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Abstract

We establish very precise estimates for the time harmonic scattering effects of an
inhomogeneity. Our estimates are valid at all frequencies, and are independent of
the contents of the inhomogeneity. The involved constants are independent of the fre-
quency.We use these estimates to assess the effectivity of approximate electromagnetic
cloaks constructed by so called “mapping techniques”.
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1 Introduction

In this paper we study solutions to the (inhomogeneous) Helmholtz equation, i.e.,
the reduced wave equation, in all of Rd, d = 2, 3. In particular, we are interested in
scattering from an (unknown) inhomogeneity surrounded by an absorbing (“lossy”)
layer. We establish very precise L2 estimates for a large class of such scattering so-
lutions. Special emphasis is placed on the case when the incident wave is a plane
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wave. The novelty of our estimates is threefold: (1) the involved constants are inde-
pendent of frequency, (2) the estimates apply to all frequencies, and (3) the estimates
are completely independent of the material parameters inside the inhomogeneity.

Estimates of the effect of a small inhomogeneity are extremely useful in order
to assess the approximate effectiveness of the cloaking technique known as “cloaking
by mapping”. If one uses the very natural approximation scheme introduced in [8]
(for zero frequency, i.e., for the steady state conductivity problem) (see also [16] for
a similar scheme) then the estimation of the degree of cloaking amounts exactly to
the estimation of the effect of the presence of a small inhomogeneity. To obtain a
proper estimate of the degree of cloaking (in the sense that it holds irrespective of
the object being cloaked) it is important that the estimation of the effect of the small
inhomogeneity (on the voltage potential) be independent of “its contents”.

For the corresponding approximate “cloaking by mapping” approach to work at
any fixed, non-zero frequency, it is necessary to employ an absorbing (“lossy”) layer
right outside the cloaked area. If such a layer is not present then it is well known that
there exists a family of objects that will defy any attempts at cloaking (see [9] for the
case of a bounded domain, and [12] or [1] when it comes to the entire space).

Suppose the incident wave is a plane wave of frequency ω, and let vs,ε denote the
scattered field caused by an inhomogeneity of diameter ≈ ε/2, surrounded by a “lossy”
layer of thickness ≈ ε/2 with permittivity (or index of refraction) 1 + i

ωελ , 0 < λ < 1.
One of our main results (Theorem 2 of section 2.3) asserts that

a) For large frequencies, namely ω > 1/ε,

1
β

∫
Bβ\Bε

|vs,ε|2 ≤ Cεd−1 ∀β > ε .

b) For moderate to small frequencies, namely 0 < ω ≤ 1/ε,

b1) for d = 3,

1
β

∫
Bβ\Bε

|vs,ε|2 ≤ Cmax{1, λ2/(ω2ε2)}ε2 ∀β > ε ,

b2) for d = 2,

1
β

∫
B2β\Bβ

|vs,ε|2 ≤ Cmax{1, λ2/(ω2ε2)}β |H
(1)
0 (βω)|2

|H(1)
0 (εω)|2

, ∀β > ε .

This result is a follow up to Theorem 1 (section 2.3) which concerns scattering
estimates for the Helmholtz equation with a “general” source in the presence of an
appropriate “lossy” layer. Given the fact that (after the rescaling x → x/ε) the
relevant parameter in the Helmholtz equation really is ωε (not ω) it is not surprising
that our estimates degenerate as ωε goes to 0. However, it is not apriori clear exactly
how sharp they are. To address this point we show that the above estimates are
optimal in the following sense: for fixed ε and beta there exist scattered fields generated
by incidents waves (plane waves for d = 3) such that the left hand sides of b1) and b2)
are of the same order as right hand sides of b1) and b2) (see Lemma 7 and Lemma 8
in the appendix).

With the extreme choice λ = 0, using the two dimensional estimates a) and b2), we
recover the optimal estimates given in Proposition 3 of [7] for the case when the total
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field vanishes on the boundary of the circular “lossy” layer. This is consistent with
the well-known fact that an infinitely “lossy” layer effectively behaves as a sound-soft
barrier (see e.g. [5]).

For any fixed frequency ω, with ε tending to zero, one will eventually achieve
that ω is less than ε−1. Thus the appropriate estimates are b1) and b2). These two
estimates now assert that the right choice for λ is of magnitude smaller than or equal
to ε, in which case the scattering effects (measured in norm) are bounded by Cε (for
d = 3) and C/| log ε| (for d = 2). Such estimates, with λ = ε, were obtained in [9]
for a bounded domain (see also [12], where the author used a quite different “lossy”
layer, for the whole space).

For the proof of the high frequency esimate a) we use a variant of Morawetz’s
multiplier technique (see [11]) in which we take into account the effect of the “lossy”
layer. The particular way we implement the multipliers is related to the approach
taken by Perthame and Vega [15]. For the low frequency case (estimates b1) and b2))
our proof may be viewed as an extension of the proof found in [12].

We apply our scattering estimates to assess the effectivity of approximate cloaking
schemes (Theorem 3 of section 3). The approximate cloaking schemes we consider are
so-called “cloaking by mapping schemes” that include a “lossy” layer, as previously
discussed in [9]. The fact that our scattering estimates are very precise in their depen-
dence on frequency makes it possible to estimate the degree of cloaking as a function
of frequency. We only consider incident waves in the form of plane waves (although
our method can be applied in a much more general setting). From our assessment we
may conclude that it is never possible, with one fixed scheme, to obtain cloaking (by
mapping) uniformly in frequency. The obstructions to uniform cloaking are related to
low frequency “probing” and they are most severe in two dimensions. To be more pre-
cise: (1) in three dimensions it is possible to achieve cloaking uniformly in frequency,
using a fixed mapping but allowing the amount of absorption (conductivity) in the
“lossy” layer to depend on frequency (becoming unbounded as ω → 0); (2) in two
dimension a prescribed level of cloaking will require both a mapping and an amount
of absorption (conductivity) that depend on frequency (as ω → 0).

The approach to cloaking based on change of variables was introduced by Greenleaf-
Lassas-Uhlmann [2], Pendry-Schurig-Smith [14], and Leonard [10]. Their “transforma-
tion optics” schemes use a singular change of coordinates which blows up a point to a
cloaked region. Although this approach is excellent in many aspects, it has the defect
that one needs to work with a singular structure. This gives difficulties in practice as
well as in theory, see e.g., [3] and [18]. The reader can find a survey on cloaking in
[4]. The approximate cloaking schemes we consider represent a natural regularization
of these singular schemes, obtained from a change of variables that tranforms a small
ball, with a thin “lossy” layer, to a unit-size cloaked region, surrounded by a lossy
layer (as in [9]).

2 Scattering estimates

As already mentioned, our analysis is significantly different, depending on whether
the frequence ω is smaller than or larger than the reciprocal diameter of the scatter-
ing inhomogeneity. We start by considering the case in which ω is larger than the
reciprocal diameter.
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2.1 The high frequency case

2.1.1 Preliminaries

In this section we establish two lemmas that are crucial for the proof of our scatter-
ing estimates. These lemmas are localized versions of results already derived in [15].
In order to state and prove the two lemmas we shall need some convenient notation.
We denote r = |x|, and er = x/|x|. We use v′ synonymously with vr = ∂

∂rv, and
define ∇∂Brv := ∇v− ervr, div∂Br F := divF − ∂r(er ·F ), where Br denotes the ball
of radius r. < signifies the real part of the associated expression, and = its imaginary
part. We shall repeatedly use that∫

BR\Bα

u =
∫ R

α

∫
∂B1

u(rσ)dσrd−1dr ,

and the latter integral we shall for shorthand often write∫ R

α

∫
∂B1

rd−1u ,

implicitly implying that we think of the function u(x) = u(rσ) as a function of the
“two” variables (r, σ) ∈ R × ∂B1. Our first lemma establishes a very useful integral
identity.

Lemma 1. Let d ≥ 2, ω > 0, 0 < α < β < R <∞, and let P and Q be two continuous
real functions defined on [α,R], with P,Q ∈ C2([α, β]) and P,Q ∈ C2([β,R]). For
any u ∈ H1

loc
(Rd), u complex valued, we then have the identity

<
( ∫

BR\Bα

(
P (r)ūr +Q(r)ū

)(
∆u+ ω2u

))

= ω2

∫
BR\Bα

(
Q(r)− d− 1

2r
P (r)− 1

2
P ′(r)

)
|u|2

+
∫

BR\Bα

(d− 1
2r

P (r)− 1
2
P ′(r)−Q(r)

)
|ur|2

+
1
2

∫
BR\Bα

(
P ′(r) +

d− 3
r

P (r)− 2Q(r)
)
|∇∂Bru|2

+
1
2

∫
BR\Bα\∂Bβ

(
Q′′(r) +

d− 1
r

Q′(r)
)
|u|2

+
1
2

∫
∂Bβ

(
Q′(b+)−Q′(b−)

)
|u|2 + F (α, u)− F (R, u) ,
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where F is defined by

F (t, u) = −ω
2

2

∫
∂Bt

P (t)|u|2 − 1
2

∫
∂Bt

P (t)|u′|2 +
1
2

∫
∂Bt

Q′(t)|u|2

− 1
2

∫
∂Bt

Q(t)(|u|2)′ + 1
2

∫
∂Bt

P (t)|∇∂Btu|2 .

Proof. We recall that
∆u = T1(u) + T2(u),

where

T1(u) =
1

rd−1
(rd−1u′)′ and ,

T2(u) = div∂Br (∇∂Bru) =
1
r2

div∂B1(∇∂B1u(r·)) =
1
r2

∆σu(r·) ,

with ∆σ = div∂B1(∇∂B1 · ) denoting the Laplace-Beltrami operator on ∂B1. In the
following computations we initially ignore terms contributed from ∂BR; of course we
account for these terms at the very end.

Step 1: We calculate

E1 := <
∫

BR\Bα

(
P (r)ūr +Q(r)ū

)
u.

Since (|u|2)′ = ūu′ + ū′u = 2<(ū′u) this becomes (modulo terms from ∂BR)

E1 =
1
2

∫ R

α

∫
∂B1

P (r)rd−1(|u|2)′ +
∫

BR\Bα

Q(r)|u|2

=− 1
2

∫ R

α

∫
∂B1

(P (r)rd−1)′|u|2 − 1
2
P (α)αd−1

∫
∂B1

|u|2(ασ) +
∫

BR\Bα

Q(r)|u|2 .

A simple computation therefore gives

E1 =
∫

BR\Bα

(
Q(r)− d− 1

2r
P (r)− 1

2
P ′(r)

)
|u|2 − 1

2

∫
∂Bα

P (α)|u|2 , (2.1)

modulo terms from ∂BR.

