonant case, i.e., when k2 is not an
eigenvalue of the Neumann problem inside the cloaked region (here k denotes the wave
number), the approximate scheme works well: cloaking is achieved (as the parameter
of regularization goes to zero) and the limiting field inside the cloaked region is the
corresponding solution to the Neumann problem. In the 3d resonant case, the situation
changes completely. Sometimes cloaking is achieved; nevertheless, the limiting field
inside the cloaked region depends on the solution in the free space. Sometimes cloaking
is not achieved, and the energy inside the cloaked region tends to infinity as the
parameter of regularization tends to 0. In the 2d non-resonant case, the limiting
field inside the cloaked region inherits a non-local structure. In the 2d resonant case,
cloaking sometimes is not achieved, and the energy inside the cloaked region can go to
infinity. These “lossless” facts are somewhat different from what is frequently asserted
in the literature, namely that (a) in 3d, cloaking is always achieved, the limiting field
inside and outside the cloaked region completely separate, and the energy of the field
inside the cloaked region remains bounded, and (b) in 2d, the limiting field inside the
cloaked region satisfies the corresponding Neumann problem.

The goal of this paper is to study approximate cloaking for the wave equation via
change of variables. Although approximate cloaking has been extensively investigated
for the Helmholtz equation, this is, to the best of our knowledge, the first work for the
full wave equation. In our approximate cloaking scheme, we use again two layers. One
comes from the standard scheme introduced in the work of Kohn et al. in [9]. The
other is an appropriate lossy layer, similar to what has been used for the Helmholtz
equation in [8], [17]. We estimate the degree of approximate cloaking (near-invisibility)
in 2d and 3d. Our results assert that the visibility is of order ε in 3d (Theorem 1)
and of the order 1/| ln ε| in 2d (Theorem 2). We emphasize that our estimates hold
for an arbitrary finite range of material parameters inside the cloaked region, but that
the constants depend on this range (and only on this range). We also note that this
dependence of the constants on the range is real, and totally consistent with the fact
that the uniformly valid estimate of the degree of near-invisibility for the Helmholtz
equation degenerates as frequency goes to 0.

To obtain our wave equation estimate of the degree of near-invisibility we, briefly
described, proceed as follows. We first transform the wave equation into a family
of Helmholtz equations by taking the Fourier Transform with respect to time. Af-
ter obtaining the appropriate degree of near-invisibility estimates for the Helmholtz
equation, where the dependence on frequency is explicit, we simply invert the Fourier
Transform. For the high frequency regime we can directly use the estimate of the de-
gree of near-invisibility established in [17], but for the low frequency Helmholtz equa-
tion we have to establish new estimates (in Section 2.2) which improve the ones in
[17] under the (additional) finite range assumption. The proof of these new estimates
are among the central results in this paper. We emphasize here that, the estimates for
the Helmholtz equation blow up as frequency goes to 0. However, they blow up in an
integrable way thanks to the new estimates in Section 2.2. Another important (albeit
technical) point is, that we need to establish that the Fourier Transform of solutions
to the wave equation (with respect to time) satisfy an outgoing radiation condition.
The proof of this fact is contained in Appendix A.

Our analysis differs significantly between 2d and 3d. In three dimension, we rely
on Huyghens’ principle to pass from the wave equation to a family of Helmholtz
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equations and to obtain appropriate estimates for the data of these equations. In
two dimension, we have apriori to establish sufficient decay of solutions to the wave
equation at infinity, in order to carry out a similar analysis. The required decay
estimate is found in Appendix B. Furthermore, the two dimensional analysis of the
low frequency Helmholtz equation is considerably more delicate than the 3d analogue,
due to the non-uniqueness of “finite energy” solutions to the homogeneous Laplace
equation (the zero frequency limit) in all of space (see Lemma 4).

We now state our main results precisely. For simplicity suppose the cloak occupies
the annular region {1/2 < |x| < 2}, and that the cloaked region is the ball B1/2 =
{|x| < 1/2} of Rd (d = 2, 3). Let Fε denote the radial Lipschitz map, which transforms
the ball Bε into B1, maps B2 onto itself, and which is given by

Fε(x) =



x if x ∈ Rd \B2 ,(2− 2ε
2− ε

+
|x|

2− ε

) x

|x|
if x ∈ B2 \Bε ,

x

ε
if x ∈ Bε .

(1.1)

We shall use the standard notation

F∗A(y) =
DF (x)A(x)DFT (x)

detDF (x)
and F∗Σ(y) =

Σ(x)
detDF (x)

, with x = F−1(y) ,

(1.2)
for any real, symmetric matrix-valued function A, and any complex function Σ.
Let u and uc be the unique solution to the wave equation

∂2
ttu−∆u = f in R+ × Rd,

u(t = 0) = u0 in Rd,

∂tu(t = 0) = u1 in Rd,

(1.3)

and to the “damped” wave equation
Σ1,c∂

2
ttuc − div(Ac∇uc) + Σ2,c∂tuc = f in R+ × Rd,

uc(t = 0) = u0 in Rd,

∂tuc(t = 0) = u1 in Rd,

(1.4)

respectively. Here Ac, Σ1,c, and Σ2,c are time independent, and defined as follows

Ac,Σ1,c,Σ2,c =



I, 1, 0 in Rd \B2 ,

Fε∗I, Fε∗1, 0 in B2 \B1 ,

Fε∗I, Fε∗1, Fε∗

(
1/ε2+γ

)
in B1 \B1/2 ,

a, σ, 0 in B1/2 ,
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for some positive constant γ (a parameter of our scheme) 1. Note that damping is only
present in the annulus B1 \B1/2. We assume that the real, symmetric matrix-valued
function a, and the real-valued function σ each has a “finite range”, in the sense that

1
Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2 , 1

Λ
≤ σ ≤ Λ , (1.5)

for some positive constant Λ.

Remark 1. Notice that to cloak the region B1/2, we use two layers in the region
B2 \ B1/2. The first layer, in the region B2 \ B1, is the standard “mapped cloak”
introduced in [9]. The second layer, in the region B1 \B1/2, is a lossy (damping) layer
used in [8], [17].

The main results of this paper are the following two theorems.

Theorem 1. Suppose d = 3 and γ > 0. Suppose f is a smooth function defined
on R+ × R3 and suppose u0, u1 are smooth functions defined on R3 with supp f ⊂
[0, 1] × (B4 \ B2) and suppu0, suppu1 ⊂ B4 \ B2. Let u and uc denote the unique
solutions to (1.3) and (1.4), respectively, where a and σ satisfy (1.5). Given any
R > 2, there exists a positive constant C, depending only on the range-constant Λ, the
constant γ, and R, such that

sup
t>0

‖uc(t, ·)− u(t, ·)‖L2(BR\B2) ≤ C
(
‖f‖+ ‖u0‖+ ‖u1‖

)
ε .

Here
‖f‖ = ‖f‖Cm , ‖u0‖ = ‖u0‖Cm , and ‖u1‖ = ‖u1‖Cm ,

for some m > 0.

Theorem 2. Suppose d = 2 and γ > 0. Suppose f is a smooth function defined
on R+ × R2 and suppose u0, u1 are smooth functions defined on R2 with supp f ⊂
[0, 1] × (B4 \ B2) and suppu0, suppu1 ⊂ B4 \ B2. Let u and uc denote the unique
solutions to (1.3) and (1.4), respectively, where a and σ satisfy (1.5). Given any
R > 2, there exists a positive constant C, depending only on the range-constant Λ, the
constant γ, and R, such that

sup
t>0

‖uc(t, ·)− u(t, ·)‖L2(BR\B2) ≤ C
(
‖f‖+ ‖u0‖+ ‖u1‖

) 1
| ln ε|

.

Here
‖f‖ = ‖f‖Cm , ‖u0‖ = ‖u0‖Cm , and ‖u1‖ = ‖u1‖Cm ,

for some m > 0.

Remark 2. The estimates in theorems 1 and 2 are sharp (in the regularization pa-
rameter ε) since the minimal visibility for the Helmholtz equation is of order ε in 3d,
and of order 1/| ln ε| in 2d, in the finite frequency regime.

1Our analysis immediately extends to the case where the triplet (a, σ, 0) is replaced by (a, σ1, σ2) with
(a, σ1) satisfying the same condition as (a, σ), and 0 ≤ σ2 ≤ Λ.

5



2 Preliminaries

As mentioned in the introduction, to obtain the degree of near invisibility estimates
for the wave equation, we first transform the wave equations into a family of Helmholtz
equations and establish the appropriate degree of near invisibility estimates for these
Helmholtz equations, where the dependence on frequency is explicit. To this end, we
recall some known results from the work of Morawetz-Ludwig [13], Nguyen [15, 16]
and Nguyen-Vogelius [17], and then we establish new results, which will be used in
the proof of theorems 1 and 2.

2.1 Some known results

We first recall two results concerning exterior problems. The first one, dealing with
the high frequency regime, is very related to results of Morawetz-Ludwig [13], and can
be proved in the same fashion as [17, Proposition 1]. In the following, whenever we
talk about outgoing solutions to an exterior Helmholtz problem at frequency k, we
mean solutions that satisfy

∂rv − ikv = o(r−
d−1
2 ) as r goes to infinity .

