Math 552: Abstract Algebra II

Wolmer V. Vasconcelos

Set 2

Spring 2009
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Composition laws

A composition on a set X is a function assigning to pairs of elements of X an element of X,

$$(a, b) \mapsto f(a, b).$$

That is a function of two variables on X with values in X. It is nicely represented in a composition table

$$
\begin{array}{c|c|c|c}
 f & * & b & * \\
 * & * & * & * \\
 a & * & f(a, b) & * \\
 * & * & * & * \\
\end{array}
$$

We represent it also as

$$X \times X \xrightarrow{f} X$$
Example: Abelian group

An abelian group is a set G with a composition law denoted ‘$+$’

$$G \times G \to G,$$

$$a, b \in G, \quad a + b \in G$$

satisfying the axioms

- **associative** $\forall a, b, c \in G, \quad (a + b) + c = a + (b + c)$
- **commutative** $\forall a, b \in G, \quad a + b = b + a$
- **existence of O**
 $$\exists O \in G \quad \text{such that } \forall a \quad a + O = a$$

- **existence of inverses**
 $$\forall a \in G \quad \exists b \in G \quad \text{such that } a + b = O$$

This element is unique and denoted $-a$.
Rings

A ring \(R \) is a set with two composition laws, called ‘addition’ and ‘multiplication’, say + and \(\times \): \(\forall a, b \in R \) have compositions \(a + b \) and \(a \times b \). (The second composition is also written \(a \cdot b \), or simply \(ab \).)

- \((R, +)\) is an abelian group
- \((R, \times)\): multiplication is associative, and distributive over +, that is \(\forall a, b, c \in R \),

\[
(ab)c = a(bc), \quad ab = ba, \quad a(b + c) = ab + ac
\]
• **existence of identity:** \(\exists e \in R \) such that

\[
\forall a \in R \quad e \times a = a \times e = a
\]

• If \(ab = ba \) for all \(a, b \in R \), the ring is called **commutative**

There is a unique identity element \(e \), usually we denote it by 1:

\[
e = ee' = e'e = e'
\]
A ring R is a set with two composition laws $+$ and \times satisfying

- $\{R, +\}$ is an abelian group
- **associative axiom**: For $a, b, c \in R$,
 \[a \times (b \times c) = (a \times b) \times c \]
- **distributive axioms**: For $a, b, c \in R$,
 \[a \times (b + c) = a \times b + a \times c \quad \text{and} \quad (a + b) \times c = a \times c + b \times c \]
- **existence of 1**: there is $e \in R$ such that for $a \in R$,
 \[a \times e = e \times a = a \]
- If $a \times b = b \times a$ for all $a, b \in R$, ring is called **commutative**
Class Surprise Quiz!

What is your favorite ring?

To qualify, your answer must be different—very different—from that given by a classmate!
More composition laws

Other composition laws take pairs [or triples,...] of sets: such as a function assigning to pairs of elements of Y and X an element of X,

$$(a, b) \mapsto f(a, b).$$

It is represented in a composition table

<table>
<thead>
<tr>
<th></th>
<th>$*$</th>
<th>b</th>
<th>$*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$*$</td>
<td>$*$</td>
<td>$*$</td>
<td>$*$</td>
</tr>
<tr>
<td>a</td>
<td>$*$</td>
<td>$f(a, b)$</td>
<td>$*$</td>
</tr>
<tr>
<td>$*$</td>
<td>$*$</td>
<td>$*$</td>
<td>$*$</td>
</tr>
</tbody>
</table>

We represent it also as $Y \times X \xrightarrow{f} X$

Typically we place requirements on f, such as $f(a, b + c) = f(a, b) + f(a, c)$
If R is a ring, a **left R-module** M is a set

- $\{M, +\}$ is an abelian group and equipped with a mapping $(R, M) \rightarrow M$, $(a, m) \rightarrow am$ such that
- **associative axiom**: For $a, b \in R$, $c \in M$, $a(bc) = (a \times b)c$
- **distributive axiom**: For $a \in R$, $b, c \in M$, $a(b + c) = ab + ac$
- If 1 is the identity of R, $1c = c$ for all $c \in M$
Submodules, quotient modules, homomorphisms

- If R is a ring and A and B are left R-modules, a group homomorphism $f : A \rightarrow B$ is a R-homomorphism if

 $$f(ax) = af(x), \quad a \in R, \quad x \in A.$$

- A subgroup C of the R-module A is a submodule if the inclusion mapping $C \rightarrow A$ is a homomorphism. If C is a submodule, the quotient group A/C is an R-module.

- If $f : A \rightarrow B$ is a homomorphism of R-modules, $K = \ker (f) = \{x \in A : f(x) = 0\}$ is a submodule of A, and $E = \{f(a) : a \in A\}$ is a submodule of B.

- There is a canonical isomorphism of R-modules $A/K \cong E$.
Direct sums and products

Let R be a ring and $\{M_\alpha : \alpha \in I\}$ be a family of modules.