Step 2: We calculate

E2 := <
∫

BR\Bα

P (r)ūrT1(u) .

This becomes

E2 =<
∫

BR\Bα

P (r)ū′(u′′ +
d− 1
r

u′)

=
∫

BR\Bα

d− 1
r

P (r)|u′|2 +
1
2

∫ R

α

∫
∂B1

P (r)rd−1(|u′|2)′

=
∫

BR\Bα

d− 1
r

P (r)|u′|2 − 1
2

∫ R

α

∫
∂B1

(P (r)rd−1)′|u′|2 − 1
2
P (α)αd−1

∫
∂B1

|u′|2(ασ) ,

5



and a simple computation therefore gives

E2 =
∫

BR\Bα

(d− 1
2r

P (r)− 1
2
P ′(r)

)
|u′|2 − 1

2

∫
∂Bα

P (α)|u′|2 , (2.2)

modulo terms from ∂BR.

Step 3: We calculate

E3 := <
∫

BR\Bα

Q(r)ūT1(u) .

This becomes

E3 =<
∫ R

α

∫
∂B1

Q(r)ū(rd−1u′)′

=−<
∫ R

α

∫
∂B1

(Q(r)ū)′rd−1u′ −Q(α)αd−1<
∫

∂B1

ū(ασ)u′(ασ)

=−
∫

BR\Bα

Q(r)|u′|2 − 1
2

∫ R

α

∫
∂B1

Q′(r)rd−1(|u|2)′ − 1
2

∫
∂Bα

Q(α)(|u|2)′ ,

and a simple computation therefore gives

E3 = −
∫

BR\Bα

Q(r)|u′|2 +
1
2

∫
BR\Bα\∂Bβ

(
Q′′(r) +

d− 1
r

Q′(r)
)
|u|2

+
1
2

∫
∂Bβ

(
Q′(β+)−Q′(β−)

)
|u|2 +

1
2

∫
∂Bα

Q′(α)|u|2 − 1
2

∫
∂Bα

Q(α)(|u|2)′ , (2.3)

modulo terms from ∂BR.

Step 4: We calculate

E4 := <
∫

BR\Bα

P (r)ūrT2(u) .

This becomes

E4 =<
∫ R

α

∫
∂B1

P (r)rd−3ū′∆σu = −<
∫ ∞

α

∫
∂B1

P (r)rd−3∇σū
′∇σu

=− 1
2

∫ R

α

∫
∂B1

P (r)rd−3(|∇σu|2)′

=
1
2

∫ R

α

∫
∂B1

(P (r)rd−3)′|∇σu|2 +
1
2
P (α)αd−3

∫
∂B1

|∇σu|2(ασ) ,

and a simple computation therefore gives

E4 =
1
2

∫
BR\Bα

(
P ′(r) +

d− 3
r

P (r)
)
|∇∂Bru|2 +

1
2

∫
∂Bα

P (α)|∇∂Bαu|2 , (2.4)
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modulo terms from ∂BR.

Step 5: We calculate

E5 := <
∫

BR\Bα

Q(r)ūT2(u) .

This becomes

E5 =<
∫ R

α

∫
∂B1

Q(r)rd−3ū∆σu = −
∫ R

α

∫
∂B1

Q(r)rd−3|∇σu|2 ,

and so
E5 = −

∫
BR\Bα

Q(r)|∇∂Bru|2 . (2.5)

Step 6: We now finally calculate

E := <
( ∫

BR\Bα

(
P (r)ūr +Q(r)ū

)(
∆u+ ω2u

))
.

A combination of the identities (2.1)-(2.5) yields

E = ω2

∫
BR\Bα

(
Q(r)− d− 1

2r
P (r)− 1

2
P ′(r)

)
|u|2 +

∫
BR\Bα

(d− 1
2r

P (r)− 1
2
P ′(r)

)
|u′|2

−
∫

BR\Bα

Q(r)|u′|2 +
1
2

∫
BR\Bα

(
P ′(r) +

d− 3
r

P (r)
)
|∇∂Br

u|2 −
∫

BR\Bα

Q(r)|∇∂Bru|2

+
1
2

∫
BR\Bα\∂Bβ

(
Q′′(r) +

d− 1
r

Q′(r)
)
|u|2 +

1
2

∫
∂Bβ

(
Q′(β+)−Q′(β−)

)
|u|2 + F (α, u) ,

modulo terms from ∂BR. Simplifying the expression on the right hand side and
including terms coming from ∂BR, we finally arrive at

E = ω2

∫
BR\Bα

(
Q(r)− d− 1

2r
P (r)− 1

2
P ′(r)

)
|u|2

+
∫

BR\Bα

(d− 1
2r

P (r)− 1
2
P ′(r)−Q(r)

)
|ur|2

+
1
2

∫
BR\Bα

(
P ′(r) +

d− 3
r

P (r)− 2Q(r)
)
|∇∂Br

u|2

+
1
2

∫
BR\Bα\∂Bβ

(
Q′′(r) +

d− 1
r

Q′(r)
)
|u|2

+
1
2

∫
∂Bβ

(
Q′(β+)−Q′(β−)

)
|u|2 + F (α, u)− F (R, u) ,

exactly as asserted in the statement of this lemma. �

With particular choices for the functions P and Q, we may use Lemma 1 to derive
the following extremely useful localized energy estimate.
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Lemma 2. Given β > 0 and d ≥ 2, define

P∗(r) =


2β
d− 1

if r > β ,

2r
d− 1

if 0 < r < β ,

and Q∗(r) =


β

r
if r > β ,

1 if 0 < r < β .

For any u ∈ H1
loc

(Rd), and any 0 < α < β < R <∞ , ω > 0 ,we then have

<
( ∫

BR\Bα

(
P∗(r)ūr +Q∗(r)ū

)(
∆u+ ω2u

))

≤ − 1
d− 1

∫
Bβ\Bα

(
|∇u|2 + ω2|u|2

)
+
β(3− d)

2

∫
BR\Bβ

|u|2

r3
+ F∗(α, u)− F∗(R, u) ,

where F∗ is defined as in Lemma 1, with P = P∗ and Q = Q∗.

Remark 1. The weight functions P∗ and Q∗ were used by Perthame-Vega [15] (in
combination with a limiting absorption argument) to establish high frequency estimates
for the Helmholtz equation in all of space. As mentioned earlier these choices are also
in the spirit of Morawetz and Ludwig [11].

Proof. With these particular choices of P and Q the expressions in the right hand
side of the identity in Lemma 1 become

Q∗(r)−
d− 1
2r

P∗(r)−
1
2
P ′∗(r) =


0 if r > β ,

− 1
d− 1

if 0 < r < β ,
(2.6)

d− 1
2r

P∗(r)−
1
2
P ′∗(r)−Q∗(r) =


0 if r > β ,

− 1
d− 1

if 0 < r < β ,
(2.7)

1
2

(
P ′∗(r) +

d− 3
r

P∗(r)− 2Q∗(r)
)

=


− 2β
r(d− 1)

if r > β ,

− 1
d− 1

if 0 < r < β ,

(2.8)

Q′′
∗(r) +

d− 1
r

Q′
∗(r) =


β(3− d)

r3
if r > β ,

0 if 0 < r < β ,

(2.9)

and
Q′
∗(β+)−Q′

∗(β−) = − 1
β
. (2.10)

The desired inequality now follows directly from the identity in Lemma 1 by dropping
the two negative terms

− 2β
d− 1

∫
BR\Bβ

1
r
|∇∂Br

u|2 and − 1
2β

∫
∂Bβ

|u|2

on the right hand side. �
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2.1.2 Scattering estimates for the high frequency case

We are now ready to prove a localH1 estimate for solutions to a Helmholtz equation
that models an inhomogeneity surrounded by an absorbing (“lossy”) layer in the high
frequency regime. A main feature of this estimate is that its constant is independent
of both frequency and the contents of the inhomogeneity.

Proposition 1. Let d = 2 or 3, 0 < λ < 1, and ω > ω0, for some fixed, positive ω0.
Let a be a real symmetric matrix valued function and σ be a complex function, both
defined on B1/2. Suppose a is bounded and uniformly elliptic, and suppose σ satisfies
0 ≤ ess inf =(σ) ≤ ess sup=(σ) < +∞, and 0 < ess inf <(σ) ≤ ess sup<(σ) < +∞.
Let f ∈ L2(Rd) with supp f ⊂ B4 \ B1, and let vω ∈ H1

loc
(Rd) be the unique solution

of 
div(A∇vω) + ω2Σvω = f in Rd,

∂vω

∂r = iωvω + o(r−
d−1
2 ) , as r →∞ ,

(2.11)

with

A,Σ =


I, 1 in Rd \B1 ,

I, 1 + i/(ωλ) in B1 \B1/2 ,

a, σ in B1/2 .

(2.12)

Then
1
β

∫
Bβ\B1

(
|∇vω|2 + ω2|vω|2

)
≤ C

∫
Rd

|f |2 for any β > 1 . (2.13)

The constant C depends on ω0, but is independent of a, σ, ω, β, λ, and f .

Remark 2. Estimate (2.13) is not true when Σ is a real valued function. The main ob-
servation here is that such an estimate holds in the presence of an appropriate “lossy”
layer (remember λ lies between 0 and 1). A similar phenomenon, for fixed (non-
resonant) frequency, was observed in the work of Kohn-Onofrei-Vogelius-Weinstein [9]
and Nguyen [12].

Proof. In this proof C = C(ω0) denotes a constant, which may vary from one place
to another, but which is always independent of a, σ, ω, β, λ, and f . To simplify
notation we drop the subscript ω from vω. We note that since

1
β′

∫
Bβ′\B1

(
|∇v|2 + ω2|v|2

)
≤ β

β′
1
β

∫
Bβ\B1

(
|∇v|2 + ω2|v|2

)
for 1 < β′ < β ,

it clearly suffices to prove (2.13) for all β sufficiently large. We consider first the case
d = 3. Multiplying (2.11) by v̄ and integrating the expression obtained on BR, R > 1,
we obtain ∫

∂BR

vrv̄ −
∫

BR

〈A∇v,∇v̄〉+ ω2

∫
BR

Σ|v|2 =
∫

BR

fv̄ .

By letting R go to infinity, using the outgoing radiation condition, and considering
only the imaginary part of these expressions, we get

ω lim sup
R→∞

∫
∂BR

|v|2 +
ω

λ

∫
B1\B1/2

|v|2 ≤
∫

Rd

|f ||v| . (2.14)
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It is easy to see that the lim sup on the left hand side actually is the limit as R tends
to ∞, but that is immaterial here. Since ∆v+ω2v+ iω

λ v = 0 in B1 \B1/2 and ω > ω0,
it follows from multiplication of (2.11) by φ2v̄ and integration by parts that∫

B8/10\B6/10

|∇v|2 ≤ Cω2

∫
B1\B1/2

|v|2

(the Caccioppoli inequality). Use of (2.14) now gives∫
B8/10\B6/10

|∇v|2 ≤ Cω2

∫
B1\B1/2

|v|2 ≤ Cλω

∫
Rd

|f ||v| .