Proposition 1. Let d = 2, 3 and k > k0, for some k0 > 0. Let g ∈ H1(∂B1) and let
v ∈ H1

loc
(Rd \B1) be the unique outgoing solution of ∆v + k2v = 0 in Rd \B1 ,

v = g on ∂B1 .

Then
1
β

∫
Bβ\B1

(
|∇v|2 + k2|v|2

)
≤ C‖g‖2H1(∂B1)

,

for some constant C depending only on k0.

Remark 3. Proposition 1 also holds if the unit ball B1 is replaced by a smooth,
bounded convex domain of Rd.

The second result, concerning the low frequency regime, is from [16] ([16, Lemmas
1 and 4]).

Proposition 2. Let d = 2, 3, and 0 < ε < 1. Let D ⊂ B1 be a smooth, nonempty open
subset of Rd, and gε ∈ H

1
2 (∂D). Assume Rd \D is connected and vε ∈ H1

loc
(Rd \D)

is the unique outgoing solution of ∆vε + ε2vε = 0 in Rd \ D̄ ,

vε = gε on ∂D .

i) We have
‖vε‖H1(BR\D) ≤ CR‖gε‖

H
1
2 (∂D)

∀R > 1 , (2.1)

and for all β > 1,
‖vε‖L2(B2β\Bβ) ≤ Cβ

1
2 ‖gε‖

H
1
2 (∂D)

if d = 3,

‖vε‖L2(B2β\Bβ) ≤ Cβ
|H(1)

0 (εβ)|
|H(1)

0 (ε)|
‖gε‖

H
1
2 (∂D)

if d = 2,
(2.2)
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for some positive constants CR = C(R,D) and C = C(D).

ii) Assume in addition that gε converges to g weakly in H
1
2 (∂D), as ε → 0. Then

vε converges to v weakly in H1
loc

(Rd \D), where v ∈ W 1(Rd \D) is the unique
solution of  ∆v = 0 in Rd \D ,

v = g on ∂D .
(2.3)

Here and in the following, H(1)
0 denotes the Hankel function of the first kind of

order 0. For a connected, smooth open region U of Rd with a bounded complement
(this includes U = Rd), W 1(U) is defined as follows:

W 1(U) =
{
ψ ∈ L2

loc(U) ;
ψ(x)√
1 + |x|2

∈ L2(U) and ∇ψ ∈ L2(U)
}

for d = 3 ,

and

W 1(U) =
{
ψ ∈ L2

loc(U) :
ψ(x)

ln(2 + |x|)
√

1 + |x|2
∈ L2(U) and ∇ψ ∈ L2(U)

}
for d = 2 .

Remark 4. The estimates in (2.2) are not stated explicitly in [16, Lemmas 1 and 4].
However, their proofs follow immediately from the ones of [16, Lemmas 1 and 4]. We
can also view (2.2) as a limiting case of Lemma 1 below (which is [17, Theorem 1])
as λ→ 0. In fact (2.1) and (2.2), with β = 1/ε, already appeared in [15].

The following lemma, which will be used in the proof of Proposition 3, was estab-
lished in [17, Theorem 1].

Lemma 1. Let d = 2, 3, 0 < λ < 1 and k > 0. Let a be a real, symmetric matrix valued
function, and let σ be a complex function, both defined on B1/2. Suppose a is bounded
and uniformly elliptic, and suppose σ satisfies 0 ≤ ess inf =(σ) ≤ ess sup=(σ) < +∞,
and 0 < ess inf <(σ) ≤ ess sup<(σ) < +∞ 2. Let f ∈ L2(Rd) with supp f ⊂ B4 \B1,
and let v ∈ H1

loc
(Rd) be the unique outgoing solution of

div(A∇v) + k2Σv = f in Rd ,

with

A,Σ =


I, 1 in Rd \B1 ,

I, 1 + i/(kλ) in B1 \B1/2 ,

a, σ in B1/2 .

Then for any k0 > 0, there exists C > 0 such that

a) For k > k0, and β > 1

1
β

∫
Bβ\B1

(
|∇v|2 + k2|v|2

)
≤ C

∫
Rd

|f |2 .

2In this paper, we use the notation =(ξ) and <(ξ) for the imaginary part and the real part of ξ,
respectively.
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b) For 0 < k < k0, and β > 1
‖v‖L2(Bβ\B1) ≤ Cβ

1
2 max{1, λ/k}‖f‖L2 for d = 3 ,

‖v‖L2(B2β\Bβ) ≤ Cβmax{1, λ/k} |H
(1)
0 (kβ)|

|H(1)
0 (k)|

‖f‖L2 for d = 2 .

The constant C depends on k0, but is independent of a, σ, k, β, λ, and f .

The following proposition, which is an immediate consequence of Lemma 1, will
be used in the proofs of theorems 1 and 2.

Proposition 3. Let d = 2, 3, 0 < λ < 1 and k > 0. Let a be a real, symmetric
matrix valued function, and let σ be a complex function, both defined on B1/2. Sup-
pose a is bounded and uniformly elliptic, and suppose σ satisfies 0 ≤ ess inf =(σ) ≤
ess sup=(σ) < +∞, and 0 < ess inf <(σ) ≤ ess sup<(σ) < +∞. Let V ∈ H1(B4\B̄1)
be such that ∆V + k2V = 0 in B4 \ B̄1, V = 0 on ∂B1. Assume that v ∈ H1

loc
(Rd) is

the unique outgoing solution of the system 3 div(A∇v) + k2Σv = 0 in Rd \ ∂B1 ,[
∂rv

]
= ∂rV on ∂B1 ,

with

A,Σ =


I, 1 in Rd \B1 ,

I, 1 + i/(kλ) in B1 \B1/2 ,

a, σ in B1/2 .

Then for any k0 > 0, there exists C > 0 such that

a) For k > k0, and β > 1

1
β

∫
B2β\Bβ

k2|v|2 ≤ C‖V ‖2H1(B4\B1)
+

2
β

∫
B4\Bβ

k2|V |2.

b) For 0 < k < k0, and β > 1,

‖v‖L2(B2β\Bβ) ≤Cβ
1
2 max

{
1, λ/k

}
‖V ‖H1(B4\B1),

for d = 3, and

‖v‖L2(B2β\Bβ) ≤Cβmax
{

1, λ/k
} |H(1)

0 (kβ)|
|H(1)

0 (k)|
‖V ‖H1(B4\B1),

for d = 2.

The constant C depends on k0, but is independent of a, σ, k, β, λ, and V .

3In this paper, we use the notation [v] to denote v
˛̨̨
ext

− v
˛̨̨
int

on ∂D, for any D ⊂ Rd.
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Proof of Proposition 3. Let φ ∈ C2(Rd) be such that suppφ ⊂ B4, 0 ≤ φ ≤ 1, and
φ = 1 in B3. Define

v1 =

 v − φV if x ∈ Rd \B1 ,

v if x ∈ B1 .

Since V = 0 on ∂B1 and
[
〈A∇v, x/|x|〉

]
= ∂rV , it follows that v1 ∈ H1

loc
(Rd) is the

unique outgoing solution to the equation

div(A∇v1) + k2Σv1 = f in Rd ,

where

f =

 −(∆V + k2V )φ− 2∇V∇φ− V∆φ in Rd \B1 ,

0 in B1 .

It is clear that supp f ⊂ B4 \B1 and since ∆V + k2V = 0 in B4 \B1,

‖f‖L2 ≤ C‖V ‖H1(B4\B1) .

The estimates of this proposition now follow from Lemma 1 and the fact that

β|H(1)
0 (kβ)|

|H(1)
0 (k)|

≥ c > 0 for 0 < k < k0 and β > 1.

�

2.2 New estimates for Helmholtz problems in the low fre-
quency regime

In this section we improve the low frequency results from the previous section,
under the additional assumption that a and σ are in finite ranges. The notion of
G-convergence plays a role in the proof of these improved results. We therefore first
recall the definition of G-convergence and state one of the fundamental properties
associated with this notion. We emphasize that if we considered cloaking for fixed a
and σ, then our approach would work without the use of G-convergence.

2.2.1 G-convergence

We recall here the definition of a particular version of G-convergence (also fre-
quently referred to as H-convergence) and state a central theorem involving this no-
tion.

Suppose 0 < α < β <∞ and let Ω be a connected, bounded, smooth open subset
of Rd. M(α, β,Ω) denotes the set of real symmetric matrix valued functions a defined
on Ω such that

α|ξ|2 ≤ 〈aξ, ξ〉 ≤ β|ξ|2,

and H1
] (Ω) denotes the Sobolev space

H1
] (Ω) =

{
ψ ∈ H1(Ω);

∫
Ω

ψ = 0
}
.
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Definition 1. A sequence of matrices (an) in M(α, β,Ω) G-converges to a matrix
a ∈ M(α′, β′,Ω) iff for all g ∈

[
H1(Ω)

]∗ (the dual of H1(Ω)) with 〈g, 1〉[H1]∗,H1 = 0,
the solution un ∈ H1

] (Ω) of the equation

div(an∇un) = g, i.e.,

∫
Ω

an∇un∇ψ = 〈g, ψ〉[
H1

]∗
,H1

∀ψ ∈ H1
] (Ω),

has the property that

un ⇀ u weakly in H1(Ω) and an∇un ⇀ a∇u weakly in L2(Ω),

where u ∈ H1
] (Ω) is the unique solution of the problem

div(a∇u) = g, i.e.,

∫
Ω

a∇u∇ψ = 〈g, ψ〉[
H1

]∗
,H1

∀ψ ∈ H1
] (Ω).