- **direct sum** $M = \bigoplus_\alpha M_\alpha$ is the set of $(m_\alpha : \alpha \in I)$, almost all $m_\alpha = 0_\alpha$. Addition and multiplication by elements of R is component wise, for instance

 $$ (m_\alpha) + (n_\alpha) = (m_\alpha + n_\alpha) $$

- **direct product** $M = \prod_\alpha M_\alpha$ is the set of $(m_\alpha : \alpha \in I)$. Addition and multiplication by elements of R is component wise, for instance

 $$ a(m_\alpha) = (am_\alpha) $$
Generators of a module

- If A is an R-module, a subset $S \subseteq A$ is a set of generators of A if for $a \in A$ there are s_1, \ldots, s_n in S and $r_i \in R$ such that

\[a = r_1 s_1 + \cdots + r_n s_n \]

- If S is finite, A is said to be **finitely generated**
- If $S = \{s\}$, A is said to be **cyclic**
Free modules

Let R be a ring and X a set. The free R-module with basis indexed by X:

$$F_X = \bigoplus_{x \in X} R_x, \quad R_x \simeq R$$

If $X = \{1, 2, \ldots, n\}$,

$$R^n = \{(a_1, \ldots, a_n), \quad a_i \in R\}$$

Set $e_1 = (1, 0, \ldots, 0), \ldots, e_n = (0, 0, \ldots, 1)$,

$$(a_1, a_2, \ldots, a_n) = a_1 e_1 + \cdots + a_n e_n$$
Finitely generated module

Proposition

Let X be a set and A an R-module. For any (set) mapping $\varphi : X \rightarrow A$ there is a (unique) module homomorphism

$$f : F_X = \bigoplus_{x \in X} Re_x \rightarrow A$$

such that $f(e_x) = \varphi(x)$.

Proposition

An R-module A is finitely generated iff there is a surjection

$$f : R^n \rightarrow A,$$

for some $n \in \mathbb{N}$.
Chain Conditions

Let R be a ring and let M be a left (right) R-module and denote by X the set of R-submodules of M ordered by inclusion.

A chain of submodules is a sequence

$$A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$$

or

$$B_1 \supseteq B_2 \supseteq \cdots \supseteq B_n \supseteq \cdots$$

The first is called ascending, the other descending.
Noetherian Module

Definition

\(M \) is a **Noetherian** (Artinian) module if every ascending (descending) chain of submodules is stationary, that is \(A_n = A_{n+1} = \ldots \) from a certain point on.

\(R \) is a left (right) **Noetherian** (Artinian) ring if the ascending (descending) chains of left (right) ideals are stationary.
Example

\[
\begin{bmatrix}
\mathbb{Z} & \mathbb{Q} \\
0 & \mathbb{Q}
\end{bmatrix}
\]

is a right (but not left) Noetherian ring.

\[
\begin{bmatrix}
\mathbb{Q} & \mathbb{R} \\
0 & \mathbb{R}
\end{bmatrix}
\]

is a left (but not right) Artinian ring.
Example: Sides may matter

Here is an example (J. Dieudonné) of a left Noetherian that is not right Noetherian.

Let \(A \) be the ring generated by \(x \) and \(y \), \(\mathbb{Z}[x, y] \), such that \(yx = 0 \) and \(yy = 0 \), and let \(R \) be the subring \(\mathbb{Z}[x] \). That is, \(R \) is the ring of polynomials in \(x \) over \(\mathbb{Z} \) (therefore \(R \) is Noetherian). \(A \) is the \(R \)-module

\[
A = R + Ry
\]

in particular \(A \) is a Noetherian left \(R \)-module, thus it is a left Noetherian ring.

Let \(I \) be the subgroup of \(A \) generated by \(\{x^n y, n \geq 0\} \). Since \(Ix = Iy = 0 \), \(I \) is a right ideal and thus any system of right \(R \)-generators of \(I \) is also a system of \(\mathbb{Z} \) generators. But \(I \) is not finitely generated over \(\mathbb{Z} \).
Maximal/Minimal Condition

Definition

\(M \) is an \(R \)-module with the Maximal Condition (Minimal Condition) if every subset \(S \) of \(X \) (set of submodules ordered by inclusion) contains a maximum submodule (minimum submodule).

Proposition

Let \(M \) be an \(R \)-module. Then

1. \(M \) is Noetherian iff \(M \) has the Maximal Condition.
2. \(M \) is Artinian iff \(M \) has the Minimal Condition.
Proof

Let S be a set of submodules of M. If S contains no maximal element, we can build an ascending chain

$$A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_n \subsetneq \cdots$$

contradicting the assumption that M is Noetherian. The converse has a similar proof.

Example: If $R = \mathbb{Z}$, \mathbb{Z} is a Noetherian module, while for every prime number p, $\mathbb{Z}_{p^\infty}/\mathbb{Z}$ is Artinian.
Composition Series

Proposition

Let M be an R-module satisfying both chain conditions. Then there exists a chain of submodules

$$0 \subset M_1 \subset M_2 \subset \cdots \subset M_{n-1} \subset M_n = M$$

such that each factor M_i/M_{i-1} is a simple module.

Such sequences are called *composition series* of length n. The existence of one such series is equivalent to M being both Noetherian and Artinian.

Theorem (Jordan-Holder)

All composition series of a module M have the same length (called the *length* of M and denoted $\lambda(M)$).
Noetherian Module

Proposition

M is a Noetherian R-module iff every submodule is finitely generated.

Proof.

Suppose *M* is Noetherian. Let us deny. Let *A* be a submodule of *M* and assume it is not finitely generated. It would permit the construction of an increasing sequence of submodules of *A*,

\[(a_1) \subset (a_1, a_2) \subset \cdots \subset (a_1, a_2, \ldots, a_n) \subset \cdots,\]

\[a_{n+1} \in A \setminus (a_1, \ldots, a_n).\]

Conversely if \(A_1 \subseteq A_2 \subseteq \cdots\) is an increasing sequence of submodules, let \(B = \bigcup_{i \geq 1} A_i\) is a submodule and therefore \(B = (b_1, \ldots, b_m)\). Each \(b_i \in A_{n_i}\) for some \(n_i\). If \(n = \max\{n_i\}\), \(A_n = A_{n+1} = \cdots\).
Proposition

Let R be a ring and

$$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$$

be a short exact sequence of R-modules (that is, f is 1-1, g is onto and $\text{Image } f = \ker g$). Then B is Noetherian (Artinian) iff A and C are Noetherian (Artinian).
Corollary

If R is a Noetherian (Artinian) ring, then any finitely generated R-module is Noetherian (Artinian).