Thus there exists α ∈ (6/10, 8/10) such that∫
∂Bα

|∇v|2 + ω2|v|2 ≤ Cλω

∫
Rd

|f ||v| , (2.15)

and so
ω

λ

∫
∂Bα

|v||v′| ≤ Cω

∫
Rd

|f ||v| . (2.16)

An application of Lemma 2 yields

1
2

∫
Bβ\Bα

|∇v|2 + ω2|v|2 ≤ F∗(α, v)− F∗(R, v) +
∣∣∣ ∫

Rd

f(rv̄′ + v̄)
∣∣∣ +

ω

λ

∫
B1\B1/2

|v||v′| ,

(2.17)
for any R > β > 4. Recall that

F∗(α, v) = −ω
2

2
α

∫
∂Bα

|v|2 − α

2

∫
∂Bα

|v′|2 − 1
2

∫
∂Bα

(|v|2)′ + α

2

∫
∂Bα

|∇∂Bα
v|2 .

Since

−1
2

∫
∂Bα

(|v|2)′ ≤
∫

∂Bα

|v||v′| ≤ ω2
0α

2

∫
∂Bα

|v|2 +
1

2ω2
0α

∫
∂Bα

|v′|2 ,

we may conclude

F∗(α, v) ≤ α

2

∫
∂Bα

|∇∂Bαv|2 +
(

1
2ω2

0α
− α

2

) ∫
∂Bα

|v′|2

≤ C

∫
∂Bα

|∇v|2 .

It now follows from (2.15) that

F∗(α, v) ≤ Cλω

∫
Rd

|f ||v| . (2.18)

We next estimate F∗(R, v) for R large. By definition of F we have

− F∗(R, v) =
βω2

2

∫
∂BR

|v|2 +
β

2

∫
∂BR

|v′|2 +
β

2

∫
∂BR

|v|2

R2

+
β

2

∫
∂BR

(|v|2)′

R
− β

2

∫
∂BR

|∇∂BR
v|2

≤ βω2

2

∫
∂BR

|v|2 +
β

2

∫
∂BR

|v′|2 +
β

2

∫
∂BR

|v|2

R2
+
β

2

∫
∂BR

(|v|2)′

R
.
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Using the outgoing radiation condition (v′(x) = iωv(x) + o(r−1) as r = |x| → ∞) and
the fact that v(x) = O(r−1) as r →∞, we now obtain

lim sup
R→∞

−F∗(R, v) ≤ βω2 lim sup
R→∞

∫
∂BR

|v|2 . (2.19)

It is easy to see that the lim sups on both sides actually are the limits as R tends to
∞, but that is immaterial here. A combination of (2.17), (2.18), and (2.19) (and use
of (2.14) and (2.16)) yields∫

Bβ\Bα

|∇v|2 + ω2|v|2 ≤ C

(
βω

∫
Rd

|f ||v|+ λω

∫
Rd

|f ||v|+
∫

Rd

|f ||v′|

+
∫

Rd

|f ||v|+ ω

∫
Rd

|f ||v|
)
,

or, after simplification,∫
Bβ\Bα

|∇v|2 + ω2|v|2 ≤ Cω(β + 1 + λ+
1
ω

)
∫

Rd

|f ||v|+ C

∫
Rd

|f ||v′|. (2.20)

From the fact that ω > 2, and 0 < λ < 1, it follows that∫
Bβ\Bα

|∇v|2 + ω2|v|2 ≤ Cωβ

∫
Rd

|f ||v|+ C

∫
Rd

|f ||v′| , for any β > 4 . (2.21)

Since f has support inside B4 \Bα

ω

∫
Rd

|f ||v|+
∫

Rd

|f ||v′| ≤ c

2

∫
B4\Bα

(
|∇v|2 + ω2|v|2

)
+

1
c

∫
Rd

|f |2, (2.22)

for any c > 0. By taking β = 5 in (2.21) and using (2.22) with c sufficiently small, we
now obtain ∫

B5\Bα

|∇v|2 + ω2|v|2 ≤ C

∫
Rd

|f |2 ,

and therefore
ω

∫
Rd

|f ||v|+
∫

Rd

|f ||v′| ≤ C

∫
Rd

|f |2 . (2.23)

A combination of (2.21) and (2.23) yields

1
β

∫
Bβ\Bα

(
|∇v|2 + ω2|v|2

)
≤ C

∫
Rd

|f |2 , for any β > 4 .

This verifies the lemma in the case d = 3.

The only essential difference in the case d = 2 (when compared to the case d = 3)
is the presence of the additional positive term

β(3− d)
2

∫
BR\Bβ

|v|2

r3
=
β

2

∫
BR\Bβ

|v|2

r3

on the right hand side of (2.17). We now show that this term can be absorbed by the
term ω2

∫
Bβ\Bα

|v|2 for any β sufficiently large. To this end, we note that v has the
expansion

v(x) =
∞∑

k=−∞

dkH
(1)
k (ωr)eikθ , 4 < r ,

11



where H(1)
k is the first kind Hankel function of order k. It is well-known (cf. [17]) that

r|H(1)
k (r)|2 ≤ r′|H(1)

k (r′)|2 for 0 < r′ ≤ r for any k 6= 0 ,

and that
r|H(1)

0 (r)|2 ≤ Cr′|H(1)
0 (r′)|2 for 1 < r′ ≤ r .

Consequently∫
∂Br

|v|2 = 2π
∞∑

k=−∞

|dk|2r|H(1)
k (ωr)|2 (2.24)

≤ C2π
∞∑

k=−∞

|dk|2r′|H(1)
k (ωr′)|2 = C

∫
∂Br′

|v|2

for 4 < r′ ≤ r. Based on (2.24) we estimate

β

∫
R2\Bβ

|v|2/r3 = β

∫ ∞

β

1
r3

∫
∂Br

|v|2 dr ≤ C
1
β

∫
∂Bβ

|v|2 , (2.25)

and similarly, ∫
Bβ\B4

|v|2 ≥ C−1(β − 4)
∫

∂Bβ

|v|2 . (2.26)

for any β > 4. A combination of (2.25) and (2.26) yields

β

∫
R2\Bβ

|v|2/r3 ≤ C
1
β

∫
∂Bβ

|v|2 ≤ C

β(β − 4)

∫
Bβ\B4

|v|2 ,

and for β sufficient large (that C/β(β − 4) < ω2
0/2) this gives

β

∫
R2\Bβ

|v|2/r3 ≤ ω2

2

∫
Bβ\B4

|v|2 ≤ ω2

2

∫
Bβ\Bα

|v|2 ,

since ω > ω0, and α ∈ (6/10, 8/10). We conclude that the additional term of the right
hand side of (2.17) may be absorbed by (half of) the left hand side. The rest of the
proof of (2.13) for the case d = 2 (and β sufficiently large) proceeds exactly as before.
�

2.2 The low frequency case

2.2.1 Some useful lemmas

In this section, we establish some preliminary results that will be used in the proof
of Proposition 2, i.e., in the proof of our scattering estimates for the low frequency
regime. We begin with the following

Lemma 3. Let d = 2, 3, let D be a smooth open subset of Rd with D ⊂ B1, and such
that Rd \ D̄ is connected. Suppose 0 < ω < ω0 for some sufficiently small ω0 > 0. For
f ∈ L2(Rd), with supp f ⊂ B4, and g ∈ H 1

2 (∂D), let vω ∈ H1
loc

(Rd) be a solution of
∆vω + ω2vω = f in Rd \ D̄ ,

vω = g on ∂D ,

vω satisfies the outgoing radiation condition .

(2.27)
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Then

‖vω‖H1(Bβ\D) ≤ Cβ

(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for all β ≥ 1, (2.28)

for some positive constant Cβ = C(ω0, β,D), independent of ω. Furthermore, for all
β ≥ 1 we have

‖vω‖L2(Bβ\D) ≤ Cβ
1
2

(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 3 ,

‖vω‖L2(B2β\Bβ) ≤ Cβ
(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

) |H(1)
0 (βω)|

|H(1)
0 (ω)|

for d = 2 ,
(2.29)

with C = C(ω0, D) independent of ω and β. If the data depends on ω (i.e., g = gω

and f = fω) in such a way that ‖fω‖L2(Rd) + ‖gω‖
H

1
2 (∂D)

is bounded, and fω → 0

weakly in L2(Rd), gω → 0 in L2(∂D) as ω → 0, then

lim
ω→0

‖vω‖L2(Bβ\D) = 0 for any β ≥ 1 . (2.30)

Remark 3. Statement (2.28) with f = 0 is proved in [12, Lemma 1]. Statements
(2.29), (2.30) and the inclusion of a non-trivial f are not found in [12], however, the
proof of these “extensions” follow along the lines of the proof of Lemma 1 in [12]. For
completeness we give the details here.

Proof of Lemma 3. The proof for the case d = 3 is the simplest of the two. It
can be obtained by modifying the proof for the case d = 2, which we now proceed to
give. We recall the following properties of H(1)

k , the Hankel function of the first kind
of order k, see for instance [17, page 143 and page 446],

lim
r→0

1
| ln r|

H
(1)
0 (r) =

2
iπ

, lim
r→0

r
dH

(1)
0 (r)
dr

= − 2
iπ

, (2.31)

and r|H(1)
k (r)|2, k 6= 0, is a monotonically decreasing function on R+, so that

t|H(1)
k (t)|2 ≤ s|H(1)

k (s)|2, for all 0 < s ≤ t, and any k 6= 0 . (2.32)

We first prove by contradiction that

‖vω‖L2(B5\D) ≤ C
(
‖f‖L2(R2) + ‖g‖

H
1
2 (∂D)

)
, 0 < ω < ω0 , (2.33)

for some positive constant C depending only on ω0 and D (ω0 sufficiently small).
Suppose this is not true. Then there exist a sequence ωn → 0+ and sequences fn ∈
L2(R2), with supp fn ⊂ B4, gn ∈ H

1
2 (∂D) such that

lim
n→∞

‖fn‖L2(R2) + ‖gn‖
H

1
2 (∂D)

= 0 and ‖vn‖L2(B5\D) = 1 , (2.34)

where vn ∈ H1
loc

(R2 \D) is a solution of
∆vn + ω2

nvn = fn in R2 \D ,

vn = gn on ∂D ,

vn satisfies the outgoing radiation condition .