Concerning G-convergence, one has

Proposition 4. Let 0 < α < β < +∞, let Ω be a connected, bounded, and smooth
subset of Rd, and suppose (an) ⊂M(α, β,Ω), then

i) there exist a subsequence (ank
) of (an) and a ∈ M(α′, β′,Ω) for some 0 < α′ <

β′ < +∞ such that (ank
) G-converges to a.

ii) suppose (an), (bn) ⊂ M(α, β,Ω) with an = bn on an open subset Ω′ of Ω, and
suppose an G-converges to a ∈ M(α′, β′,Ω), bn G-converges to b ∈ M(α′, β′,Ω)
for some 0 < α′ < β′ < +∞. Then a = b on Ω′.

Proof of Proposition 4. The result analogous to Proposition 4 for the zero-Dirichlet
boundary condition is well-known, see e.g. [7], and [14]. The proof of Proposition 4
follows by a slight variation of the proof for the zero-Dirichlet boundary condition.
The details are left to the reader. �

2.2.2 New estimates in the 3d low frequency regime

This section is devoted to new estimates for the Helmholtz equation in the 3d low
frequency regime. The main result is the following proposition:

Proposition 5. Let a be a real, symmetric matrix valued function, and let σ be a
complex function, both defined on B1/2. Assume that

1
Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2 , 1

Λ
≤ <(σ) ≤ Λ , and 0 ≤ =(σ) ≤ Λ , (2.4)

for some positive constant Λ. Given 0 < k < 1 and 0 < ε < 1, let Vε ∈ H1(B4 \ B̄1)
be such that ∆Vε + ε2k2Vε = 0 in B4 \ B1, Vε = 0 on ∂B1, and let vε ∈ H1

loc
(R3) be

the unique outgoing solution of the system div(Aε∇vε) + ε2k2Σεvε = 0 in R3 \ ∂B1 ,

[∂rvε] = ∂rVε on ∂B1 ,

with

Aε,Σε =



I, 1 in R3 \B1 ,

I, 1 + i/(ε2+γk) in B1 \B1/2 ,

1
ε
a,

1
ε3
σ in B1/2 ,

(2.5)
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for some constant γ ≥ 0. Then there exist two positive constants c and C such that
k < cmin{ε1/2, εγ} implies

‖vε‖L2(B2β\Bβ) ≤ Cβ
1
2 ‖Vε‖H1(B4\B1) for all β > 1.

The constants c and C depend on the “range” constant Λ and on γ, but are independent
of Vε, k, ε, β, a and σ.

Proposition 5 is a consequence of Lemma 2 below. The proof of Proposition 5
is similar to the one of Proposition 3, where instead of using Lemma 1, one uses
Lemma 2. The details are left to the reader.

Lemma 2. Let a be a real, symmetric matrix valued function, and let σ be a complex
function, both defined on B1/2. Assume that

1
Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2, 1

Λ
≤ <(σ) ≤ Λ, and 0 ≤ =(σ) ≤ Λ , (2.6)

for some positive constant Λ. Given 0 < k < 1, 0 < ε < 1, and f ∈ L2(R3) with
supp f ⊂ B4 \B1, let vε ∈ H1

loc
(R3) be the unique outgoing solution of

div(Aε∇vε) + ε2k2Σεvε = f in R3 ,

with

Aε,Σε =



I, 1 in R3 \B1 ,

I, 1 + i/(ε2+γk) in B1 \B1/2 ,

1
ε
a,

1
ε3
σ in B1/2 .

(2.7)

for some constant γ ≥ 0. Then there exist two positive constants c and C such that
k < cmin{ε1/2, εγ} implies

‖vε‖L2(B5) ≤ C‖f‖L2 (2.8)

and
‖vε‖L2(B2β\Bβ) ≤ Cβ1/2‖f‖L2 . (2.9)

The constants c and C depend on the “range” constant Λ and γ, but are independent
of f , k, ε, β, a and σ.

Proof of Lemma 2. We only establish (2.8). The estimate (2.9), for β > 4.5, follows
immediately from (2.8) and Proposition 2, since

‖vε‖H1/2(∂B4.5) ≤ C‖vε‖H1(B4.8\B4.2) ≤ C‖vε‖L2(B5\B4),

by standard regularity theory for elliptic equations. The extension of (2.9) to all β > 1
is a simple consequence of (2.8).

The proof of (2.8) uses ideas from [16, Lemma 3] and the theory of G-convergence
(Proposition 4) and proceeds by contradiction. Suppose (2.8) is not true, then there
exist kn → 0, 0 < εn < 1, an, σn that satisfy (2.6), and {fn} with supp fn ⊂ B4 \B1,
such that

lim
n→∞

kn/min{ε1/2
n , εγ

n} = 0, ‖fn‖L2 → 0, and ‖vn‖L2(B5) = 1 . (2.10)
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Here vn ∈ H1
loc

(R3) is the unique outgoing solution to the equation

div(An∇vn) + ε2nk
2
nΣnvn = fn in R3 , (2.11)

where An and Σn are defined similarly to Aε and Σε of (2.7), with a, σ, ε, and k
replaced by an, σn, εn, and kn, respectively. Applying elliptic estimates and Proposi-
tion 2, we obtain

‖vn‖H1(K) ≤ CK , (2.12)

for any compact subset K of R3 \B9/2. Multiplication of (2.11) by v̄n (the conjugate
of vn) and integration of the obtained expression on B5 yields∫

B5\B1/2

|∇vn|2 +
1
εn

∫
B1/2

〈an∇vn,∇vn〉 − ε2nk
2
n

∫
B5\B1/2

|vn|2

− ikn

εγ
n

∫
B1\B1/2

|vn|2 −
k2

n

εn

∫
B1/2

σn|vn|2 = −
∫

B5

fnv̄n +
∫

∂B5

∂rvnv̄n . (2.13)

From (2.10), (2.12), (2.13), and the fact that an and σn satisfy (2.6), we have

‖vn‖H1(B5) ≤ C.

Hence it follows from (2.12) that

‖vn‖H1(K) ≤ CK ∀K ⊂⊂ R3. (2.14)

Set
v1,n =

∫
B1/2

vn, (2.15)

and define v2,n, wn on B1/2 as follows

v2,n = vn − v1,n , and wn =
1
εn
v2,n .

From the equation for vn, we have

div(an∇vn) + k2
nσnvn = 0 in B1/2 and an∇vn ·

x

|x|

∣∣∣
int

= εn∂rvn

∣∣∣
ext

on ∂B1/2.

(2.16)
This implies

div(an∇wn) = −k
2
nσn

εn
vn in B1/2 , an∇wn ·

x

|x|
= ∂rvn

∣∣∣
ext

on ∂B1/2 , (2.17)

and
∫

B1/2

wn = 0. Since (k2
nσn/εn)vn → 0 in L2(B1/2), it follows from (2.14) that wn

is bounded in H1(B1/2). From (2.14) and (2.16), it is clear that

an∇vn ·
x

|x|

∣∣∣
int
→ 0 in H−1/2(∂Ω), (2.18)

and so∫
B1/2

〈an∇vn,∇vn〉 = k2
n

∫
B1/2

σn|vn|2 +
∫

∂B1/2

an∇vn ·
x

|x|

∣∣∣
int
v̄n → 0. (2.19)
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Due to (2.6), (2.14) and (2.19), we may (after extraction of a subsequence) assume
that

(
vn

)
converges to a constant in H1(B1/2). On the other hand, from (2.14)

and the fact that ∆vn + ε2nk
2
nvn = 0 for |x| > 4, we may (after extraction of a

subsequence and a diagonalization argument) assume that
(
vn

)
converges in H1(K)

for any K ⊂⊂ R3 \ B9/2. Hence
(
vn

)
converges in H1/2(∂B5) and H1/2(∂B1/2).

Using the equation for vn in B5 \ B̄1/2 and the theory of elliptic equations, we obtain
that

(
vn

)
converges in H1(B5 \ B̄1/2). Here we also used (2.14) and the fact that

kn/ε
γ
n → 0. In summary, we have that (vn) converges in H1

loc
(R3). Let v be the

limit of vn in H1
loc

(R3). By Proposition 4, we may (after extraction of a subsequence)
assume that

(
an

)
G-converges to a and that

(
wn

)
converges weakly to w in H1(B1/2).

It now follows from (2.16) and (2.17) that
div(a∇w) = 0 in B1/2 div(a∇v) = 0 in B1/2,

〈a∇w, x
|x|
〉 = ∂rv

∣∣∣
ext

on ∂B1/2 〈a∇v
∣∣∣
int
,
x

|x|
〉 = 0 on ∂B1/2.

This is consistent with the fact that v is constant on B1/2. It is not difficult to see that

∆v = 0 in R3 \B1/2 and that v ∈ W 1(R3) (by Proposition 2). Since
∫

B1/2

wn = 0, it

follows that and
∫

B1/2

w = 0. Lemma 3 (stated below) now implies that v = 0 and

w = 0. However, this contradicts the fact that ‖v‖L2(B5) = limn→∞ ‖vn‖L2(B5) = 1.
�

In the proof of Lemma 2 we used the following result, which was established in
[16, Lemma 2].