Proof.

By the proposition, any f.g. free R-module $F = R \oplus \cdots \oplus R$ is Noetherian (Artinian). A f.g. R-module is a quotient of a f.g. free R-module.
Proof

Let $B_1 \subseteq B_2 \subseteq \cdots$ be an ascending sequence of submodules of B. Applying g to it gives an ascending sequence $g(B_1) \subseteq g(B_2) \subseteq \cdots$ of submodules of C.

There is also an ascending sequence of submodules of A by setting $A_i = f^{-1}(B_i)$.

There is n such that both sequences are stationary from that point on: $g(B_n) = g(B_{n+1}) = \cdots$ and $f^{-1}(B_n) = f^{-1}(B_{n+1}) = \cdots$.

It follows easily that $B_n = B_{n+1} = \cdots$.
Assignment #6

Define the following composition laws (\oplus and \otimes) on the set \mathbb{Z}:

- For $a, b \in \mathbb{Z}$, set $a \oplus b := a + b + 1$
- For $a, b \in \mathbb{Z}$, set $a \otimes b := ab + a + b = (a + 1)(b + 1) - 1$

Call the integers with these two operations \mathbb{Z} (read red integers). With proofs, answer the questions:

1. Is \mathbb{Z} a ring?
2. If \mathbb{Z} is a ring, is it isomorphic to \mathbb{Z}?
3. Define similarly \mathbb{Q}: is it a field?
4. List all that goes wrong.
5. Which generalizations occur to you?
Let us prove the following characterization of Noetherian modules over commutative rings:

Definition

Let M be a module over the commutative ring R. The set I of elements $x \in R$ such that $xm = 0$ for all $m \in M$ is an ideal called the **annihilator** of M, $I = \text{ann } M$.

Proposition

M is a Noetherian module if and only if M is finitely generated and $R/\text{ann } M$ is a Noetherian ring.
Hints

If a module M is generated by $\{m_1, \ldots, m_n\}$ define the following mapping

$$f : R \longrightarrow M \oplus \cdots \oplus M, \quad f(r) = (rm_1, \ldots, rm_n)$$

verify that

- f is a homomorphism, of kernel $\text{ann} M$
- Form the appropriate embedding of $R/\text{ann} M$ into the direct sum of the M's to argue one direction
- Use, for the other direction, that M is also a module over the ring $R/\text{ann} M$
Quotient rings

Let I be a two-sided proper ideal of the R and denote by R/I the corresponding cosets $\{a + I : a \in R\}$.

The quotient ring R/I is defined by the operations:

\[
(a + I) + (b + I) = (a + b) + I
\]
\[
(a + I) \times (b + I) = ab + I
\]

This is a source to many new rings
Examples

\((2) \subset \mathbb{Z} \quad \Rightarrow \quad \mathbb{Z}_2 = \mathbb{Z}/(2)\)

\((x^2 + x + 1) \subset \mathbb{Z}_2[x] \quad \Rightarrow \quad \mathbb{Z}_2[x]/(x^2 + x + 1) = \mathbb{F}_4\)

\((x^2 + 1) \subset \mathbb{R}[x] \quad \Rightarrow \quad \mathbb{C} = \mathbb{R}[x]/(x^2 + 1)\)

\((1 + 3i) \subset \mathbb{Z}[i] \quad \Rightarrow \quad \mathbb{Z}_{10} = R = \mathbb{Z}[i]/(1 + 3i)\)
\[\mathbb{Z}[i]/(1 + 3i) \cong \mathbb{Z}/(10) \]

Consider the homomorphism \(\varphi : \mathbb{Z} \to \mathbb{Z}[i] \to R = \mathbb{Z}[i]/(1 + 3i) \) induced by the embedding of \(\mathbb{Z} \) in \(\mathbb{Z}[i] \). We claim that \(\varphi \) is a surjection of kernel \(10\mathbb{Z} \):

\[
1 + 3i \equiv 0 \Rightarrow i(1 + 3i) \equiv 0 \Rightarrow i - 3 \equiv 0 \Rightarrow i \equiv 3
\]

\[
a + bi \equiv a + 3b \Rightarrow \varphi \text{ is surjection}
\]

For \(n \) in kernel of \(\varphi \),

\[
n = z(1 + 3i) = (a + bi)(1 + 31) = (a - 3b) + (3a + b)i \Rightarrow b = -3a
\]

\[
= 10a
\]
Circle ring

Let $R = \mathbb{R}[x, y]/(x^2 + y^2 - 1)$: the circle ring

- Consider the natural homomorphism

 $f : \mathbb{R}[x, y] \rightarrow \mathbb{R}[\cos t, \sin t], \quad f(x) = \cos t, f(y) = \sin t$

 $\mathbb{R}[\cos t, \sin t]$ is the ring of trigonometric polynomials.