(2.35)
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Since ∆vn +ω2
nvn = 0 in R2 \B4, and vn satisfies the outgoing radiation condition, it

follows that vn can be represented as

vn(x) =
∞∑

k=−∞

ak,nH
(1)
k (ωn|x|)eikθ |x| > 4 .

We decompose
vn = v0,n + v1,n, (2.36)

where

v0,n = a0,nH
(1)
0 (ωn|x|) and v1,n =

∑
k 6=0

ak,nH
(1)
k (ωn|x|)eikθ . (2.37)

Since {eikθ}∞k=−∞ are orthogonal in L2(∂B1) and ‖vn‖L2(B5\D) = 1, it follows from
(2.31), (2.32), and (2.37) that

|a0,n| ≤ C/| lnωn| (2.38)

and ∫
∂BR

|v1,n|2 ≤ C ∀R > 9/2 . (2.39)

In particular it follows that

‖vn‖L2(BR\D) ≤ CR for any R ≥ 1 ( not just for R = 5) . (2.40)

From (2.35)∫
B5\D

|∇vn|2 − ω2
n

∫
B5\D

|vn|2 =
∫

∂B5

∂vn

∂r
vn −

∫
∂D

∂vn

∂ν
gn −

∫
B5\D

fnvn . (2.41)

Since ∆vn + ω2
nvn = 0 in R2 \B4 it follows from elliptic regularity results that

‖vn‖L2(∂B5) + ‖∂vn

∂r
‖L2(∂B5) ≤ C‖vn‖L2(B6\B4) ≤ C .

For the last inequality we have used (2.40). It now follows that∣∣∣∣∫
∂B5

∂vn

∂r
vn

∣∣∣∣ ≤ ‖∂vn

∂r
‖L2(∂B5)‖vn‖L2(∂B5) ≤ C . (2.42)

Since ∆vn+ω2
nvn = fn in R2\D̄ (and ‖vn‖L2(B5\D) = 1) a simple variational argument

gives that

‖∂vn

∂ν
‖H−1/2(∂D) ≤ C

(
‖∇vn‖L2(B5\D) + ‖vn‖L2(B5\D) + ‖fn‖L2(B5\D)

)
≤ C

(
‖∇vn‖L2(B5\D) + 1

)
,

and so ∣∣∣∣∫
∂D

∂vn

∂ν
gn

∣∣∣∣ ≤ C
(
‖∇vn‖L2(B5\D)‖gn‖H1/2(∂D) + ‖gn‖H1/2(∂D)

)
. (2.43)
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The fact that ‖fn‖L2(B5\D) , ‖gn‖H1/2(∂D), and ‖vn‖L2(B5\D) are bounded, in combi-
nation with (2.41), (2.42) and (2.43), now yields that∫

B5\D
|∇vn|2 ≤ C , (2.44)

and so from (2.43) ∣∣∣∣∫
∂D

∂vn

∂ν
ḡn

∣∣∣∣ ≤ C . (2.45)

This last expression actually tends to zero as n → ∞, but that fact will not be
used. Since B5 could be replaced by any BR in this last argument, we may (after the
extraction of subsequences and the use of a diagonalization argument) assume that
vn → v weakly in H1

loc
(R2 \D) and that vn → v in L2

loc
(R2 \D). We next prove that∫

R2\D |∇v|2 < +∞. To that end∫
BR\D

|∇v|2 ≤ lim inf
n→∞

∫
BR\D

|∇vn|2 , (2.46)

for any R > 1, and by the equivalent of (2.41) (with 5 replaced by R)∫
BR\D

|∇vn|2 ≤ ω2
n

∫
BR\D

|vn|2 +
∫

∂BR

∣∣∣∂vn

∂r

∣∣∣|vn|

+
∣∣∣ ∫

∂D

∂vn

∂ν
gn

∣∣∣ +
∣∣∣ ∫

BR\D
fnvn

∣∣∣ .
We claim that

lim inf
n→∞

∫
BR\D

|∇vn|2 ≤ lim sup
n→∞

∫
BR\D

|∇vn|2 ≤ C , (2.47)

with C independent of R > 1. It clearly suffices to prove this for R sufficiently large,
say R > 16. Due to (2.45) (and the fact that ωn → 0+ and ‖fn‖L2 → 0) it thus
suffices to prove that

lim sup
n→∞

∫
∂BR

∣∣∣∂vn

∂r

∣∣∣|vn| ≤ C , (2.48)

with C independent of R > 16. We have∫
∂BR

∣∣∣∂vn

∂r

∣∣∣|vn| ≤
∫

∂BR

∣∣∣∂v0,n

∂r

∣∣∣|vn|+
∫

∂BR

∣∣∣∂v1,n

∂r

∣∣∣|vn| .

From (2.31) and (2.38)

lim sup
n→∞

sup
B2R\BR

|v0,n| ≤ C and lim sup
n→∞

sup
B2R\BR

R

∣∣∣∣∂v0,n

∂r

∣∣∣∣ = 0 . (2.49)

Very shortly we prove that

lim sup
n→∞

sup
B2R\BR

|v1,n|+ lim sup
n→∞

sup
B2R\BR

R|∇v1,n|) ≤ C/
√
R ∀R > 16 . (2.50)

A combination of (2.49) and (2.50) yields

lim
n→∞

∫
∂BR

∣∣∣∂v0,n

∂r

∣∣∣|vn| = 0 and lim sup
n→∞

∫
∂BR

∣∣∣∂v1,n

∂r

∣∣∣|vn| ≤ C ∀R > 16 ,
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from which (2.48) follows immediately. We now return to the proof of (2.50). For
R > 16, define VR,n(x) = v1,n(Rx/4). It follows from (2.39) that∫

B10\B2

|VR,n|2 dx ≤
16
R2

∫
B10R/4\BR/2

|v1,n|2 dx ≤ C/R . (2.51)

On the other hand, ∆v1,n + ω2
nv1,n = 0 for |x| > 4, and this implies

∆VR,n +
ω2

nR
2

16
VR,n = 0 on B10 \B2 . (2.52)

Using the standard theory of elliptic equations (and the fact that ωn → 0 as n→∞)
we deduce from (2.51) and (2.52) that

lim sup
n→∞

sup
B9\B3

|VR,n(x)|+ lim sup
n→∞

sup
B9\B3

|∇VR,n(x)| ≤ C/
√
R R > 16 .

We arrive at (2.50) by a change of variables, and this completes the proof of (2.47).

From (2.46) and (2.47) it follows that∫
R2\D

|∇v|2 < +∞ . (2.53)

Moreover, (2.34), (2.35), (2.49)-(2.50) give that v ∈ H1
loc

(R2 \D) satisfies ∆v = 0 in R2 \D,

v = 0 on ∂D,
(2.54)

sup
R2\B16

|v| ≤ C , (2.55)

and ∫
B5\D

|v|2 = 1 .

We shall now see that the existence of a solution v with these properties is impossible,
which means we have arrived at a contradiction, and therefore may conclude that the
estimate (2.33) holds. Fix φ ∈ C1(R2) such that 0 ≤ φ ≤ 1, φ = 1 if |x| ≤ 1 and φ = 0

if |x| > 2, and define
φR(x) = φ(x/R) .

Multiplying the first equation of (2.54) by v̄φR and integrating the expression obtained
on R2 \D, we obtain

0 =
∫

R2\D
∇v∇(v̄φR) =

∫
R2\D

|∇v|2φR +
∫

R2\D
v̄∇v∇φR . (2.56)

Since |∇φR| ≤ C/R and supp∇φR ⊂ B2R \BR, it follows from (2.55) that∣∣∣ ∫
R2\D

v̄∇v∇φR

∣∣∣ ≤ C
( ∫

B2R\BR

|∇v|2
) 1

2
R > 16 . (2.57)
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A combination of (2.53) and (2.57) yields

lim
R→∞

∫
R2\D

v̄∇v∇φR = 0 , (2.58)

and from the definition of φR, and (2.56). we therefore get∫
R2\D

|∇v|2 = lim
R→∞

∫
R2\B

|∇v|2φR = − lim
R→∞

∫
R2\D

v̄∇v∇φR = 0 . (2.59)

Since v = 0 on ∂D it follows that v ≡ 0. This is inconsistent with the fact that
‖v‖L2(B5\D) = 1 (and thus completes the proof of (2.33)).

We next use (2.33) to prove (2.28). We first note that the value 5 is not special, and
so in place of (2.33) we might as well have proved

‖vω‖L2(Bβ+1\D) ≤ Cβ

(
‖f‖L2(R2) + ‖g‖

H
1
2 (∂D)

)
for any β ≥ 1 .

Since ∆vω + ω2vω = 0 in Bβ+1 \B4, with 0 < ω < ω0, local elliptic regularity theory
gives

‖vω‖
H

1
2 (∂Bβ)

≤ Cβ

(
‖f‖L2(R2) + ‖g‖

H
1
2 (∂D)

)
for any β ≥ 5 .

It follows from a standard energy estimate that

‖vω‖H1(Bβ\D) ≤ Cβ

(
‖f‖L2(R2) + ‖g‖

H
1
2 (∂D)

)
for any β ≥ 5 ,

(and thus for any β ≥ 1) as asserted in (2.28). To prove (2.30), we proceed as
follows. Suppose ωn is a sequence, with ωn → 0. Since ‖fωn

‖L2(R2) + ‖gωn‖H
1
2 (∂D)

is

bounded, it follows from (2.28) (after extraction of subsequences and a diagonalization
argument) that vωn → v weakly in H1

loc
(R2 \D) and vωn → v in L2

loc
(R2 \D) along

some subsequence (also referred to as ωn). Since fωn converges to 0 weakly in L2, and
vωn |∂D = gωn converges to 0 in L2 ∆v = 0 in R2 \D ,

v = 0 on ∂D .

We also have (as in (2.53) and (2.55)) that∫
R2\D

|∇v|2 < +∞ and sup
R2\B16

|v| < +∞ ,

and so as before we arrive at v ≡ 0. In other words: any sequence vωn , ωn → 0,
contains a subsequence such that the vωn tend to 0 in L2

loc
; it immediately follows

that limω→0 vω = 0 in L2
loc

.

