Math 250–Section #5 Hourly #1 Review

Name: ______________________

Note: The total points in this review add to more than 100 [in the test it will total 100]. You SHOULD also review all the material in the quizzes, including Quiz # 3, whose answers will be posted by Thursday [if not before]. Some of the problems below have written answers, the others will be discussed in class on Tuesday, before the hourly, or at office hours.

Answer:
1. [12 pts] Given the matrix

\[A = \begin{bmatrix} 1 & -1 & -1 & 0 \\ 2 & -1 & -2 & 1 \\ 1 & -1 & -2 & 2 \\ -4 & 2 & 3 & 1 \\ 1 & -1 & -1 & 3 \end{bmatrix} \]

(a) Find its reduced echelon form \(R \) of \(A \).
(b) What are the rank and the nullity of \(A \).
(c) Argue that the rows of \(R \) with pivots are linearly independent.
(d) Argue that the columns of \(A \) with pivots are linearly independent.

Answer:
2. [10 pts] Determine a value of r for which the set of vectors
\[
\begin{bmatrix}
-2 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
1 \\
1 \\
-3
\end{bmatrix},
\begin{bmatrix}
-1 \\
1 \\
r
\end{bmatrix}
\]
is linearly dependent.
3. [12 pts] Find all the values for t for which the resulting system of equations (a) has no solution, (b) a unique solution, and (c) infinitely many solutions.

\[
\begin{align*}
 x + y - z &= 2 \\
 x + 2y + z &= 3 \\
 x + y + (t^2 - 5)z &= t
\end{align*}
\]

Answer: Let us Gauss-Jordan’s on this system

\[
\begin{array}{ccc|c}
 1 & 1 & -1 & 2 \\
 1 & 2 & 1 & 3 \\
 1 & 1 & t^2 - 5 & t \\
\end{array}
\]

Using the 1 in the position (1, 1) as a pivot, we get

\[
\begin{array}{ccc|c}
 1 & 1 & -1 & 2 \\
 0 & 1 & 2 & 1 \\
 0 & 0 & t^2 - 4 & t - 2 \\
\end{array}
\]

We are now ready: If $t \neq \pm 2$, we get a unique solution since we have 3 pivots. If $t = 2$, we have an infinite number of solutions. If $t = -2$, it is impossible.
4. [10 pts] Find the inverse of the matrix

\[A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \]

Answer: Using either of the methods we know [Gauss-Jordan algorithm or the formula involving the adjoint matrix] you should get:

\[A = \begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{bmatrix} \]
5. [12 pts] (a) Explain what is a *linear combination* of vectors.
(b) Find out whether the vector (1, 0, 1, 2) is a linear combination of
(2, 1, 3, 0), (7, 3, 1, −1) and (0, 1, 4, 3).

Answer: (a) A linear combination of the *vectors* \(v_1, \ldots, v_n \) is a vector

\[v = c_1 v_1 + \cdots + c_n v_n, \]

where \(c_1, \ldots, c_n \) are scalars.

(b): To answer this item, you must check whether it is possible to solve for \(c_1, c_2 \) and \(c_3 \) the equation

\[(1, 0, 1, 2) = c_1(2, 1, 3, 0) + c_2(7, 3, 1, −1) + c_3(0, 1, 4, 3). \]

Using Gaussian elimination, it turns out to be impossible.
6. [10 pts] Answer (a) or (b):
(a) Let A and C be square matrices of the same sizes.
(i) Find examples such that $AC = 0$ but $CA \neq 0$.
(ii) Argue that this cannot occur if one of the matrices (either one) is invertible.

(b) If a square matrix A satisfies the relation
\[A^3 - A + I = 0 \]
show that it is invertible.

Answer:

(a) $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ \quad $C = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$.

Then:

$AC = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ \quad $CA = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$

If A is invertible, $A^{-1}AC = IC = 0$ implies $C = 0$ implies $CA = 0$.

(b) $A(A^2 - I) = -I$. Thus $A^{-1} = I - A^2$.

7. [10 pts] Given 5 countries, assume each maintains diplomatic relations with SOME of the others. To organize these relationships we use a 5×5 matrix A, here we set $a_{ii} = 0$ and $a_{ij} = 1$ if the countries i and j have diplomatic relation; if not we set $a_{ij} = 0$:

$$A = \begin{bmatrix}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{bmatrix}$$

(a) Which pairs of countries maintain diplomatic relations with one another.
(b) How many countries link country 1 with country 3?
(c) Give an interpretation of the (1, 4)-entry of A^3.
8. [10 pts] Let B and C be two 3×3 matrices. Argue that the columns of BC are linear combinations of the columns of B. Can you say the same with regard to the rows of C vis-à-vis the rows of BC? Can we argue from this that $\text{rank } B \geq \text{rank } BC$ (and similarly for C)?
9. [10 pts] Prove that the inverse of a lower triangular matrix A (if it exists) is lower.
10. [10 pts] If A and B are 2×2 symmetric matrices [what are these anyway?] show that AB may not be symmetric.
11. [∞ pts] What is your favorite matrix? (Warning: this is a deep psychological inquiry...)
This page is blank: use for scratch