- $f(x^2 + y^2 - 1) = 0$ so there is an induced surjection

 $\varphi : \mathbb{R}[x, y]/(x^2 + y^2 - 1) \rightarrow \mathbb{R}[\cos t, \sin t]$

- φ is an isomorphism because: (i) $\mathbb{R}[\cos t, \sin t]$ is an infinite dimensional \mathbb{R}-vector space (why?); for any ideal L larger than $(x^2 + y^2 - 1)$, $\mathbb{R}[x, y]/L$ is a finite dimensional \mathbb{R}-vector space (why?).
The circle ring $R = \mathbb{R}[\cos t, \sin t]$ contains as a subring $S = \mathbb{R}[\cos t]$. S is isomorphic to a polynomial ring over \mathbb{R}. As an S-module, R is generated by two elements

$$R = S \cdot 1 + S \cdot \sin t$$

R as a \mathbb{R}-vector space has basis

$$\{\sin nt, \cos nt, \quad n \in \mathbb{Z}\}$$
Exercise: Prove that

\[\mathbb{R}[x, y]/(xy) \cong \{(p(x), q(y)) : p(0) = q(0))\} \]

Hint: Consider the homomorphism

\[\varphi : \mathbb{R}[x, y]/(xy) \to \mathbb{R}[x, y]/(y) \times \mathbb{R}[x, y]/(x) \]

\[\varphi(a + (xy)) = (a + (y), a + (x)) \]

Check that \(\varphi \) is one-one and determine its image.
Integral domains

Let R be a commutative ring

- $u \in R$ is a **unit** if there is $v \in R$ such that $uv = 1$
- $a \in R$ is a **zero divisor** if there is $0 \neq b \in R$ such that $ab = 0$
- $a \in R$ is **nilpotent** if there is $n \in \mathbb{N}$ such that $a^n = 0$
- R is an **integral domain** if 0 is the only zero divisor, in other words, if $a, b \in R$ are not zero, then $ab \neq 0$.
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. **Prime Ideals**
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Studying a commutative ring

prime ideals of R morphisms $\varphi : R \to S$
Prime Ideals

Definition
Let R be a commutative ring. An ideal P of R is prime if $P \neq R$ and whenever $a \cdot b \in P$ then $a \in P$ or $b \in P$.

Equivalently:
- R/P is an integral domain
- If I and J are ideals and $I \cdot J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$
Prime ideals arise in issues of factorization and very importantly:

Proposition

Let \(\phi : R \rightarrow S \) be a homomorphism of commutative ring. If \(S \) is an integral domain, then \(P = \ker(\phi) \) is a prime ideal. More generally, if \(S \) is an arbitrary commutative ring and \(Q \) is a prime ideal, then \(P = \phi^{-1}(Q) \) is a prime ideal of \(R \).

Proof. Inspect the diagram

\[
\begin{array}{ccc}
R & \xrightarrow{\phi} & S \\
\downarrow & & \downarrow \\
R/P & & S/Q
\end{array}
\]
Exercise

Consider the homomorphism of rings

$$\varphi : k[x, y, z] \rightarrow k[t]$$

$$x \rightarrow t^3$$
$$y \rightarrow t^4$$
$$z \rightarrow t^5$$

Let P be the kernel of this morphism. Note that $x^3 - yz$, $y^2 - xz$ and $z^2 - x^2y$ lie in P.

Task: Prove that P is generated by these 3 polynomials.

Task: Describe the prime ideals of the ring

$$R = \mathbb{C}[x, y]/(y^2 - x(x - 1)(x - 2)).$$
Multiplicative Sets

Definition

A subset S of a commutative ring is **multiplicative** if $S \neq \emptyset$ and if $r, s \in S$ then $r \cdot s \in S$.

- If P is a prime ideal of R, $S = R \setminus P$ is a multiplicative set.
- If I is a proper ideal of R, then

 \[S = \{1 + a : a \in I\} \]

 is a multiplicative set.
Formation of Prime Ideals

Proposition

Let S be a multiplicative set and P an ideal maximum with respect $S \cap P = \emptyset$. Then P is a prime ideal.

Proof. Deny: let $a, b \notin P$, $ab \in P$.

Consider the ideals $P + Ra$ and $P + Rb$. They are both larger than P and therefore meet S:

$$x + pa, y + qb \in S, \quad x, y \in P$$

Multiplying we get

$$(x + pa)(y + qb) = xy + xqb + yqb + pqab \in S \cap P,$$

a contradiction.
Corollary

Every proper ideal I of a commutative ring is contained in a prime ideal.

Proof. Let $S = \{1\}$. Among all proper ideals $I \subseteq J$ pick one that is maximum with respect being disjoint relative to S (use Zorn’s Lemma; no need if R is Noetherian).
Primary Ideal

Definition
Let R be a commutative ring. An ideal Q of R is primary if $Q \neq R$ and whenever $a \cdot b \in Q$ then $a \in Q$ or some power $b^n \in Q$.

Example: $Q = (x^2, y) \subset R = k[x, y]$, or $(p^n) \subset \mathbb{Z}$. This is a far-reaching generalization of the notion of primary ideals of \mathbb{Z}.
Radical of an Ideal

Definition

Let I be an ideal of the commutative ring R. The **radical** of I is the set

$$\sqrt{I} = \{ x \in R : x^n \in I \text{ some } n = n(x) \}.$$

Proposition

\sqrt{I} is an ideal.

Proof.

If $a, b \in \sqrt{I}$, $a^m \in I$, $b^n \in I$, then

$$(a + b)^{m+n-1} = \sum_{i+j=m+n-1} \binom{m+n-1}{i} a^i b^j \in I,$$

since $i \geq m$ or $j \geq n$.

Proposition

If I is a proper ideal of R,

$$\sqrt{I} = \bigcap P, \quad I \subseteq P \quad P \text{ prime ideal}.$$

Proof.

Deny it: Let $x \in \bigcap P \setminus \sqrt{I}$, that is for all n, $x^n \notin I$.

The set $\{x^n, n \in \mathbb{N}\}$ defines a multiplicative set S disjoint from I.