It remains to prove (2.29). To this end we use (2.28), (2.32) and the decomposi-
tion (2.36), noting that since (2.28) is already proven it clearly suffices to verify (2.29)
for β > 5. We have∫

B2β\Bβ

|v0,ω|2 ≤ Cβ2|a0,ω|2|H(1)
0 (ωβ)|2 ≤ Cβ2 |H

(1)
0 (ωβ)|2

|H(1)
0 (ω)|2

∫
B5\B4

|vω|2, (2.60)
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and ∫
B2β\Bβ

|v1,ω|2 ≤ 2π
∑
k 6=0

|ak,ω|2β2|H(1)
k (ωβ)|2

≤ 10πβ
∑
k 6=0

|ak,ω|2|H(1)
k (5ω)|2 ≤ β

∫
B5\B4

|vω|2 . (2.61)

Here we have used (2.32) to estimate

β|H(1)
k (ωβ)|2

|H(1)
k (5ω)|2

= 5
ωβ|H(1)

k (ωβ)|2

5ω|H(1)
k (5ω)|2

≤ 5 for β ≥ 5 .

We also note that

β ≤ Cβ2 |H
(1)
0 (ωβ)|2

|H(1)
0 (ω)|2

for all β ≥ 5 , 0 < ω < ω0 .

By a combination of this inequality with (2.60) and (2.61) we arrive at∫
B2β\Bβ

|vω|2 ≤ Cβ2 |H
(1)
0 (ωβ)|2

|H(1)
0 (ω)|2

∫
B5\B4

|vω|2 for β ≥ 5 .

Finally, using (2.28) (with β = 5) we obtain∫
B2β\Bβ

|vω|2 ≤ Cβ2 |H
(1)
0 (ωβ)|2

|H(1)
0 (ω)|2

(
‖f‖L2(R2) + ‖g‖2

H
1
2 (∂D)

)
for β ≥ 5 .

This proves (2.29) (in the case d = 2). �

Remark 4. Lemma 3 holds without the smallness assumption on ω0. In order to
verify this, it suffices to establish the estimate (2.33) for ω bounded away from zero and
infinity, since the rest of the proof is entirely independent of any smallness assumption
on ω0. This version of (2.33) follows by an argument very similar to the one presented
here. Since we shall not here need this extension, we leave the details to the reader.

The estimate (2.29) also leads to the following inequalites.

Lemma 4. Under the assumptions of Lemma 3, we have

‖vω‖H1(Bβ\D) ≤

 C(ω0, D)β
1
2

(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 3

C(ω0, D)β
(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 2 ,

for any β ≥ 1

Proof. First we prove the corresponding L2(Bβ \ D) bounds. For this purpose it
obviously suffices to consider d = 2 (the L2 estimate for d = 3 is already part of
(2.29)). Since

|H(1)
0 (ωβ)|2

|H(1)
0 (ω)|2

≤ C for β ≥ 1 , 0 < ω < ω0 ,
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(2.29) implies the estimate∫
B2β\Bβ

|vω|2 ≤ Cβ2

(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
for d = 2 and β ≥ 1 . (2.62)

Let k0 ≥ 0 be chosen so that 2−k0β ≥ 1 > 2−k0−1β. By summation (of k0 copies) of
the inequality (2.62) and (one copy) of (2.28) we now get∫

Bβ\D
|vω|2 =

k0−1∑
k=0

∫
B2−kβ

\B2−k−1β

|vω|2 +
∫

B
2−k0β

\D
|vω|2

≤ C

k0−1∑
k=0

(
2−k−1β

)2
(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
+C

(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
≤ Cβ2

(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
,

or ∫
Bβ\D

|vω|2 ≤ Cβ2

(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
for d = 2 and β ≥ 1 . (2.63)

This verifies that

‖vω‖L2(Bβ\D) ≤

 C(ω0, D)β
1
2

(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 3

C(ω0, D)β
(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 2 ,

(2.64)

for any β ≥ 1. It remains to prove that

‖∇vω‖L2(Bβ\D) ≤

 C(ω0, D)β
1
2

(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 3

C(ω0, D)β
(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
for d = 2 .

(2.65)

Let 0 ≤ φ ≤ 1 be a cut-off function, with

φ(x) = 1 for 1 < |x| < β +
1
4

and φ(x) = 0 near ∂D and for |x| > β +
1
2
,

and such that |∇φ(x)| ≤ C, with C independent of β. Multiplication of the identity
∆vω + ω2vω = f by φ2v̄ω and integration by parts gives∫

Bβ+1\D
|∇vω|2φ2 = ω2

∫
Bβ+1\D

|vω|2φ2 − 2
∫

Bβ+1\D
v̄ωφ∇vω · ∇φ−

∫
Bβ+1\D

fvω φ2 .

By use of the estimate∣∣∣2 ∫
Bβ+1\D

v̄ωφ∇vω · ∇φ
∣∣∣ ≤ 1

2

∫
Bβ+1\D

|∇vω|2φ2 + 2
∫

Bβ+1\D
|vω|2|∇φ|2

(and the bound on |∇φ|) it follows that

1
2

∫
Bβ+1\D

|∇vω|2φ2 ≤ (ω2 + C)
∫

Bβ+1\D
|vω|2 +

∫
Bβ+1\D

|f |2 .
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Together with (2.64) this immediately yields∫
Bβ\B1

|∇vω|2 ≤ C

∫
Bβ+1\D

|vω|2 +
∫

Bβ+1\D
|f |2 (2.66)

≤


Cβ

(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
for d = 3

Cβ2

(
‖f‖2

L2(Rd) + ‖g‖2

H
1
2 (∂D)

)
for d = 2 .

(2.67)

From (2.28) we already know that

‖vω‖H1(B1\D) ≤ C
(
‖f‖L2(Rd) + ‖g‖

H
1
2 (∂D)

)
,

and so the estimate (2.65) is verified. �

The following simple lemma will also be used in the proof of Proposition 2.

Lemma 5. Let D be a bounded subset of Rd with a C1 boundary. There exists a
positive constant C depending only on D such that

‖u‖2
L2(∂D) ≤ C‖u‖L2(D)‖u‖H1(D), ∀u ∈ H1(D).

Proof. Assume first that D = Rd
+ and u ∈ C1(Rd

+) with compact support. We have

|u(x′, 0)|2 = −2
∫ ∞

0

u(x′, xn)
∂u

∂xn
(x′, xn) dxn.

This implies
‖u‖2

L2(Rd
0) ≤ C‖u‖L2(Rd

+)‖∂u/∂xn‖L2(Rd
+).

The proof in the general case follows by application of a standard density argument
and use of local charts for ∂D. �

Remark 5. Lemma 5 was proved and used in [5]. Similar inequalities related to the
quantities div and curl were introduced in [6].

2.2.2 Scattering estimates for the low frequency case

We are now ready to establish the low frequency analog of Proposition 1.

Proposition 2. Let d = 2 or 3, 0 < λ < 1, and 0 < ω < ω0, for some sufficiently
small ω0 > 0. Let a be a real symmetric matrix valued function and σ be a complex
function, both defined on B1/2. Suppose a is bounded and uniformly elliptic, and
suppose σ satisfies 0 ≤ ess inf =(σ) ≤ ess sup=(σ) < +∞, and 0 < ess inf <(σ) ≤
ess sup<(σ) < +∞. Let f ∈ L2(Rd) with supp f ⊂ B4 \B1, and let vω ∈ H1

loc
(Rd) be

the unique solution of
div(A∇vω) + ω2Σvω = f in Rd,

∂vω

∂r = iωvω + o(r−
d−1
2 ) , as r →∞ ,

with

A,Σ =


I, 1 in Rd \B1 ,

I, 1 + i/(ωλ) in B1 \B1/2 ,

a, σ in B1/2 .
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Then, for all β ≥ 1,
‖vω‖L2(Bβ\B1) ≤ Cβ

1
2 max{1, λ/ω}‖f‖L2 for d = 3,

‖vω‖L2(B2β\Bβ) ≤ Cβmax{1, λ/ω}‖f‖L2
|H(1)

0 (ωβ)|
|H(1)

0 (ω)|
for d = 2,

(2.68)

with a constant C = C(ω0), independent of a, σ, f , β, ω and λ.

Proof. We first prove by contradiction that

‖vω‖L2(B5\B1) ≤ Cmax{1, λ
ω
}‖f‖L2 , 0 < ω < ω0 , (2.69)

for ω0 sufficiently small. Suppose this is not true. Then there exist {ωn}, {λn}, and
{fn}, supp fn ⊂ B4 \B1, such that ωn → 0+, max{λn

ωn
, 1}‖fn‖L2 → 0, as n→∞, and

‖vn‖L2(B5\B1) = 1. (2.70)

As in (2.40) we conclude that the inequality (2.70) implies that

‖vn‖L2(BR\B1) ≤ CR for any R > 1 . (2.71)

We have, for any 1
2 < α < 1,∫

B5\Bα

|∇vn|2 − ω2
n

∫
B5\Bα

|vn|2 −iωn

λn

∫
B1\Bα

|vn|2 (2.72)

= −
∫

B5

fnv̄n +
∫

∂B5

v′nv̄n −
∫

∂Bα

v′nv̄n .

Since
=

∫
∂B5

v′nvn = lim
R→∞

=
∫

∂BR

v′nvn = lim
R→∞

ωn

∫
∂BR

|vn|2 ≥ 0 ,

and

−=
∫

∂Bα

v′nvn = =
(
−

∫
Bα

< A∇vn,∇vn > +ω2
n

∫
Bα

Σ|vn|2
)
≥ 0 ,

for any α > 1/2, it follows from (2.70), (2.72) and the assumption about {fn } that∫
B1\Bα

|vn|2 ≤
λn

ωn

∫
Rd

|fn||vn| → 0 as n→∞ .

The convergence is uniform in 1/2 < α < 1, and so∫
B1\B1/2

|vn|2 → 0 as n→∞ . (2.73)

From ∫
B8/10\B6/10

|∇vn|2 ≤ C

∫
B1\B1/2

|vn|2 ,

(Caccioppoli’s inequality) it now follows that∫
B8/10\B6/10

|vn||∇vn| ≤ C

∫
B1\B1/2

|vn|2 → 0 .

21



As a consequence, for some αn ∈ (6/10, 8/10)∫
∂Bαn

|vn||v′n| ≤ C

∫
B1\B1/2

|vn|2 → 0 .

Due to (2.71) and elliptic regularity∣∣∣ ∫
∂B5

v′nv̄n

∣∣∣ ≤ C .

Considering the real part of (2.72) (with α = αn) and using the assumptions on fn

and vn, and (2.73) we therefore obtain∫
B5\Bαn

|∇vn|2 ≤ C ,

and so ∫
B5\B8/10

|∇vn|2 ≤ C .

On the other hand, from (2.73), as n goes to infinity,∫
B1\B8/10

|vn|2 ≤
∫

B1\B1/2

|vn|2 → 0 ,

An application of Lemma 5 gives

‖vn‖2
L2(∂B1)

≤ C‖vn‖L2(B1\B8/10)‖vn‖H1(B1\B8/10) → 0 as n→∞ .