Lemma 3. Let a be a real, symmetric, positive definite matrix valued function defined
on a connected bounded smooth domain D of R3. There exists no nonzero solution
(v, w) in W 1(R3)×H1

] (D) of the system
∆v = 0 in R3 \D ,

div(a∇v) = 0 in D ,

div(a∇w) = 0 in D ,

and


a∇v · ν

∣∣∣
int

= 0 on ∂D,

∂v

∂ν

∣∣∣
ext

− a∇w · ν = 0 on ∂D.

(2.20)

Here ν denotes the outward normal unit vector on ∂D.

The proof of Lemma 3 goes as follows:

Proof. Since v ∈W 1(R3 \D), it follows from (2.20) that∫
R3\D

|∇v|2 = −
∫

∂D

∂v

∂ν

∣∣∣
ext
v̄ = −

∫
∂D

(a∇w · ν)v̄. (2.21)

We also deduce from (2.20) that∫
∂D

(a∇w · ν)v̄ =
∫

D

a∇w∇v̄ = 0. (2.22)

For the latter, we have used that v is constant in D. A combination of (2.21) and
(2.22) yields v = 0 in R3 \D. It follows from the continuity of v across ∂D that

v = 0 in R3 and w = 0 in D.
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�

2.2.3 New estimates in the 2d low frequency regime

In this section, we establish new estimates for the Helmholtz equation in the 2d
low frequency regime. These estimates will play an important role for the analysis of
cloaking for the full wave equation in 2d. The analogue of Proposition 5 is

Proposition 6. Let a be a real, symmetric matrix valued function, and let σ be a
complex function, both defined on B1/2. Assume that

1
Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2, 1

Λ
≤ <(σ) ≤ Λ, and 0 ≤ =(σ) ≤ Λ ,

for some positive constant Λ. Given 0 < k < 1, 0 < λ < 1, 0 < ε < 1, let Vε ∈
H1(B4 \ B̄1) be such that ∆Vε + ε2k2Vε = 0 in B4 \ B1, Vε = 0 on ∂B1, and let
vε ∈ H1

loc
(R2) be the unique outgoing solution of the system div(A∇vε) + ε2k2Σεvε = 0 in R2 \ ∂B1 ,[

∂rvε

]
= ∂rVε on ∂B1 ,

with

A ,Σε =



I, 1 in R2 \B1 ,

I, 1 + i/(εkλ) in B1 \B1/2 ,

a,
1
ε2
σ in B1/2 .

There exist two positive constants c and C, depending only on Λ, such that if εk < c,
εk| ln(εk)|2 < cλ, and k2| ln(εk)|2 < c, then

‖vε‖L2(B5) ≤ C| ln(εk)|2‖Vε‖H1(B4\B1)

and

‖vε‖L2(B2β\Bβ) ≤ Cβ|H(1)
0 (εkβ)|| ln(εk)|‖Vε‖H1(B4\B1) for all β > 1.

The constants c and C depend on the “range” constant Λ, but are independent of Vε,
k, ε, λ, a, σ and β.

Proposition 6 is a consequence of Lemma 5 (and Lemma 4) below. The proof of
Proposition 6 is similar to the one of Proposition 5, where instead of Lemma 2, we
use Lemma 5. The details of this proof are left for the reader.

The following result plays an important role in 2d low frequency regime.

Lemma 4. Let a be a real, symmetric matrix valued function defined on B1/2. Assume
that

1
Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2,

for some positive constant Λ. Given f ∈ L2(R2) with supp f ⊂ B4, let vε ∈ H1
loc

(R2)
be the outgoing solution of the Helmholtz equation

div(A∇vε) + ε2vε = f

14



with A = I for x ∈ R2 \ B1/2 and A = a in B1/2. There exist constants c and C
depending only on Λ such that 0 < ε < c implies

‖vε‖L2(B5) ≤ C| ln ε|2‖f‖L2 . (2.23)

Remark 5. Lemma 4 is obvious if a = I; the proof follows immediately from the
behavior of the fundamental solution of the Helmholtz equation in 2d. In fact, in this
case we have a better estimate:

‖vε‖L2(B5) ≤ C| ln ε|‖f‖L2 .

We believe that this estimate also holds in the setting of Lemma 4, however, we do
not know how to prove it. The weaker estimate in Lemma 4 is sufficient to obtain our
desired cloaking estimate in the 2d case.

We are ready to give

Proof of Lemma 4. We proceed by contradiction. Suppose there exist a sequence
εn → 0, a sequence (fn) ⊂ L2(R2), and a sequence (an) of symmetric matrices such
that supp fn ⊂ B4, (1/Λ)|ξ|2 ≤ 〈anξ, ξ〉 ≤ Λ|ξ|2,

lim
n→∞

| ln εn|2‖fn‖L2 = 0, and ‖vn‖L2(B5) = 1. (2.24)

Here vn ∈ H1
loc

(R2) is the unique outgoing solution to the equation

div(An∇vn) + ε2nvn = fn,

with An = I for x ∈ R2 \ B1/2 and An = an otherwise. Multiplying this equation by
v̄n and integrating the obtained expression on B5, we have∫

B5

〈An∇vn,∇vn〉 − ε2n

∫
B5

|vn|2 = −
∫

B5

fv̄n +
∫

∂B5

∂vn

∂r
v̄n. (2.25)

Using interior elliptic estimates in combination with (2.24), and applying Proposi-
tion 2, we obtain

‖vn‖H1(BR\B9/2) ≤ CR for R > 9/2. (2.26)

Thus it follows from (2.24) and (2.25) that∫
B5

|∇vn|2 ≤ C. (2.27)

A combination of (2.26) and (2.27) yields

‖vn‖H1(BR) ≤ CR for all R > 0.

From the second part of Proposition 2 and Proposition 4, it now follows that there
exists a symmetric matrix a ∈ M(α, β,B1/2), for some 0 < α < β < +∞, such that
(after extraction of a subsequence) vn → v in L2

loc
(R2) where v ∈W 1(R2) is a solution

to the equation
div(A∇v) = 0,

15



Here A = I for x ∈ R2 \ B1/2 and A = a otherwise. It is clear that v = α for some
(complex) constant α. Since ∆vn + ε2nvn = 0 in R2 \B4, and vn satisfies the outgoing
radiation condition, vn can be represented as

vn(x) =
∞∑

l=−∞

al,nH
(1)
l (εn|x|)eilθ |x| > 4,

where H(1)
l is the Hankel function of the first kind of order l. This implies

vn = v0,n + v1,n |x| > 4. (2.28)

where

v0,n = a0,nH
(1)
0 (εn|x|), and v1,n =

∑
l 6=0

al,nH
(1)
l (εn|x|)eilθ, |x| > 4. (2.29)

We recall that, see e.g. [21],

lim
r→0

1
| ln r|

H
(1)
0 (r) =

2
iπ
, |H(1)

0 | ↘ on R+, lim
r→0

r
dH

(1)
0 (r)
dr

= − 2
iπ
, (2.30)

lim
r→∞

√
πr

2
e−i(r−π/4)H

(1)
0 (r) = 1, (2.31)

and ∫
∂Bt

|H(1)
l |2 ≤

∫
∂Bs

|H(1)
l |2, 0 < s < t, (2.32)

for all l 6= 0. By orthogonality, it is clear that for any R > 4,

‖v0,n‖H1(BR\B4) + ‖v1,n‖H1(BR\B4) ≤ C‖vn‖H1(BR\B4).

Hence, after extraction of a subsequence, we may assume that v0,n → α0 in L2
loc

(R2)
and v1,n → v1 in L2

loc
(R2) for some (complex) constant α0 and some v1 ∈ L2

loc
(R2).

Therefore,
α = v = α0 + v1 |x| > 4.

This implies that v1 is constant on {|x| > 4}. From (2.32) we deduce that∫
Bt+1\Bt

|v1|2 ≤
∫

Bs+1\Bs

|v1|2, 4 < s < t,

and so v1 must be equal to 0. Thus v0,n → v = α in L2
loc

(R2 \ B4). From (2.29) and
(2.30), we now have

lim
n→∞

|a0,n|| ln εn| =
π

2
|α|. (2.33)

On the other hand, the outgoing radiation condition implies

lim
R→∞

εn

∫
∂BR

|vn|2 ≤
∫

R2
|fn||vn|. (2.34)

By orthogonality and (2.31),

lim
R→∞

εn

∫
∂BR

|vn|2 ≥ lim
R→∞

εn

∫
∂BR

|v0,n|2 = lim
R→∞

2πεnR|a0,nH
(1)
0 (εnR)|2 = 4|a0,n|2.

(2.35)

16



Since ‖vn‖L2(B5) = 1 and supp f ⊂ B4,∫
R2
|fn||vn| ≤ C‖fn‖L2 . (2.36)

A combination of (2.24), (2.33), (2.34), (2.35), and (2.36) yields that v = α = 0, which
in turn contradicts the fact that ‖vn‖L2(B5) = 1. This completes the proof of (2.23).
�

Based on Lemma 4 we now state and prove the 2d analogue of Lemma 2.