By a previous proposition, there is a prime $P \supset I$ disjoint from S, a contradiction.
A **Boolean ring** is a ring R such that $x^2 = x$ for all $x \in R$. For instance, an arbitrary direct product of copies of $\mathbb{Z}/(2)$. If R is a Boolean ring:

1. **Prove that R is commutative and that for every prime ideal P, R/P is a field.**
2. **Prove that every finitely generated ideal I of R is principal** (*Hint: check that in a boolean ring, $a + b - ab$ is a multiple of both a and b).*
3. **If R is finite, show that R is a finite direct product of copies of $\mathbb{Z}/(2)$.**
Idempotents

Proposition

Let R be a commutative ring and $0 \neq e \in R$ satisfy $e = e^2$. Then there is a decomposition R into the direct product of rings $R \cong Re \times R(1 - e)$.

Proof.

1. For any $x \in R$, $x = xe + x(1 - e)$, so $Re + R(1 - e) = R$. Furthermore if $a \in Re \cap R(1 - e)$, then a is annihilated by $1 - e$ and e, respectively. This means that $R = Re \oplus R(1 - e)$ as modules.

2. Since $Re \cdot R(1 - e) = 0$, we can view $R = Re \oplus R(1 - e)$ as $R = Re \times R(1 - e)$. Note that e is the identity in the ring Re, and $1 - e$ in $R(1 - e)$.

Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. **Primary Decomposition**
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg
Irreducible Ideal/Module

Definition

The ideal I of the commutative ring R is irreducible if

$$I = J \cap L \Rightarrow I = J \quad \text{or} \quad I = L.$$
Primary Decomposition

Theorem (Emmy Noether)

Every proper ideal I of a Noetherian ring R has a finite decomposition

$$I = Q_1 \cap Q_2 \cap \cdots \cap Q_n,$$

with Q_i primary.

To prove her theorems, Emmy Noether often proved a special case and derive the more general assertion, or proved a more general assertion and specialize.
Irreducible decomposition

Definition

The ideal I of the commutative ring R is **irreducible** if

$$I = J \cap L \Rightarrow I = J \text{ or } I = L.$$

Theorem (Emmy Noether)

Every proper ideal I of a Noetherian ring R has a finite decomposition

$$I = J_1 \cap J_2 \cap \cdots \cap J_n,$$

with J_i irreducible. Moreover, every irreducible ideal J of R is primary.
Proof. Deny the existence of the decomposition of I as a finite intersection of irreducible ideals. Among all such ideals, denote by (keep the notation) I a maximum one. I is not irreducible, so there is

$$I = J \cap L,$$

with J and L properly larger. But then each admits finite decompositions as intersection of irreducible ideals. Combining we get a contradiction.
Deny that proper irreducible ideals of Noetherian rings are primary. Let \(I \) be maximum such: There is \(a, b \in R, \ ab \in I, \ a \notin I \) and \(b^n \notin I \) for all \(n \in \mathbb{N} \).

Consider the chain

\[
\{ r \in R : br \in I \} = I : b \subseteq I : b^2 \subseteq \cdots \subseteq I : b^n \subseteq I : b^{n+1}
\]

that becomes stationary at \(I : b^n = I : b^{n+1} \).

Define \(J = I : b^n \) and \(L = (I, b^n) \). Both ideals are larger than \(I \). We claim that \(I = J \cap L \).

If \(x \in J \cap L, \ x = u + rb^n, \ u \in I \). Then \(b^n x = b^n u + rb^{2n} \in I \), so \(rb^n \in I \) and therefore \(x \in I \).
Irredundant Primary Decomposition

A refinement in the primary decomposition

\[I = Q_1 \cap Q_2 \cap \cdots \cap Q_n \]

arises as follows. Suppose two of the \(Q_i \) have the same radical, say \(\sqrt{Q_1} = \sqrt{Q_2} = P \). Then it easy to check that \(Q_1 \cap Q_2 \) is also \(P \)-primary. So collecting the \(Q_i \) with the same radical:

Theorem (Emmy Noether)

Every proper ideal \(I \) of a Noetherian ring \(R \) has a finite decomposition

\[I = Q_1 \cap Q_2 \cap \cdots \cap Q_n, \]

with \(Q_i \) primary ideals of distinct radicals. This decomposition is called irredundant.

It is known which \(Q_i \) are unique and which are not.
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
David Hilbert (1862-1943)

Mathematician
Algebraist
Topologist
Geometrist
Number Theorist
Physicist
Analyst
Philosopher
Genius
And modest too...

"Physics is much too hard for physicists." - Hilbert, 1912
Hilbert Basis Theorem

Theorem (HBT)

If \(R \) is Noetherian then \(R[x] \) is Noetherian.

1. If \(R \) is Noetherian and \(x_1, \ldots, x_n \) is a set of independent indeterminates, then \(R[x_1, \ldots, x_n] \) is Noetherian.
2. \(\mathbb{Z}[x_1, \ldots, x_n] \) is Noetherian.
3. If \(k \) is a field, then \(k[x_1, \ldots, x_n] \) is Noetherian.
If R is a commutative ring, a \textit{finitely generated} R-algebra S is a homomorphic image of a ring of polynomials, $S = R[x_1, \ldots, x_n]/L$. If R is Noetherian, S is Noetherian as well. This is useful in many constructions.