Since ‖fn‖L2(Rd) → 0, Lemma 3 (with D = B1) now yields

lim
n→∞

‖vn‖L2(B5\B1) = 0 .

This is an obvious contradiction to the fact that ‖vn‖L2(B5\B1) = 1, and so we may
conclude that (2.69) holds. It is clear that the value 5 plays no particular role in
the above proof, in other words, we have established the analog of (2.69) with the
left hand side ‖vω‖L2(Bβ\B1) and a constant Cβ , that depends on β (for any β ≥ 1).
The proof of the estimates (2.68) now follows from (a slightly modified version of)
Lemma 3. Indeed, elliptic regularity and (2.69) gives

‖vω‖H1/2(∂B9/2)
≤ C‖vω‖L2(B5\B1) ≤ Cmax{1, λ

ω
}‖f‖L2 , 0 < ω < ω0 ,

and a slight modification of Lemma 3 (with B1 replaced by B5, D = B9/2, f = 0, and
g = vω|∂B9/2 ) now yields

‖vω‖L2(Bβ\B9/2) ≤ Cβ
1
2 max{1, λ

ω}‖f‖L2 for d = 3 ,

‖vω‖L2(B2β\Bβ) ≤ Cβmax{1, λ
ω
}‖f‖L2

|H(1)
0 (βω)|

|H(1)
0 (ω)|

for d = 2 ,

with C = C(ω0) independent of ω and β ≥ 5. A combination of these estimates with
(2.69) immediately leads to (2.68). �

The same approach that was used to derive Lemma 4 from Lemma 3 may also be
applied to Proposition 2, to arrive at the following estimates.
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Corollary 1. Under the assumptions of Proposition 2, we have

‖vω‖H1(Bβ\B1) ≤

{
C(ω0)β

1
2 max{1, λ/ω}‖f‖L2 for d = 3 ,

C(ω0)βmax{1, λ/ω}‖f‖L2 for d = 2 .

2.3 Uniform scattering estimates

By a combination of the propositions 1 and 2 we arrive at our main scattering
result.

Theorem 1. Let d = 2 or 3, 0 < λ < 1, and 0 < ω. Let a be a real symmetric
matrix valued function and σ be a complex function, both defined on B1/2. Sup-
pose a is bounded and uniformly elliptic, and suppose σ satisfies 0 ≤ ess inf =(σ) ≤
ess sup=(σ) < +∞, and 0 < ess inf <(σ) ≤ ess sup<(σ) < +∞. Let f ∈ L2(Rd) with
supp f ⊂ B4 \B1, and let vω ∈ H1

loc
(Rd) be the solution of

div(A∇vω) + ω2Σvω = f in Rd,

∂vω

∂r = iωvω + o(r−
d−1
2 ) , as r →∞ ,

with

A,Σ =


I, 1 in Rd \B1 ,

I, 1 + i/(ωλ) in B1 \B1/2 ,

a, σ in B1/2 .

For any ω0 > 0 there exists a constant C such that

a) For ω > ω0,

1
β

∫
Bβ\B1

|vω|2 ≤
C

ω2

∫
Rd

|f |2 for all β > 1 .

b) For 0 < ω ≤ ω0, and d = 3,

1
β

∫
Bβ\B1

|vω|2 ≤ Cmax{1, λ2/ω2}
∫

Rd

|f |2 for all β > 1 .

For 0 < ω ≤ ω0, and d = 2,

1
β

∫
B2β\Bβ

|vω|2 ≤ Cmax{1, λ2/ω2}β
∫

Rd

|f |2 |H
(1)
0 (ωβ)|2

|H(1)
0 (ω)|2

, for all β > 1 .

The constant C depends on ω0, but is independent of a, σ, f , β, ω and λ.

Remark 6. The low frequency estimates in b) are weaker than the high frequency
estimates in a) due to the presence of the term involving λ/ω. However, the estimates
in b) are optimal in this regard. We shall discuss the optimality of this part of the
estimates in the appendix (see also Remark 9).
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Remark 7. A direct combination of the propositions 1 and 2 yields Theorem 1 with
the proviso that ω0 > 0 be sufficiently small. However, note that the estimates in b) are
equivalent to the estimate in a) for ω bounded away from 0 and infinity. The theorem
therefore remains valid if we increase the separator ω0 between the cases a) and b),
and so it holds with any fixed separator, as formulated above. For the the remainder
of this paper we make the selection ω0 = 1.

Since the results of Proposition 1 and Corollary 1 pertain to the H1 norm we can
include derivatives in our estimates. The use of Corollary 1 also eliminates the fraction
involving Hankel functions in the low frequency, d = 2, case.

Corollary 2. Under the assumptions of Theorem 1, we have

1
β

∫
Bβ\B1

(
ω2|vω|2 + |∇vω|2

)
≤ C‖f‖2

L2 ω > 1 ,

and

1
β

∫
Bβ\B1

(
|vω|2+ |∇vω|2

)
≤

{
Cmax{1, λ2/ω2}‖f‖2

L2 for d = 3 ,

Cβmax{1, λ2/ω2}‖f‖2
L2 for d = 2 ,

0 < ω ≤ 1 .

From Theorem 1 we may deduce very precise estimates for the scattering effect of
an arbitrary object surrounded by a “lossy” layer in the case when the incident wave
is a plane wave.

Corollary 3. Let d = 2, or 3 and ω > 0. Suppose a is a real symmetric matrix
valued function which is bounded and uniformly elliptic. Suppose σ ∈ L∞(B1/2) is
a complex function with 0 ≤ ess inf =(σ) ≤ ess sup=(σ) < +∞, 0 < ess inf <(σ) ≤
ess sup<(σ) < +∞, and suppose 0 < λ < 1. Define

A =

 I if x ∈ Rd \B1/2,

a(x) otherwise,
and Σ =



1 if x ∈ Rd \B1,

1 +
i

ωλ
if x ∈ B1 \B1/2,

σ(x) otherwise.

Given η ∈ Rd, with |η| = 1, let vω be the solution of

div(A∇vω) + ω2Σvω = 0, in Rd,

of the form vω = vs + eiωx·η, with vs ∈ H1
loc

(Rd), the scattered wave, satisfying the
outgoing radiation condition: ∂vs

∂r = iωvs + o(r−
d−1
2 ) as r →∞. Then

a) For ω > 1,
1
β

∫
Bβ\B1

|vs|2 ≤ C for all β > 1 .

b) For 0 < ω ≤ 1, and d = 3,

1
β

∫
Bβ\B1

|vs|2 ≤ Cmax{1, λ2/ω2} for all β > 1 .

For 0 < ω ≤ 1, and d = 2,

1
β

∫
B2β\Bβ

|vs|2 ≤ Cmax{1, λ2/ω2}β |H
(1)
0 (βω)|2

|H(1)
0 (ω)|2

.
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The constant C is independent of ω, β, λ, η, a and σ.

Remark 8. As a consequence of Corollary 3, we also have

1
β

∫
Bβ\B1

(
ω2|vs|2 + |∇vs|2

)
≤ Cω2 ∀ω > 1 ,

and

1
β

∫
Bβ\B1

(
|vs|2 + |∇vs|2

)
≤

{
Cmax{1, λ2/ω2} for d = 3 ,

Cβmax{1, λ2/ω2} for d = 2 ,
∀ 0 < ω ≤ 1 .

Proof of Corollary 3. We introduce

v = vs(x) + eiωη·xψ(x) ,

where ψ ∈ C∞(Rd) is a cut-off function with ψ = 1 for x ∈ B2 and ψ = 0 for
x ∈ Rd\B3. The function v is in H1

loc
(Rd), it satisfies the outgoing radiation condition

and
div(A∇v) + ω2Σv = f. (2.74)

Here the source f is given by

f = 2iωeiωη·xη · ∇ψ + eiωη·x∆ψ.

An application of Theorem 1 yields the desired estimates. �

Remark 9. The low frequency estimates in b) of Corollary 3 are significantly weaker
than the high frequency estimates in a) due to the presence of the term λ/ω. As ω
approaches 0 these estimates allow for scattered fields (from incident plane waves)
whose L2 norms become unbounded on bounded sets. In the appendix we show that
this does indeed occur for d = 3, we also show that the L2 norm (on B4 \ B1) is
bounded from below by λ/ω (cf. Lemma 7). For d = 2 the situation is a little bit more
complicated: in the appendix we show that there exist locally bounded incident waves
for which the L2(B4 \ B1) norm of the scattered field is bounded from below by λ/ω,
however, the incident waves we exhibit are not plane (cf. Lemma 8).

From the previous result we obtain (by rescaling) the following result, which pro-
vides an estimate of the scattered field, vs,ε(x), caused by an incident plane wave
“hitting” a diametrically small object surrounded by a thin “lossy” layer.

Theorem 2. Let d = 2 or 3, 0 < ε < 1, 0 < λ < 1, ω > 0, and η ∈ Rd with |η| = 1.
Let vε(x) = vs,ε(x) + eiωx·η be the solution of

div(Aε∇vε) + ω2Σεvε = 0, in Rd ,

where vs,ε ∈ H1
loc

(Rd), the scattered field, satisfies the outgoing radiation condition:
∂vs,ε

∂r = iωvs,ε + o(r−
d−1
2 ) as r →∞. Here the coefficients Aε and Σε are given by

Aε =

 I if x ∈ R3 \Bε/2 ,

aε(x) otherwise ,
and Σε =


1 if x ∈ R3 \Bε ,

1 +
i

ωελ
if x ∈ Bε \Bε/2 ,

σε(x) otherwise .
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aε is a real symmetric matrix valued function, that is bounded and uniformly elliptic in
Bε/2; σε ∈ L∞(Bε/2) is a complex function with 0 ≤ ess inf =(σε) ≤ ess sup=(σε) <
+∞, and 0 < ess inf <(σε) ≤ ess sup<(σε) < +∞. Then

a) for ω > 1/ε,
1
β

∫
Bβ\Bε

|vs,ε|2 ≤ Cεd−1 for all β > ε .

b) For 0 < ω ≤ 1/ε, and d = 3,

1
β

∫
Bβ\Bε

|vs,ε|2 ≤ Cmax{1, λ2/(ω2ε2)}ε2 for all β > ε .

For 0 < ω ≤ 1/ε, and d = 2,

1
β

∫
B2β\Bβ

|vs,ε|2 ≤ Cmax{1, λ2/(ω2ε2)}β |H
(1)
0 (βω)|2

|H(1)
0 (εω)|2

for all β > ε .

Most importantly: the constant C is independent of ε, ω, β, λ, η, aε and σε.