Lemma 5. Assume that
1
Λ
|ξ|2 ≤ 〈aξ, ξ〉 ≤ Λ|ξ|2, 1

Λ
≤ <(σ) ≤ Λ, and 0 ≤ =(σ) ≤ Λ ,

for some positive constant Λ. Let f ∈ L2(R2) with supp f ⊂ B4 \ B1, and let vε ∈
H1

loc
(R2) be the unique outgoing solution of

div(A∇vε) + ε2k2Σεvε = f in R2 ,

where A and Σε are as in Proposition 6. There exist two positive constants c and C,
depending only on Λ, such that if 0 < εk < c, εk| ln(εk)|2 < cλ, and k2| ln(εk)|2 < c
then

‖vε‖L2(B5) ≤ C| ln(εk)|2‖f‖L2 (2.37)

and

‖vε‖L2(B2β\Bβ) ≤ Cβ|H(1)
0 (εkβ)|| ln(εk)|‖Vε‖H1(B4\B1) for all β > 1. (2.38)

The constants c and C depend on the “range” constant Λ but are otherwise independent
of a, σ, f , k, ε, λ, and β.

Proof. We have

div(A∇vε) + ε2k2vε = f + ε2k2vε − ε2k2Σεvε .

From Lemma 4, we deduce that

‖vε‖L2(B5) ≤ C| ln(kε)|2
(
‖f‖L2 + ε2k2‖vε‖L2(B5) +

kε

λ
‖vε‖L2(B5) + k2‖vε‖L2(B5)

)
.

By selecting c sufficiently small, and using the facts that ε2k2| ln(εk)|2 ≤ c, εk| ln(εk)|2 ≤
cλ, and k2| ln(εk)|2 ≤ c, the last three terms on the right hand side may be absorbed
by (half) the left hand side, and we arrive at the first estimate (2.37).

The second estimate (2.38) follows from a combination of (2.37) and Proposition 2.
�

3 Proof of the main results

Let uε be the unique solution of the wave equation
Σ1,ε∂

2
ttuε − div(Aε∇uε) + Σ2,ε∂tuε = f in R+ × Rd,

uε(t = 0) = u0 in Rd,

∂tuε(t = 0) = u1 in Rd,

(3.1)

17



where Aε,Σ1,ε,Σ2,ε, 0 < ε < 1, are time independent and defined as follows,

Aε,Σ1,ε,Σ2,ε =


I, 1, 0 in R3 \Bε,

I, 1, 1/ε2+γ in Bε \Bε/2,

F−1
ε ∗a, F

−1
ε ∗σ, 0 in Bε/2,

with a, σ satisfying (1.5). By direct computation, Ac,Σ1,c,Σ2,c = Fε∗Aε, Fε∗Σ1,ε, Fε∗Σ2,ε.
Hence, using the invariance of the wave equation under change of variables, and the
fact that u0, u1, and f vanish for |x| < 2, we have

uc(t, x) = uε(t, F−1
ε (x)),

and so
uc(t, x) = uε(t, x) for x ∈ Rd \B2.

The main theorems, Theorem 1 and Theorem 2, are now consequences of the following
results.

Theorem 3. Let d = 3 and γ > 0. Given R > 2, there exists a positive constant C
depending only on Λ, γ, and R, such that

sup
t>0

‖uε(t, ·)− u(t, ·)‖L2(BR\B2) ≤ C ε
(
‖f‖+ ‖u0‖+ ‖u1‖

)
,

where u is the solution to (1.3).

Theorem 4. Let d = 2 and γ > 0. Given R > 2, there exists a positive constant C
depending only on Λ, γ, and R, such that

sup
t>0

‖uε(t, ·)− u(t, ·)‖L2(BR\B2) ≤
C

| ln ε|

(
‖f‖+ ‖u0‖+ ‖u1‖

)
,

where u is the solution to (1.3).

3.1 Proof of Theorem 3

We split uε − u into two parts. To this end, consider ũε ∈ H1
loc

(R+;H1(R3)),
uniquely determined by

∂2
ttũε −∆ũε = f in R+ ×

(
R3 \ B̄ε

)
,

ũε = 0 in R+ ×Bε,

ũε(t = 0) = u0 in R3,

∂tũε(t = 0) = u1 in R3,

and set  vε = ũε − u,

wε = uε − ũε.
(3.2)
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We proceed to show that

sup
t>0

‖vε(t, ·)‖L2(BR\B2) ≤ CεData, (3.3)

and
sup
t>0

‖wε(t, ·)‖L2(BR\B2) ≤ CεData, (3.4)

where
Data = ‖f‖+ ‖u0‖+ ‖u1‖.

Here and in the following, C denotes a positive constant depending only on Λ, γ, and
R. Since uε − u = vε +wε, the inequalities (3.3) and (3.4) are sufficient to obtain the
estimate of Theorem 3.

Step 1: Proof of (3.3). From the definition of vε in (3.2), we have
∂2

ttvε −∆vε = 0 in R+ ×
(
R3 \ B̄ε

)
,

vε = −u on R+ × ∂Bε,

vε(t = 0) = ∂tvε(t = 0) = 0 .

Let v̂ε(k, x) denote the Fourier Transform (in time) of vε(t, x). In this paper, by the
Fourier Transform of a function defined on [0,∞), we mean the Fourier Transform
of the extension by 0 for negative time. We claim that v̂ε(k, ·) satisfies the outgoing
radiation condition. To see this, let φ ∈ C∞(R3) be such that φ(x) = 0 on B1 and
φ(x) = 1 for |x| > 2. Set ξ = ũε − uφ. We have

∂2
ttξ −∆ξ = u∆φ+ 2∇u∇φ in R+ ×

(
R3 \ B̄ε

)
,

ξ = 0 on R+ × ∂Bε,

ξ(t = 0) = ∂tξ(t = 0) = 0 ,

for ε < 1. Applying Huyghen’s principle and Theorem A2, we conclude that ξ̂(k, ·)
satisfies the outgoing radiation condition. Since v̂ε(k, x) = ξ̂(k, x) for |x| > 2, v̂ε(k, ·)
also satisfies the outgoing radiation condition. Thus v̂ε(k, ·) ∈ H1

loc
(R3 \ Bε) is the

unique outgoing solution to ∆v̂ε(k, ·) + k2v̂ε(k, ·) = 0 in R3 \ B̄ε,

v̂ε(k, ·) = −û(k, ·) on ∂Bε,

for almost all k > 0. Set
V̂ε(k, x) = v̂ε(k, εx).

It follows that  ∆V̂ε(k, ·) + k2ε2V̂ε(k, ·) = 0 in R3 \ B̄1,

V̂ε(k, ·) = −û(k, ε·) on ∂B1,

for almost all k > 0. Applying propositions 1 and 2, we have

ε

∫
BR/ε\B2/ε

|V̂ε(k, ·)|2 ≤ C‖û(k, ε·)‖2H1(∂B1)
for k > 0, (3.5)
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and ∫
BR\B1

(
|∇V̂ε(k, x)|2 + |V̂ε(k, x)|2

)
dx ≤ C‖û(k, ε·)‖2H1(∂B1)

for k > 0. (3.6)

Let û(k, ·) be the Fourier Transform (in time) of u. Since u(·, x) ∈ L1(R+) (due to
Huyghen’s principle), we have

û(k, x) =
1√
2π

∫ ∞

0

eitku(t, x) dt. (3.7)

As a consequence of (3.7) and the fact that u(t = 0, x) = ∂tu(t = 0, x) = 0 for x ∈ B1,

(1 + k2)
(
|û(k, x)|+ |∇û(k, x)|

)

≤
∫ ∞

0

(
|u(t, x)|+ |∂ttu(t, x)|+ |∇u(t, x)|+ |∂tt∇u(t, x)|

)
dt for x ∈ B1.

This implies

(1 + k2)
(
|û(k, x)|+ |∇û(k, x)|

)
≤ CData for x ∈ B1. (3.8)

It follows from (3.5), (3.6), and (3.8) that

ε

∫
BR/ε\B2/ε

|V̂ε(k, ·)|2 ≤
C

1 + k4
Data2 for k > 0, (3.9)

and ∫
BR\B1

(
|∇V̂ε(k, x)|2 + |V̂ε(k, x)|2

)
dx ≤ C

1 + k4
Data2. (3.10)

This implies
√
ε

∫ ∞

0

‖V̂ε(k, ·)‖L2(BR/ε\B2/ε) dk ≤ CData,

and by a change of variable,∫ ∞

0

‖v̂ε(k, ·)‖L1(BR\B2) dk ≤ C

∫ ∞

0

‖v̂ε(k, ·)‖L2(BR\B2) dk ≤ CεData. (3.11)

Hence v̂(·, x) ∈ L1(R+) for almost all x ∈ R3, and by the inversion formula

vε(t, x) = 2<
{ 1√

2π

∫ ∞

0

v̂ε(k, x)e−ikt dk
}
,

we obtain 4

sup
t>0

‖vε(t, ·)‖L2(BR\B2) ≤ CεData.

Step 2: Proof of (3.4). From the definition of wε in (3.2), we have
Σ1,ε∂

2
ttwε − div(Aε∇wε) + Σ2,ε∂twε = 0 in R+ × (R3 \ ∂Bε),

[wε] = 0 and
[
∂rwε

]
= −∂rũε

∣∣∣
ext

= −∂r(vε + u)
∣∣∣
ext

on R+ × ∂Bε,

wε(t = 0) = ∂twε(t = 0) = 0.