If I is an R-ideal, the \textit{Rees algebra of I} is the subring of $R[t]$ generated by all at, $a \in I$. It it denoted by $S = R[It]$. In general, subrings of Noetherian rings may not be Noetherian but Rees algebras are:

\textbf{Exercise:} If R is Noetherian, for every ideal I, $R[It]$ is Noetherian.
Proof of the HBT

Suppose the $R[x]$-ideal I is not finitely generated. Let $0 \neq f_1(x) \in I$ be a polynomial of smallest degree,

$$f_1(x) = a_1 x^{d_1} + \text{lower degree terms.}$$

Since $I \neq (f_1(x))$, let $f_2(x) \in I \setminus (f_1(x))$ of least degree. In this manner we get a sequence of polynomials

$$f_i(x) = a_i x^{d_i} + \text{lower degree terms},$$

$$f_i(x) \in I \setminus (f_1(x), \ldots, f_{i-1}(x)), \quad d_1 \leq d_2 \leq d_3 \leq \cdots$$

Set $J = (a_1, a_2, \ldots, \) = (a_1, a_2, \ldots, a_m) \subseteq R$
Let \(f_{m+1}(x) = a_{m+1}x^{d_{m+1}} + \text{lower degree terms} \). Then

\[
a_{m+1} = \sum_{i=1}^{m} s_i a_i, \quad s_i \in R.
\]

Consider

\[
g(x) = f_{m+1} - \sum_{i=1}^{m} s_i x^{d_{m+1} - d_i} f_i(x).
\]

\(g(x) \in I \setminus (f_1(x), \ldots, f_m(x)) \), but \(\deg g(x) < \deg f_{m+1}(x) \), which is a contradiction.
Power Series Rings

Another construction over a ring R is that of the power series ring $R[[x]]$:

\[
\begin{align*}
f(x) &= \sum_{n \geq 0} a_n x^n, & g(x) &= \sum_{n \geq 0} b_n x^n \\
\end{align*}
\]

with addition component wise and multiplication the Cauchy operation

\[
f(x)g(x) = h(x) = \sum_{n \geq 0} c_n x^n = \sum_{n \geq 0} \left(\sum_{i+j=n} a_i b_{n-i} \right)
\]

Theorem

If R is Noetherian then $R[[x]]$ is Noetherian.
Proposition

A commutative ring R is Noetherian iff every prime ideal is finitely generated.

Proof. If R is not Noetherian, there is an ideal I maximum with the property of not being finitely generated (Zorn’s Lemma). We assume I is not prime, that is there exist $a, b \notin I$ such that $ab \in I$.
The ideals \((I, a)\) and \(I : a\) are both larger than \(I\) and therefore are finitely generated:

\[
(l : a) = (a_1, \ldots, a_n) \\
(l, a) = (b_1, \ldots, b_m, a), \quad b_i \in l
\]

Claim: \(l = (b_1, \ldots, b_m, aa_1, \ldots, aa_n)\)

If \(c \in l\),

\[
c = \sum_{i=1}^{m} c_ib_i + ra, \quad r \in l : a
\]
$R[[x]]$ is Noetherian

Proof. Let P be a prime ideal of $R[[x]]$. Set $p = P \cap R$. p is a prime ideal of R and therefore it is finitely generated.

Denote by $p[[x]] = pR[[x]]$ the ideal of $R[[x]]$ generated by the elements of p. It consists of the power series with coefficients in p and $R[[x]]/p[[x]]$ is the power series ring $R/p[[x]]$.

We have the embedding

$$P' = P/p[[x]] \hookrightarrow (R/p)[[x]]$$

P' is a prime ideal of $R/p[[x]]$ and $P' \cap R/p = 0$. It will suffice to show that P' is finitely generated.
We have reduced the proof to the case of a prime ideal $P \subset R[[x]]$ and $P \cap R = (0)$.

If $x \in P$, $P = (x)$ and we are done.

For $f(x) = a_0 + a_1 x + \cdots \in P$, let $J = (b_1, \ldots, b_m) \subset R$ be the ideal generated by all a_0,

$$f_i = b_i + \text{higher terms} \in P.$$

Claim: $P = (f_1, \ldots, f_m)$.

From $a_0 = \sum_i s_i^{(0)} b_i$, we write

$$f(x) - \sum_i s_i^{(0)} f_i = x h \implies h \in P.$$
We repeat with h and write

$$f(x) = \sum_{i} s_i^{(0)} f_i + x \sum_{i} s_i^{(1)} f_i + x^2 g, \quad g \in P.$$

Iterating we obtain

$$f(x) = \sum_{i} (s_i^{(0)} + s_i^{(1)} x + s_i^{(2)} x^2 + \cdots) f_i.$$
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. **Assignment #8**
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Assignment #8

Do 2 problems.

1. Show that the kernel of the homomorphism \((K \text{ is a field}) \)
\[\varphi : K[x, y, z] \rightarrow K[t], \]
defined by \(\varphi(x) = t^3, \varphi(y) = t^4 \) and \(\varphi(z) = t^5 \), is generated by the polynomials
\[x^3 - yz, y^2 - xz, z^2 - x^2y. \]

2. Let \(R \) be a Noetherian ring and let \(I \) be an \(R \)-ideal. Show that the number of prime ideals \(P \) minimal over \(I \) is finite.
(\text{Hint: primary decomposition helps.})

3. Describe all rings \(\mathbb{Z} \subset R \subset \mathbb{Q} \) (\text{Hint: For each } R, \text{ consider the set of primes } \rho \text{ of } \mathbb{Z} \text{ that blowup in } R, \text{ that is, } \rho R = R). \)

4. Let \(\varphi : M \rightarrow M \) be an endomorphism of a \(R \)-module.
Prove that if \(M \) is Noetherian (resp. Artinian) and \(\varphi \) is surjective (resp. injective) then \(\varphi \) is an isomorphism.
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Homework

1. Find the kernel of the homomorphism (K is a field)

\[\varphi : K[x, y, z] \longrightarrow K[t], \]

defined by \(\varphi(x) = t^4, \varphi(y) = t^5 \) and \(\varphi(z) = t^7 \). What do you think is true in general?