3 Applications to cloaking

It is by now fairly well-known that estimates of the scattering effect of small in-
homogeneities are very related to estimates of the efficiency of approximate cloaks
obtained by so-called mapping techniques (see for instance [8], [9], [13], or [12]). This
is especially true for estimates that are uniform with respect to the “contents” of
the inhomogeneity. Based on Theorem 2, we shall now in this spirit derive efficiency
estimates that are also explicit in their frequency dependence. Let us first recall
the following basic fact on which our (approximate) change-of-variable-based cloaking
schemes rely. The proof of this fact is quite elementary and left to the reader.

Lemma 6. Let d ≥ 2, let A be a real symmetric matrix valued L∞ function, and
let Σ be a complex L∞ function defined on Rd. Suppose F : Rd → Rd is Lipschitz,
surjective, and invertible, with F (x) = x on Rd \B2, and detDF > c > 0 a.e. x ∈ Rd.
Then u ∈ H1

loc
(Rd) is a (distributional) solution of

div(A∇u) + ω2Σu = f in Rd

if and only if v := u ◦ F−1 ∈ H1
loc

(Rd) is a solution of

div(F∗A∇v) + ω2F∗Σ v = f∗ in Rd.

Here

F∗A(y) =
DF (x)A(x)DFT (x)

detDF (x)
, F∗Σ(y) =

Σ(x)
detDF (x)

, f∗(y) =
f(x)

detDF (x)
,

with x = F−1(y). Note that u = v outside B2.
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Let Fε, 0 < ε < 1, denote the particular continuous, radial Lipschitz mapping
Rd → Rd given by

Fε =



x if x ∈ Rd \B2,(2− 2ε
2− ε

+
|x|

2− ε

) x

|x|
if x ∈ B2 \Bε,

x

ε
if x ∈ Bε.

(3.1)

We notice that Fε transforms B2 and Bε into B2 and B1, respectively, with Fε = id
outside B2.

The following theorem provides estimates of the degree of near invisibility achieved
by

the approximate cloak =


(Fε)∗I, (Fε)∗1 in B2 \B1 ,

(Fε)∗I, (Fε)∗
(
1 +

i

ωελ

)
in B1 \B1/2 ,

where the dependence on frequency is explicit. These estimates are optimal in their
dependence on ε and ω (as explained in the appendix).

Theorem 3. Let d = 2, or 3 and ω > 0. Suppose a is a real symmetric matrix
valued function which is bounded and uniformly elliptic, suppose σ ∈ L∞(B1/2) is a
complex function with 0 ≤ ess inf =(σ) ≤ ess sup=(σ) < +∞, and 0 < ess inf <(σ) ≤
ess sup<(σ) < +∞. Define, for 0 < ε < 1, and 0 < λ < 1,

Ac
ε,Σ

c
ε =



I, 1 in Rd \B2,

(Fε)∗I, (Fε)∗1 in B2 \B1,

(Fε)∗I, (Fε)∗
(
1 +

i

ωελ

)
in B1 \B1/2,

a(x), σ(x) in B1/2.

Given η ∈ Rd, with |η| = 1, let uω ∈ H1
loc

(Rd) be the solution of

div(Ac
ε∇uω) + ω2Σc

εuω = 0, in Rd,

of the form uω = us + eiωx·η, with us ∈ H1
loc

(Rd), the scattered wave, satisfying the
outgoing radiation condition: ∂us

∂r = iωus + o(r−
d−1
2 ) as r →∞. Then

a) For ω > 1/ε,
1
β

∫
Bβ\B2

|us|2 ≤ Cεd−1 ∀β > 2.

b) For 0 < ω ≤ 1/ε, and d = 3,

1
β

∫
Bβ\B2

|us|2 ≤ Cmax{1, λ2/(ω2ε2)}ε2 ∀β > 2 .
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For 0 < ω ≤ 1/ε, and d = 2,

1
β

∫
B2β\Bβ

|us|2 ≤ Cmax{1, λ2/(ε2ω2)}β |H
(1)
0 (βω)|2

|H(1)
0 (εω)|2

∀β > 2 .

Most importantly: the constant C is independent of a, σ, ω, ε, λ, β, and η.

Proof. In the following we drop the subscript ω from the solution uω. Set uε = u◦Fε

(so that uε(x) = u(x) for |x| > 2) and define us,ε(x) = uε(x) − eiωx·η (so that
us,ε(x) = us(x) for |x| > 2). Then, by Lemma 6,

div(Ãε∇uε) + ω2Σ̃εuε = 0,

and uε(x) = us,ε(x) + eiωx·η, with us,ε ∈ H1
loc

(Rd) satisfying the outgoing radiation
condition. Here

Ãε, Σ̃ε =
(
F−1

ε

)
∗A

c
ε,

(
F−1

ε

)
∗ Σc

ε =



I, 1 in Rd \Bε ,

I, 1 +
i

ωελ
in Bε \Bε/2 ,

ε2−da(x/ε), ε−dσ(x/ε) in Bε/2 .

According to Theorem 2 we have

a) For ω > 1/ε,
1
β

∫
Bβ\Bε

|us,ε|2 ≤ Cεd−1 for all β > ε .

b) For 0 < ω ≤ 1/ε, and d = 3,

1
β

∫
Bβ\Bε

|us,ε|2 ≤ Cmax{1, λ2/(ε2ω2)}ε2 for all β > ε ,

for 0 < ω ≤ 1/ε, and d = 2,

1
β

∫
B2β\Bβ

|us,ε|2 ≤ Cmax{1, λ2/(ε2ω2)}β |H
(1)
0 (βω)|2

|H(1)
0 (εω)|2

for all β > ε ,

The constant C is independent of ε, ω, β, λ, η, a and σ. Since us,ε(x) = us(x) for
|x| > 2, the conclusion follows. �

Remark 10. If we take the size of the scattered wave as a measure of approximate
invisibility, then Theorem 3 gives a very precise estimate of the degree of “approximate
invisibility” associated with

the approximate cloak =


(Fε)∗I, (Fε)∗1 in B2 \B1 ,

(Fε)∗I, (Fε)∗
(
1 +

i

ωελ

)
in B1 \B1/2 .

For ω > 1/ε this (“norm-squared”) estimate is O(εd−1), uniformly in 0 < λ < 1. For
0 < ω ≤ 1/ε, the situation is a little bit different. If we select λ = ωε then Theorem
3, in the case d = 3, asserts that

1
β

∫
Bβ\B2

|us|2 ≤ Cε2 ∀β > 2.
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In other words it guarantees the same degree of “approximate invisibility” as for ω >
1/ε. For d = 2 and 0 < ω ≤ 1/ε the (best) choice, λ = ωε, gives

1
β

∫
B2β\Bβ

|vs,ε|2 ≤ Cβ
|H(1)

0 (βω)|2

|H(1)
0 (εω)|2

.

It is easy to see that if ω = εγ , for some γ > 0, then the right hand side is bounded
from below by c0 > 0 (independently of ε and β > 2) and so we have an estimate that
predicts very poor “approximate invisibility”.

4 Appendix: two optimality results

The purpose of this appendix is to prove two optimality results related to the
estimates in b) of Theorems 1, 2 and 3. These results are a natural extension of
those presented in [12] to show that a “lossy” layer is necessary for an approximate
invisibility that is independent of the contents of the cloaked region. The coefficients
of the Helmholtz equation are defined as follows

A,Σ =


I, 1 in Rd \B1 ,

I, 1 + i
ωλ in B1 \B1/2 ,

I, q2/ω2 in B1/2 ,

(4.1)

with 0 < ω < 1, 0 < λ < 1, and q ∈ R. us ∈ H1
loc

(Rd) is the “outgoing” scattered
field corresponding to the incident field uinc, i.e., us satisfies the outgoing radiation
condition and u := us + uinc is the solution of

div(A∇u) + ω2Σu = 0 in Rd. (4.2)

Lemma 7. Suppose d = 3. There exist positive constants δ0, c and q, such that for
any 0 < ω < 1, 0 < λ < 1, with 0 < ω/λ < δ0,

‖us‖L2(B4\B1) ≥
cλ

ω
. (4.3)

Here us is the outgoing scattered field corresponding to ( (4.2)) with an incoming plane
wave uinc = eiωη·x, η ∈ R3, |η| = 1. The constant c is independent of ω, λ and η.

Proof. It is well known that the plane wave uinc(x) = eiωη·x has the Jacobi-Anger
expansion

eiωη·x =
∞∑

n=0

in(2n+ 1)jn(ω|x|)Pn(cos θ) ,

where jn is the spherical Bessel function of order n, Pn is the n′th Legendre polyno-
mial, and θ denotes the angle between x and the direction η. Since this expansion is
orthogonal in L2(sin θdθ), and the same is true for the corresponding expansion of the
solution us, it suffices to prove the estimate (4.3) for a single mode. In other words,
it suffices consider an incident wave of the form

ũinc = j0(ω|x|) ,
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the mode corresponding to n = 0. Let ν be in the first quadrant of the complex plan,
such that ν2 = ω2 + iω/λ. With this we have

us = αh0(ω|x|) for |x| > 1 ,

ut = γ1j0(ν|x|) + γ2h0(ν|x|) for 1/2 < |x| < 1 ,

ut = βj0(q|x|) for |x| < 1/2 ,

where ut := us + ũinc in B1, and h0 = h
(1)
0 denotes the (first kind) spherical Hankel

function of order 0. Due to the transmission conditions on the boundary of B1 and
B1/2, 

us + ũinc = ut at |x| = 1 ,

∂us

∂r
+
∂ũinc

∂r
=
∂ut

∂r
at |x| = 1 ,

ut

∣∣∣
+

= ut

∣∣∣
−

at |x| = 1/2 ,

∂ut

∂r

∣∣∣
+

=
∂ut

∂r

∣∣∣
−

at |x| = 1/2 ,

and so 

αh0(ω) + j0(ω) = γ1j0(ν) + γ2h0(ν) ,

αωh′0(ω) + ωj′0(ω) = γ1νj
′
0(ν) + γ2νh

′
0(ν) ,

γ1j0(ν/2) + γ2h0(ν/2) = βj0(q/2) ,

γ1νj
′
0(ν/2) + γ2νh

′
0(ν/2) = βqj′0(q/2) .

(4.4)

From the last two equations of (4.4) it follows that

γ2 = Bγ1, (4.5)

where

B = − j0(ν/2)qj′0(q/2)− νj′0(ν/2)j0(q/2)
h0(ν/2)qj′0(q/2)− νh′0(ν/2)j0(q/2)

.