4Using the fact that ‖
R ∞
0

φ(k) dk‖L2 ≤
R ∞
0
‖φ(k)‖L2 dk.
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Let ŵε(·, x) denote the Fourier Transform of wε(·, x). We have ŵε = (ûε − û) − v̂ε.
By Theorem A2, v̂ε(k, ·) satisfies the outgoing radiation condition. We claim that
(ûε−û)(k, ·) also satisfies the outgoing radiation condition. To see this, let φ ∈ C∞(R3)
be such that φ(x) = 0 on B1 and φ(x) = 1 for |x| > 2. Set ξ = uε − uφ. We have Σ1,ε∂

2
ttξ − div

(
Aε∇ξ

)
+ Σ2,ε∂tξ = u∆φ+ 2∇u∇φ in R+ × R3,

ξ(t = 0) = ∂tξ(t = 0) = 0 in R3,
(3.12)

for ε < 1. Using Huyghen’s principle and Theorem A1, we obtain that ξ̂(k, ·) satisfies
the outgoing radiation condition. Since ξ̂(k, x) = ûε(k, x) − û(k, x) for |x| > 2, the
claim is proved. As a consequence ŵε(k, ·) satisfies the outgoing radiation condition.
It follows that ŵε(k, ·) ∈ H1

loc
(R3) is the unique outgoing solution to

div(Aε∇ŵε(k, ·)) + Σεk
2ŵε(k, ·) = 0 in R3 \ ∂Bε,[

∂rŵε(k, ·)
]

= −∂r(v̂ε + û)(k, ·)
∣∣∣
ext

on ∂Bε,

for almost all k > 0. Here
Σε = Σ1,ε +

i

k
Σ2,ε.

Define Ŵε(k, x) = ŵε(k, εx) and Ûε(k, x) = û(k, εx). It follows that Ŵε(k, ·) ∈
H1

loc
(R3) is the unique outgoing solution of

div(Aε(εx)∇Ŵε(k, ·)) + ε2k2Σε(εx)Ŵε(k, ·) = 0 in R3 \ ∂B1,[
∂rŴε(k, ·)

]
= −∂rV̂ε(k, ·)− ∂rÛε(k, ·)

∣∣∣
ext

on ∂B1,

for almost all k > 0. From (3.8), we have∫
B4

(
|∇Ûε(k, x)|2 + |Ûε(k, x)|2

)
dx ≤ C

1 + k4
Data2, (3.13)

for ε < 1/4. Using (3.10) and (3.13) in combination with Proposition 3, we obtain

ε

∫
BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤
C

1 + k4
Data2 for k ≥ εγ ,

and

ε

∫
BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤
Cε2γ

k2
Data2 for cmin{ε1/2, εγ} ≤ k ≤ εγ .

Using (3.10) and (3.13) in combination with Proposition 5, we obtain

ε

∫
BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤ CData2 for 0 < k ≤ cmin{ε1/2, εγ}.
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We therefore have

√
ε

∫ ∞

0

‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk

=
( ∫ ∞

εγ

+
∫ εγ

c min{ε1/2,εγ}
+

∫ c min{ε1/2,εγ}

0

)√
ε‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk

≤ C
(
Data+Data εγ

∫ εγ

c min{ε1/2,εγ}

1
k

+Datamin{ε1/2, εγ}
)
.

Since γ > 0, this implies

√
ε

∫ ∞

0

‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk ≤ Data,

and by a change of variables,∫ ∞

0

‖ŵε(k, ·)‖L2(BR\B2) dk ≤ CεData.

Hence ŵε(·, x) ∈ L1(R+) for almost all x, and due to the inversion formula

wε(t, x) = 2<
{ 1√

2π

∫ ∞

0

ŵε(k, x)e−ikt dk
}
,

we conclude that
sup
t>0

‖wε(t, ·)‖L2(BR\B2) ≤ CεData.

�

3.2 Proof of Theorem 4

We follow the strategy used in the proof of Theorem 3. We split uε − u into two
parts. To this end, consider ũε ∈ H1

loc
(R+,H

1(R2)) uniquely determined by

∂2
ttũε −∆ũε = f in R+ × (R2 \ B̄ε),

ũε = 0 in R+ ×Bε,

ũε(t = 0) = u0 in R2,

∂tũε(t = 0) = u1 in R2,

and set  vε = ũε − u,

wε = uε − ũε.
(3.14)

We proceed to show that

sup
t>0

‖vε(t, ·)‖L2(BR\B2) ≤
C

| ln ε|
Data (3.15)
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and
sup
t>0

‖wε(t, ·)‖L2(BR\B2) ≤
C

| ln ε|
Data, (3.16)

where
Data = ‖f‖+ ‖u0‖+ ‖u1‖.

Here and in the following, C denotes a positive constant depending only on Λ, γ, and
R. Since uε − u = vε + wε, the inequalities (3.15) and (3.16) are sufficient to obtain
the estimate of Theorem 4.

Step 1: Proof of (3.15). From the definition of vε in (3.14), we have
∂2

ttvε −∆vε = 0 in R+ × (R2 \ B̄ε),

vε = −u on R+ × ∂Bε,

vε(t = 0) = ∂tvε(t = 0) = 0 .

Let v̂ε(k, x) be the Fourier Transform of vε(·, x) with respect to time. We claim that
v̂ε(k, ·) satisfies the outgoing radiation condition. To see this, let φ ∈ C∞(R2) be such
that φ(x) = 0 on B1 and φ(x) = 1 for |x| > 2. Set ξ = ũε − uφ. We have

∂2
ttξ −∆ξ = u∆φ+ 2∇u∇φ in R+ × (R2 \ B̄ε),

ξ = 0 on R+ × ∂Bε,

ξ(t = 0) = ∂tξ(t = 0) = 0 ,

for ε < 1. Applying theorems A2 and B1, we conclude that ξ̂(k, ·) satisfies the outgoing
radiation condition. Since v̂ε(k, x) = ξ̂(k, x) for |x| > 2, v̂ε(k, ·) also satisfies the
outgoing radiation condition. Thus v̂ε(k, ·) ∈ H1

loc
(R2 \ Bε) is the unique outgoing

solution to  ∆v̂ε(k, ·) + k2v̂ε(k, ·) = 0 in R2 \ B̄ε,

v̂ε(k, ·) = −û(k, ·) on ∂Bε,

for almost all k > 0. Here û is the Fourier Transform of u with respect to time. Set

V̂ε(k, x) = v̂ε(k, εx).

It follows that V̂ε(k, ·) ∈ H1
loc

(R2 \B1) is the unique outgoing solution to ∆V̂ε(k, ·) + ε2k2V̂ε(k, ·) = 0 in R2 \ B̄1,

V̂ε(k, ·) = −û(k, ε·) on ∂B1,

for almost all k > 0. Applying propositions 1 and 2, we have

ε2
∫

BR/ε\B2/ε

|V̂ε(k, ·)|2 ≤ Cε‖û(k, ε·)‖2H1(∂B1)
for k ≥ 1/(2ε), (3.17)

ε2
∫

BR/ε\B2/ε

|V̂ε(k, ·)|2 ≤
C|H(0)

1 (k)|2

| ln(εk)|2
‖û(k, ε·)‖2H1/2(∂B1)

for 0 < k ≤ 1/(2ε),

(3.18)
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and ∫
BR\B1

(
|∇V̂ε(k, x)|2 + |V̂ε(k, x)|2

)
dx ≤ C‖û(k, ε·)‖2H1(∂B1)

, (3.19)

for k > 0. By Placherel’s theorem, we have∫ ∞

0

(1 + k2)‖û(k, ·)‖2H3(B1)
dk ≤

∫ ∞

0

(
‖u(t, ·)‖2H3(B1)

+ ‖∂tu(t, ·)‖2H3(B1)

)
dt,

since u(t = 0, x) = 0 for x ∈ B1. Applying Theorem B1 (in the appendix), we obtain∫ ∞

0

(1 + k2)‖û(k, ·)‖2W 1,∞(B1)
≤ CData2. (3.20)

A combination of (3.17), (3.18), and (3.20) yields

ε

∫ ∞

0

‖V̂ε(k, ·)‖L2(BR/ε\B2/ε) dk ≤
CData

| ln ε|
. (3.21)

Here we use the fact that

|H(1)
0 (k)|

| ln(εk)|
≤ C

| ln ε|
(| ln k|+ 1) , 0 < k < 1/(2ε), (3.22)

which follows from

|H(1)
0 (k)|

| ln(εk)|
≤ C


| ln k|+ 1
| ln ε|

if 0 < k <
1

2
√
ε

ε1/4 if
1

2
√
ε
< k <

1
2ε
.

After a change of variables, (3.21) yields∫ ∞

0

‖v̂ε(k, ·)‖L2(BR\B2) dk ≤
CData

| ln ε|
.

Hence v̂(·, x) ∈ L1(R+) for almost all x ∈ R2, and by the inversion formula

vε(t, x) = 2<
{ 1√

2π

∫ ∞

0

v̂ε(k, x)e−ikt dk
}
,

we obtain (3.15).