2. Show that \(R = \mathbb{C}[x, y]/(y^2 - x(x - 1)(x - 2)) \) is a Dedekind domain. [Show that \(y^2 - x(x - 1)(x - 2) \) is irreducible, use the Nullstellensatz to describe the maximal ideals of \(R \), and show that for each such ideal \(P \), \(R_P \) is a discrete valuation domain.]

3. If \(R \) is a Dedekind domain, prove that for each nonzero ideal \(I \), \(R/I \) is a principal ideal ring. Derive from this the fact that every ideal of \(R \) can be generated by 2 elements.

4. Show that an invertible ideal of a local integral domain is principal.
Modules of Fractions

Let R be a commutative ring, M an R-module and $S \subseteq R$ a multiplicative system.

On the set $M \times S$ define the following relation:

$$(a, r) \sim (b, s) \iff \exists t \in S : t(as - br) = 0$$

Why define it in this manner instead of the usual $as = br$?

Proposition

\sim is an equivalence relation.

We focus on the properties of the set $S^{-1}M$ of equivalence classes. Actually, this is the initial step in the construction of a remarkable functor.
Properties

Proposition

Let R be a commutative ring, M an R-module and $S \subseteq R$ a multiplicative system. Denote the equivalence class of (a, r) in $S^{-1}M$ by $\overline{(a, r)}$ (or simply (a, r) or even a/r).

1. The following operation is well-defined

$$(a, r) + (b, s) = (sa + rb, rs),$$

and endows $S^{-1}M$ with a structure of abelian group.

2. If $0 \notin S$, this construction applied to $R \times S$ gives rise to a ring structure on $S^{-1}R$ with multiplication

$$(x, r) \cdot (y, s) = (xy, rs).$$

3. For $(x, r) \in S^{-1}R$ and $(a, s) \in S^{-1}M$, the operation

$$(x, r) \cdot (a, s) = (xa, rs)$$

defines an $S^{-1}R$-module structure on $S^{-1}M$.

Module/Ring of Fractions

$S^{-1}R$ is called the ring of fractions of R relative to S. It is a refinement (due to Grell or Krull) of the classical formation of the field of fractions of an integral domain. $S^{-1}M$ is called the module of fractions of M relative to S.

Another step:

Proposition

If $\varphi : M \rightarrow N$ is a homomorphism of R-modules, a homomorphism of $S^{-1}R$ modules $S^{-1}\varphi : S^{-1}M \rightarrow S^{-1}N$ is defined by

$$(S^{-1}\varphi)(a, s) = (\varphi(a), s).$$
Functorial Properties

This construction is a functor from the category of R-modules to the category of $S^{-1}R$-modules:

$$
\begin{array}{ccc}
M & \sim & S^{-1}M \\
\varphi \downarrow & & \downarrow S^{-1}\varphi \\
N & \sim & S^{-1}N
\end{array}
$$

Proposition

If $\varphi : M \to N$ and $\psi : N \to P$ are R-homomorphisms of R-modules, then

1. $S^{-1}(\psi \circ \varphi) = S^{-1}\psi \circ S^{-1}\varphi.$
2. $S^{-1}(id_M) = id_{S^{-1}M}.$
Short Exact Sequences

Proposition

Let R be a ring, $S \subseteq R$ a multiplicative set and

$$0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$$

a short exact sequence of R-modules. Then

$$0 \rightarrow S^{-1} A \xrightarrow{S^{-1}f} S^{-1} B \xrightarrow{S^{-1}g} S^{-1} C \rightarrow 0$$

is a short exact sequence of $S^{-1} R$-modules. In other words, $M \mapsto S^{-1} M$ is an exact functor.
The submodules of $S^{-1}M$

Proposition

Let L' be a $S^{-1}R$-submodule of $S^{-1}M$. Let

$$L = \{ m \in M : \text{for some } s \in S \ (m, s) \in L' \}. $$

Then L is a submodule of M and $S^{-1}L = L'$.

Corollary

If M is a Noetherian (Artinian) R-module, then $S^{-1}M$ is a Noetherian (Artinian) $S^{-1}R$-module.
The ideals of $S^{-1}R$

According to the above, the proper ideals of $S^{-1}R$ are of the form

\[S^{-1}I = \{a/s : a \in I, s \in S, \quad I \cap S = \emptyset\}. \]

In the special case of $S = R \setminus p$, for a prime ideal p, one uses the notation M_p for the module of fractions and R_p for the ring of fractions.

If $R = \mathbb{Z}$ and $p = (2)$, $\mathbb{Z}(2)$ consists of all rational numbers m/n, with n odd. Its ideals are ordered. The largest proper ideal is $m = 2\mathbb{Z}(2)$ and the others

\[\mathbb{Z}(2) \supset m \supset m^2 \supset m^3 \supset \cdots \supset (0) \]
Proposition

If R is a commutative ring and S is a multiplicative set, then for any two submodules A and B of M,

$$S^{-1}(A \cap B) = S^{-1}A \cap S^{-1}B.$$

Proof.

The intersection $A \cap B$ can be defined by the exact sequence

$$0 \to A \cap B \to A \oplus B \xrightarrow{\varphi} A + B \to 0,$$

where $\varphi(a, b) = a - b$.