We recall that

h0(t) =
eit

it
, and j0(t) =

sin t
t

, (4.6)

and as a consequence
th′0(t)
h0(t)

= −1 + it , (4.7)

and

h0(ν/2)qj′0(q/2)− νh′0(ν/2)j0(q/2) = h0(ν/2)j0(q/2)
(
q
j′0(q/2)
j0(q/2)

+ 2− iν

)
.

Now choose q such that qj′0(q/2)
j0(q/2) = −2 (there exist many such q). Then

h0(ν/2)qj′0(q/2)− νh′0(ν/2)j0(q/2) = −iνh0(ν/2)j0(q/2) .
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On the other hand, it follows from (4.6), with this choice of q, that

j0(ν/2)qj′0(q/2)− νj′0(ν/2)j0(q/2) =
[qj′0(q/2)
j0(q/2)

− νj′0(ν/2)
j0(ν/2)

]
j0(q/2)j0(ν/2)

= [−2 +O(|ν|2)]j0(q/2)j0(ν/2) .

Thus
1
B

= −eiν/2[1 +O(|ν|2)] . (4.8)

We next calculate α from the first two equations of (4.4). Set

γ̃2 = γ2

(
1 +

γ1

γ2

j0(ν)
h0(ν)

)
.

Due to (4.8),

γ̃2 = γ2

(
1− ie−iν/2[1 +O(|ν|2)] sin(ν)

)
= γ2[1− iν +O(|ν|2)] , (4.9)

and due to (4.5), (4.6), and (4.8),

1 +
γ1

γ2

j′0(ν)
h′0(ν)

=1 + eiν/2[1 +O(|ν|2)] sin(ν)− ν cos(ν)
(i+ ν)eiν

=1 +O(|ν|3) . (4.10)

A combination of (4.9) and (4.10) yields

γ2

(
1 +

γ1

γ2

j′0(ν)
h′0(ν)

)
= γ̃2[1 + iν +O(|ν|2)][1 +O(|ν|3)] = γ̃2[1 + iν +O(|ν|2)] .

The first two equations of (4.4) can therefore be written
αh0(ω) + j0(ω) = γ̃2h0(ν),

αωh′0(ω) + ωj′0(ω) = γ̃2[1 + iν +O(|ν|2)]νh′0(ν) ,

which implies

α = − j0(ω)[1 + iν +O(|ν|2)]νh′0(ν)− ωj′0(ω)h0(ν)
h0(ω)[1 + iν +O(|ν|2)]νh′0(ν)− ωh′0(ω)h0(ν)

. (4.11)

Using (4.6) and (4.7) we easily calculate

j0(ω)[1 + iν +O(|ν|2)]νh′0(ν)− ωj′0(ω)h0(ν)
= −h0(ν)

(
j0(ω)[1 + iν +O(|ν|2)](1− iν) + ωj′0(ω)

)
= −h0(ν)[1 +O(|ν|2) +O(ω2)] . (4.12)

Similarly, we calculate

h0(ω)[1 + iν +O(|ν|2)]νh′0(ν)− ωh′0(ω)h0(ν)
= h0(ω)h0(ν)

(
[1 + iν +O(|ν|2)](−1 + iν) + 1− iω

)
= h0(ω)h0(ν)

(
−iω +O(|ν|2)

)
. (4.13)
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A combination of (4.11), (4.12), (4.13) yields

α =
1 +O(|ν|2) +O(ω2)
h0(ω) (−iω +O(|ν|2))

.

Since
|ν|2 =

ω

λ
(1 +O(ω2)) ≤ C

ω

λ
, and ω ≤ ω

λ
,

(remember: 0 < λ < 1 and 0 < ω/λ < δ0 implies that ω < ω/λ < δ0) it follows that
there exists a positive constant c, independent of ω and λ (and η) such that

|α| ≥
∣∣∣ cλ

h0(ω)ω

∣∣∣ (4.14)

for 0 < ω/λ < δ0 (provided δ0 is sufficiently small). From (4.14) it follows immediately
that

‖us‖L2(B4\B1) ≥
cλ

ω
,

and this completes the proof of Lemma 7. �

We note that the corresponding choice uinc = J0(ω|x|) does not lead to a lower
bound of the order λ/ω for dimension d = 2, and indeed, in this case we do not know
if such a bound holds for the scattered field created by an incoming plane wave. We
are, however, able to establish this lower bound for different incident fields that satisfy

‖uinc‖L∞(K) ≤ CK ,

uniformly in 0 < ω < 1, on any compact set K ⊂ R2.

Lemma 8. Suppose d = 2, and let us denote the scattered field corresponding to the
incident wave uinc(x) = J2(ω|x|)e2iθ/|J2(ω)|. Here J2 denotes the Bessel function
of order 2. There exist positive constants δ0, c and q (of (4.1)) such that for any
0 < ω < 1, 0 < λ < 1, with 0 < ω/λ < δ0,

‖us‖L2(B4\B1) ≥
cλ

ω
. (4.15)

The constant c is independent of ω and λ.

Proof. Note that for 0 < ω sufficiently small, J2(ω) does not vanish, and so uinc is
well defineded. Let ũinc denote the incoming wave

ũinc(x) = J2(ω|x|)e2iθ ,

and let ũs denote the corresponding scattered field. As in the previous proof, let ν be
in the first quadrant of the complex plan, such that ν2 = ω2 + iω/λ. We then have

ũs = αH2(ω|x|)e2iθ for |x| > 1 ,

ũt = γ1J2(ν|x|)e2iθ + γ2H2(ν|x|)e2iθ for 1/2 < |x| < 1 ,

ũt = βJ2(q|x|)e2iθ for |x| < 1/2 ,
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with ũt := ũs + ũi in B1. Here H2 = H
(1)
2 denotes the Hankel function (of the first

kind) of order 2. Due to the transmission conditions on the boundary of B1 and B1/2,

αH2(ω) + J2(ω) = γ1J2(ν) + γ2H2(ν) ,

αωH ′
2(ω) + ωJ ′2(ω) = γ1νJ

′
2(ν) + γ2νH

′
2(ν) ,

γ1J2(ν/2) + γ2H2(ν/2) = βJ2(q/2) ,

γ1νJ
′
2(ν/2) + γ2νH

′
2(ν/2) = βqJ ′2(q/2) .

(4.16)

We recall that 

J2(t) =
t2

8
+O(t4), H2(t) = − 4i

πt2
+O(1),

J ′2(t) =
t

4
+O(t3), H ′

2(t) =
8i
πt3

+O(t−1),

tJ ′2(t) =
t2

4
+O(t4), tH ′

2(t) =
8i
πt2

+O(1).

(4.17)

From the last two equations of (4.16), we have

γ2 = Bγ1,

where

B = − J2(ν/2)qJ ′2(q/2)− νJ ′2(ν/2)J2(q/2)
H2(ν/2)qJ ′2(q/2)− νH ′

2(ν/2)J2(q/2)
. (4.18)

Since

H2(ν/2)qJ ′2(q/2)− νH ′
2(ν/2)J2(q/2) =

(qJ ′2(q/2)
J2(q/2)

− νH ′
2(ν/2)

H2(ν/2)

)
J2(q/2)H2(ν/2) ,

and

νH ′
2(ν/2)

H2(ν/2)
= 2

[ 8i
π(ν/2)2

+O(1)
]/[

− 4i
π(ν/2)2

+O(1)
]

= −4 +O(|ν|2) ,

it follows that

H2(ν/2)qJ ′2(q/2)− νH ′
2(ν/2)J2(q/2) =

(qJ ′2(q/2)
J2(q/2)

+ 4 +O(|ν|2)
)
J2(q/2)H2(ν/2) .

By choosing q such that qJ ′2(q/2)
J2(q/2) = −4 (there exist many such q) we obtain

H2(ν/2)qJ ′2(q/2)− νH ′
2(ν/2)J2(q/2) = O(|ν|2)J2(q/2)H2(ν/2) . (4.19)

With this choice of q, we also have

J2(ν/2)qJ ′2(q/2)− νJ ′2(ν/2)J2(q/2) =
(qJ ′2(q/2)
J2(q/2)

− νJ ′2(ν/2)
J2(ν/2)

)
J2(ν/2)J2(q/2)

=[−8 +O(|ν|2)]J2(ν/2)J2(q/2) . (4.20)
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A combination of (4.18), (4.19), and (4.20) (and use of (4.17)) now gives

1
B

= O(1/|ν|2) .

Set

γ̃2 = γ2

(
1 +

γ1

γ2

J2(ν)
H2(ν)

)
.

Then
γ̃2 = γ2[1 +O(|ν|2)] ,

and

γ2

(
1 +

γ1

γ2

J ′2(ν)
H ′

2(ν)

)
= γ̃2[1 +O(|ν|2)] .

Hence the first two equations of (4.16) can be written as follows
αH2(ω) + J2(ω) = γ̃2H2(ν) ,

αωH ′
2(ω) + ωJ ′2(ω) = γ̃2[1 +O(|ν|2)]νH ′

2(ν) ,

and this implies

α = − J2(ω)[1 +O(|ν|2)]νH ′
2(ν)− ωJ ′2(ω)H2(ν)

H2(ω)[1 +O(|ν|2)]νH ′
2(ν)− ωH ′

2(ω)H2(ν)
. (4.21)

Based on (4.17) we easily calculate

J2(ω)[1 +O(|ν|2)]νH ′
2(ν)− ωJ ′2(ω)H2(ν)

=
(

[1 +O(|ν|2)]νH
′
2(ν)

H2(ν)
− ωJ ′2(ω)

J2(ω)

)
J2(ω)H2(ν)

= −4(1 +O(|ν|2 + ω2))J2(ω)H2(ν) , (4.22)

and

H2(ω)[1 +O(|ν|2)]νH ′
2(ν)− ωH ′

2(ω)H2(ν)

=
(

[1 +O(|ν|2)]νH
′
2(ν)

H2(ν)
− ωH ′

2(ω)
H2(ω)

)
H2(ω)H2(ν)

= O(|ν|2 + ω2)H2(ω)H2(ν) . (4.23)

Since
|ν|2 =

ω

λ
(1 +O(ω2)) ≤ C

ω

λ
, and ω2 ≤ δ0

ω

λ
,

a combination of (4.21), (4.22), and (4.23) yields

|α| ≥ |J2(ω)|
O(ω/λ)|H2(ω)|

≥ c
λ

ω

|J2(ω)|
|H2(ω)|

,

for some postive constant c. This immediately implies that

‖us‖L2(B4\B1) =
1

|J2(ω)|
‖ũs‖L2(B4\B1)

=
|α|

|J2(ω)|
‖H2(ω|x|)‖L2(B4\B1)

≥ c
|α||H2(ω)|
|J2(ω)|

≥ c
λ

ω
,

which completes the proof of Lemma 8. �
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