Step 2: Proof of (3.16). From the definition of wε in (3.14), we have
Σ1,ε∂

2
ttwε − div(Aε∇wε) + Σ2,ε∂twε = 0 in R+ × (R2 \ ∂Bε),

[wε] = 0 and
[
∂rwε

]
= −∂rũε

∣∣∣
ext

= −∂r(vε + u)
∣∣∣
ext

on R+ × ∂Bε,

wε(t = 0) = ∂twε(t = 0) = 0.

Let ŵε(·, x) denote the Fourier Transform of wε(·, x). We have ŵε = (ûε− û)− v̂ε. By
Theorem A2, v̂ε satisfies the outgoing radiation condition. We claim that ûε − û also
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satisfies the outgoing radiation condition. To see this, let φ ∈ C∞(R2) be such that
φ(x) = 0 on B1 and φ(x) = 1 for |x| > 2. Set ξ = uε − uφ. We have Σ1,ε∂

2
ttξ − div

(
Aε∇ξ

)
+ Σ2,ε∂tξ = u∆φ+ 2∇u∇φ in R+ × R2,

ξ(t = 0) = ∂tξ(t = 0) = 0 in R2,
(3.23)

for ε < 1. Applying theorems A1 and B1, we conclude that ξ̂(k, ·) satisfies the outgoing
radiation condition. Hence the claim is proved. As a consequence ŵε(k, ·) satisfies the
outgoing radiation condition. It follows that ŵε(k, ·) ∈ H1

loc
(R2) is the unique outgoing

solution to 
div(Aε∇ŵε(k, ·)) + k2Σεŵε(k, ·) = 0 in R2 \ ∂Bε,[
∂rŵε(k, ·)

]
= −∂r(v̂ε + û)(k, ·)

∣∣∣
ext

on ∂Bε,

for almost all k > 0. Here
Σε = Σ1,ε +

i

k
Σ2,ε.

Define Ŵε(k, x) = ŵε(k, εx) and Ûε(k, x) = û(k, εx). It follows that Ŵε(k, ·) ∈
H1

loc
(R2) is the unique outgoing solution to

div(Aε(εx)∇Ŵε(k, ·)) + ε2k2Σε(εx)Ŵε(k, ·) = 0 in R2 \ ∂B1,[
∂rŴε(k, ·)

]
= −∂rV̂ε(k, ·)− ∂rÛε(k, ·)

∣∣∣
ext

on ∂B1.

We have (for ε < 1/4)∫
B4

(
|∇Ûε(k, x)|2 + |Ûε(k, x)|2

)
dx ≤ C‖û(k, ·)‖2W 1,∞(B1)

(3.24)

Using (3.19),(3.24), and Proposition 3, we obtain

ε2
∫

BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤ ε‖û(k, ·)‖2W 1,∞(B1)
for k ≥ 1/(2ε),

ε2
∫

BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤
C|H(1)

0 (k)|2

| ln(εk)|2
‖û(k, ·)‖2W 1,∞(B1)

for εγ ≤ k ≤ 1/(2ε),

and

ε2
∫

BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤
Cε2γ

k2

|H(1)
0 (k)|2

| ln(εk)|2
‖û(k, ·)‖2W 1,∞(B1)

for ε5γ/4 ≤ k ≤ εγ .

Using (3.19), (3.24), and Proposition 6 5, we have

ε2
∫

BR/ε\B2/ε

|Ŵε(k, ·)|2 ≤ C|H(1)
0 (k)|2| ln(εk)|2‖û(k, ·)‖2W 1,∞(B1)

for 0 < k ≤ ε5γ/4.

5Note that k < ε5γ/4 ensures that εk < c, εk| ln(εk)|2 < cε1+γ , and k2| ln(εk)|2 < c for ε sufficiently
small, as required in Proposition 6.
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In combination with (3.20) and (3.22), this now yields

ε

∫ ∞

0

‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk

=
( ∫ ∞

1/(2ε)

+
∫ 1/(2ε)

εγ

+
∫ εγ

ε5γ/4
+

∫ ε5γ/4

0

)
ε‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk

≤ C
(√

εData+
1

| ln ε|
Data+

εγ

| ln ε|

∫ εγ

ε5γ/4

| ln k|
k

‖û(k, ·)‖W 1,∞ dk
)

+ C

∫ ε5γ/4

0

|H(1)
0 (k)|| ln(εk)|‖û(k, ·)‖W 1,∞ dk. (3.25)

Since ∫ εγ

ε5γ/4

| ln k|
k

‖û(k, ·)‖W 1,∞ ≤
( ∫ εγ

ε5γ/4

| ln k|2

k2

)1/2( ∫ εγ

ε5γ/4
‖û(k, ·)‖2W 1,∞

)1/2

≤ Cε−3γ/4Data,

and∫ ε5γ/4

0

|H(1)
0 (k)|| ln(εk)|‖û(k, ·)‖W 1,∞ ≤ C

( ∫ ε5γ/4

0

| ln k|4
)1/2( ∫ ε5γ/4

0

‖û(k, ·)‖2W 1,∞

)1/2

≤ Cεγ/2Data,

it follows from (3.25) that

ε

∫ ∞

0

‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk ≤ CData
(√

ε+
1

| ln ε|
+

εγ/4

| ln ε|
+ εγ/2

)
.

The fact that γ > 0 now implies∫ ∞

0

ε‖Ŵε(k, ·)‖L2(BR/ε\B2/ε) dk ≤
C

| ln ε|
Data,

which by a change of variables becomes∫ ∞

0

‖ŵε(k, ·)‖L2(BR\B2) dk ≤
C

| ln ε|
Data.

It follows that ŵε(·, x) ∈ L1(R+) for almost all x, and by the inversion formula

wε(t, x) = 2<
{ 1√

2π

∫ ∞

0

ŵε(k, x)e−ikt dk
}
,

we obtain (3.16). �
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A Appendix: The outgoing radiation condition

Suppose A(x) is a real, symmetric matrix valued function, and Σ1, Σ2 are two real
functions defined on Rd such that

|ξ|2/Λ ≤ 〈A(x)ξ, ξ〉 ≤ Λ|ξ|2, 1/Λ < Σ1(x) < Λ and 0 ≤ Σ2(x) < Λ, (A1)

for some positive number Λ. Furthermore suppose A,Σ1,Σ2 = I, 1, 0 outside a
bounded domain. Given any f ∈ L2(R+ × Rd) such that supp f ⊂ R+ × K for
some compact set K of Rd, let v be the unique solution of

Σ1(x)∂2
ttv(t, x)− div

(
A(x)∇v(t, x)

)
+ Σ2(x)∂tv(t, x) = f(t, x), (A2)

with
v(0, x) = ∂tv(0, x) = 0. (A3)

We first recall the following classic result, which is a direct consequence of an
energy estimate.

Lemma A1. Let A(x) be a real, symmetric matrix valued function, and let Σ1, Σ2

be two real functions defined on Rd such that (A1) holds for some Λ > 0. Given any
f ∈ L2(R+ × Rd), let v be the unique solution of (A2) and (A3). We have

‖∂tv(t, ·)‖2L2(Rd) + ‖∇v(t, ·)‖2L2(Rd) ≤ Ct

∫ t

0

∫
Rd

|f(s, x)|2 dx ds t > 0 ,

and

‖v(t, ·)‖2L2(Rd) ≤ Ct3
∫ t

0

∫
Rd

|f(s, x)|2 dx ds , t > 0 ,

Here C denotes a positive constant depending only on Λ.

Proof. Multiplying the equation (A2) by ∂tv and integrating the obtained expression
over Rd, we have

1
2
d

dt

( ∫
Rd

Σ1|∂tv|2 + 〈A∇v,∇v〉
)

+
∫

Rd

Σ2|∂tv|2 =
∫

Rd

f∂tv. (A4)

It follows from (A1) and (A3) that

‖∂tv(t, ·)‖2L2(Rd) + ‖∇v(t, ·)‖2L2(Rd) ≤ C
( ∫ t

0

( ∫
Rd

|f(x, s)|2 dx
)1/2

ds
)2

t > 0 ,

(A5)
which implies

‖∂tv(t, ·)‖2L2(Rd) + ‖∇v(t, ·)‖2L2(Rd) ≤ Ct‖f‖2L2([0,t]×Rd) t > 0 , (A6)

for some positive constant C depending only on Λ. This completes the proof of the
first inequality. The second inequality follows immediately from the first one and (A3).
�

We extend v by zero for t < 0. As a consequence of the preceeding lemma, v is
a tempered distribution for a.e. x ∈ Rd. Hence we can as usual define the Fourier
Transform v̂ of v (with respect to t) by the formula∫ ∞

−∞
v̂(k, x)φ(k) dk =

∫ ∞

0

v(t, x)φ̌(t) dt for any φ ∈ S(R) .
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Here
φ̌(t) =

1√
2π

∫ ∞

−∞
φ(k)e−ikt dk

denotes the inverse of the classical Fourier Transform

φ̂(k) =
1√
2π

∫ ∞

−∞
φ(t)eikt dt .

In this appendix we show that the Fourier Transform v̂ is indeed a function, and that
the corresponding functions v̂(k, ·) for almost all k > 0 are outgoing solutions to the
Helmholtz equation; in other words: they are solutions to the Helmholtz equation and
they satisfy the outgoing radiation condition

∂

∂r
v̂(k, ·)− ikv̂(k, ·) = o(r−

d−1
2 ) .

Theorem A1. Let A(x) be a real, symmetric matrix valued function, and let Σ1, Σ2 be
two real functions defined on Rd, such that (A1) holds for some Λ > 0, and A,Σ1,Σ2 =
I, 1, 0 outside a bounded domain. Given any f ∈ L2(R+ × Rd) such that supp f ⊂
R+ ×K, for some compact subset K of Rd, let v be the unique solution of (A2) and
(A3). For almost all k > 0, v̂(k, ·) ∈ H1

loc
(Rd) is the unique outgoing solution to the

equation

div
(
A(x)∇v̂(k, x)

)
+ k2Σ1(x)v̂(k, x) + ikΣ2(x)v̂(k, x) = −f̂(k, x) ,

with f̂(k, x) denoting the Fourier Transform of f(t, x) (extended by zero for negative
time).

Proof. Let vε be the unique solution to

Σ1(x)∂2
ttvε(t, x)− div(A(x)∇vε(t, x)) + (Σ2(x) + ε)∂tvε(t, x) = f(t, x) ,

with vε(0, x) = ∂tvε(0, x) = 0. From the analogue of (A4), we conclude that

ε2
∫ t

0

‖∂svε(s, ·)‖2L2(Rd) ds ≤ C, (A7)

where C denotes a positive constant depending only on ‖f‖L2(R+×Rd) and Λ. Set

wε = vε − v.

We have

Σ1(x)∂2
ttwε(t, x)− div(A(x)∇wε(t, x)) + (Σ2(x) + ε)∂twε(t, x) = −ε∂tv ,

with wε(0, x) = ∂twε(0, x) = 0. It follows immediately from Lemma A1 that

vε → v in L2
(
(0, T )× Rd

)
, as ε→ 0 , for any T > 0. (A8)

Let v̂ε denote the Fourier Transform of vε. From Plancherel’s Theorem and the energy
estimate (A7) we have ∫

R
k2‖v̂ε(k, ·)‖2L2(Rd) dk <∞ , (A9)
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in other words v̂ε(k, ·) ∈ L2(Rd) for almost all k. It is straightforward to check that
v̂ε(k, ·) satisfies the equation

div
(
A(x)∇v̂ε(k, x)

)
+ k2Σ1(x)v̂ε(k, x) + ikΣ2(x)v̂ε(k, x) + ikεv̂ε(k, x) = −f̂(k, x) .

(A10)
As a consequence v̂ε(k, ·) lies in H1(Rd) for almost all k, and it is the unique solution
to the equation (A10) in this space. By the limiting absorption principle (see e.g [10,
Section 4.6]) we have, for k > 0,

v̂ε(k, ·) → V̂ (k, ·) weakly in H1
loc

(Rd) , (A11)

where V̂ (k, x) ∈ H1
loc

(Rd) is the unique outgoing solution to

div(A(x)∇V̂ (k, x)) + k2Σ1(x)V̂ (k, x) + ikΣ2(x)V̂ (k, x) = −f̂(k, x) .

From (A9) and (A11) it follows that

v̂ε(k, x) converges to V̂ (k, x) in the distributional sense on R+ × Rd . (A12)

On the other hand, let φ(k, x) be a C∞ test function (in k and x) with compact
support, then∫ ∞

−∞

∫
Rd

(v̂ε(k, x)− v̂(k, x))φ(k, x) dxdk (A13)

=
∫ ∞

0

∫
Rd

(vε(t, x)− v(t, x))φ̌(t, x) dxdt

=
∫ T

0

∫
Rd

(vε(t, x)− v(t, x))φ̌(t, x) dxdt

+
∫ ∞

T

∫
Rd

(vε(t, x)− v(t, x))φ̌(t, x) dxdt .

Since supp φ̌(t, x) ⊂ R×BR for some R > 0, it follows from Lemma A1 that∫ ∞

T

∫
Rd

(vε(t, x)− v(t, x))φ̌(t, x) dxdt ≤ C

∫ ∞

T

t3/2‖φ̌(t, ·)‖L2(Rd) dt .

Since ‖φ̌(t, ·)‖L2(Rd) decreases faster than any negative power of t, it follows that, given
any δ > 0, we may choose T such that∣∣∣∣∫ ∞

T

∫
Rd

(vε(t, x)− v(t, x))φ̌(t, x) dxdt
∣∣∣∣ < δ/2 for all 0 < ε < 1.

Since vε converges to v in L2((0, T ) × Rd), according to (A8), we may now choose ε
sufficiently small that∣∣∣∣∣

∫ T

0

∫
Rd

(vε(t, x)− v(t, x))φ̌(t, x) dxdt

∣∣∣∣∣ < δ/2 .

A combination of these two estimates with (A13) yields that

v̂ε converges to v̂ in the distributional sense (with respect to k and x) .

As a consequence of this and (A12) we conclude that v̂(k, x) = V̂ (k, x) for almost all
k > 0, which completes the proof of Theorem A1. �

Using the same technique, we can also prove
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Theorem A2. Let D be a smooth, bounded, open subset of Rd. Let f ∈ L2
(
R+×(Rd\

D)
)

be such that supp f ∈ R+×K for some compact subset K of Rd\D. Suppose A(x)
is a real, symmetric matrix valued function, and Σ1, Σ2 are two real functions defined
on Rd \ D such that (A1) holds for some Λ > 0. Suppose also A,Σ1,Σ2 = I, 1, 0
outside a bounded domain and let v be the unique solution to the equation

Σ1(x)∂2
ttv(t, x)− div

(
A(x)∇v(t, x)

)
+ Σ2(x)∂tv(t, x) = f(t, x) in R+ × (Rd \ D̄) ,

v = 0 on R+ × ∂D ,

v(t = 0) = ∂tv(t = 0) = 0 .
(A14)

Let v̂(k, x) denote the Fourier Transform of v(t, x) with respect to t. Then v̂(k, ·) ∈
H1

loc
(Rd \D) is the unique outgoing solution to

div
(
A∇v̂(k, x)

)
+ k2Σ1v̂(k, x) + ikΣ2v̂(k, x) = −f̂(k, x) in Rd \ D̄ ,

for almost all k > 0.

B Appendix: Decay of solutions of the 2d wave equa-
tion

In this section, we establish the decay of solutions of the 2d wave equation which
is an ingredient in the proof of Theorem 4.

Theorem B1. Let f(t, x), u0(x), and u1(x) be smooth functions such that supp f ⊂
[0, 1]× (B4 \B2), and suppu0, suppu1 ⊂ B4 \B2. Let u be the unique solution of the
system 

∂2
ttu−∆u = f in R+ × R2,

u(t = 0) = u0 in R2,

∂tu(t = 0) = u1 in R2.

There exist a positive constant C and an integer m > 0 such that∫ ∞

0

‖u(t, ·)‖2L2(B1)
dt ≤ CData2,

where Data = ‖f‖+ ‖u0‖+ ‖u1‖, and ‖ · ‖ denotes the Cm-norm.

Proof. The theorem follows immediately from the explicit formula for solutions of
the wave equation in 2d. For the convenience of the reader, we present the proof. Let
v and w be the unique solutions to the systems

∂2
ttv −∆v = 0 in R+ × R2,

v(t = 0) = u0 in R2,

∂tv(t = 0) = u1 in R2.
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and 
∂2

ttw −∆w = f in R+ × R2,

w(t = 0) = 0 in R2,

∂tw(t = 0) = 0 in R2,

respectively. It is clear that
u = v + w. (B1)

We have

v(t, x) =
1
2

∫
B(x,t)

tu0(y) + t2u1(y) + t〈∇u0(y), y − x〉(
t2 − |y − x|2

)1/2
dy,

which implies

|v(t, x)| ≤ C
( 1
t2
‖u0‖+

1
t
‖u1‖

)
for all x ∈ B1, t > 6.

Direct integration therefore yields∫ ∞

6

‖v(t, ·)‖2L2(B1)
dt ≤ CData2. (B2)

By a standard energy estimate∫ 6

0

‖v(t, ·)‖2L2(B1)
dt ≤ CData2,

and a combination with (B2) now gives∫ ∞

0

‖v(t, ·)‖2L2(B1)
dt ≤ CData2. (B3)

On the other hand, we have

w(t, x) =
∫ t

0

w(t, x; s) ds, (B4)

where w(t, x; s) is the unique solution to the equation
∂2

ttw(t, x; s)−∆w(t, x; s) = 0 in (s,+∞)× R2,

w(t = s, x; s) = 0 in R2,

∂tw(t = s, x; s) = f(s, x) in R2.

The explicit formula for solutions to the wave equation gives

w(t, x; s) =
1
2

∫
B(x,t−s)

(t− s)2f(s, y)(
(t− s)2 − |y − x|2

)1/2
dy t > s > 0 .

For x ∈ B1 this implies

w(t, x; s) = 0 for s > 1, t > s > 0 and
|w(x, t, s)| ≤ Ct−1Data for s < 1, t > 7. (B5)

Combining (B4), (B5) and the standard energy estimate for w(t, x; s), we obtain∫ ∞

0

‖w(t, ·)‖2L2(B1)
dt ≤ CData2. (B6)

The estimate of Theorem B1 follows from (B1), (B3), and (B6). �
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