Now apply the fact that formation of modules of fractions is an exact functor.
Local Ring

Proposition

Let S be a multiplicative set of R. The ideal L of $S^{-1}R$ is prime iff $L = S^{-1}I$, for some prime I ideal of R with $I \cap S = \emptyset$.

Proof. Suppose I is as above. If $a/r \cdot b/s \in S^{-1}I$, $(ab, rs) \sim (c, t)$ for $c \in I$, $r, s, t \in S$. By definition, there is $u \in S$ such that $u(tab - rsc) = 0$. Since $S \cap I = \emptyset$, $tab - rsc \in I$ and therefore $tab \in I$. Thus $ab \in I$ and so $a \in I$ or $b \in I$. Therefore (a, r) or $(b, s) \in S^{-1}I$.

Corollary

The prime ideals of R_p have the form $P = Q_p$, where Q is an ideal of R contained in p.
Local Ring

Definition

A commutative ring R is a local ring if it has a unique maximal ideal.

Example

If k is a field, $R = k[[x]]$, the ring of formal power series in x over k is a local ring. Its unique maximal ideal is $m = (x)$.

Definition

If R is a commutative ring and P a prime ideal, the ring of fractions R_P is a local ring called the localization of R at P.
The Prime Spectrum of a Ring

Definition

Let R be a commutative ring (with 1). The set of prime ideals of R is called the prime spectrum of R, and denoted $\text{Spec}(R)$.

$\text{Spec}(\mathbb{Z}) = \{(0), (2), (3), \ldots\}$, the ideals generated by the prime integers and 0.

Proposition

For each set $I \subset R$, set

$$V(I) = \{p \in \text{Spec}(R) : I \subset p\}.$$

These subsets are the closed sets of a topology on $\text{Spec}(R)$.

Note that $V(I) = V(I')$, where I' is the ideal of R generated by I.
Zariski Topology

Proof. This follows from the properties of the construction of the $V(I)$:

$$
\begin{align*}
V(1) &= \emptyset \\
V(0) &= \text{Spec } (R) \\
V(I \cap J) &= V(I) \cup V(J) \\
\bigcap_{\alpha} V(I_{\alpha}) &= V(\bigcup_{\alpha} I_{\alpha}).
\end{align*}
$$
Example

Suppose R_2, R_2, \ldots, R_n are commutative rings and $R = R_1 \times R_2 \times \cdots \times R_n$ is their direct product. Observe:

1. If $1 = e_1 + e_2 + \cdots + e_n$, $e_i \in R_i$, then $R_i = Re_i$ and $e_i e_j = 0$ if $i \neq j$.

2. Because of $e_i e_j = 0$ for $i \neq j$, if P is a prime ideal of R and some $e_i \notin P$ then the other $e_j \in P$. This shows $P = R_1 \times \cdots \times P_i \times \cdots \times R_n$, where P_i is a prime ideal of R_i, $R/P = R_i/P_i$.

3. $	ext{Spec}(R) = \text{Spec}(R_1) \cup \cdots \cup \text{Spec}(R_n)$.

4. In particular, if $R_1 = R_2 = \cdots = R_n = \mathbf{K}$, \mathbf{K} a field, the $	ext{Spec}(R)$ is a set of n points with the discrete topology.
Irreducible Representation

Proposition

Let I be an ideal of the Noetherian ring R and let

$$I = Q_1 \cap Q_2 \cap \cdots \cap Q_n,$$

be a primary representation. Then

$$V(I) = V(P'_1) \cup V(P'_2) \cup \cdots \cup V(P'_m),$$

where the P'_j are the minimal primes amongst the $\sqrt{Q_i}$, is the unique irreducible representation of $V(I)$.
Morphisms

Proposition

If R is a commutative ring, $\text{Spec}(R)$ is quasi-compact. (Not necessarily Hausdorff.)

Proof.

Let $\{D(I_\alpha)\}$ be an open cover of X

$$X = \bigcup_{\alpha} D(I_\alpha) = \sum_{\alpha} I_\alpha = D(1).$$

This means that there is a finite sum

$$\sum_{i=1}^{n} I_{\alpha_i} = R,$$

and therefore $X = \bigcup_{i=1}^{n} D(I_{\alpha_i}).$
Proposition

If \(\varphi : R \rightarrow S \) is a homomorphism of commutative rings \((\varphi(1_R) = 1_S)\), then the mapping

\[
\Phi : \text{Spec} (S) \rightarrow \text{Spec} (R),
\]

given by \(\Phi(Q) = \varphi^{-1}(Q) \), is continuous.

Proof.

If \(D(I) \) is an open set of \(\text{Spec} (R) \), \(\varphi^{-1}(D(I)) = D(IS) \).
Assignment #9

Do 1 problem.
For the ring $R = \mathbb{Z}[T]$

1. Describe (with proofs) its prime ideals, that is the points of $\text{Spec} \ (R)$.

2. Describe (with proofs) its maximal ideals, that is the closed points of $\text{Spec} \ (R)$.

3. Let X be a compact, Hausdorff space and denote by A the ring of real continuous functions on X.
 - If M is a maximal ideal of A prove that there is a point $p \in X$ such that $M = \{ f(x) \in A : f(p) = 0 \}$.
 - Prove that there is a homeomorphism of topological spaces $X \approx \text{MaxSpec}(A)$.
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. **Integral Extensions**
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Integral Extensions

Let $R \hookrightarrow S$ be commutative rings.

Definition

$s \in S$ is integral over R if there is an equation

$$s^n + a_{n-1}s^{n-1} + \cdots + a_1 s + a_0 = 0, \quad a_i \in R.$$

Proposition

$s \in S$ is integral over R if and only if the subring $R[s]$ of S generated by s is a finitely generated R-module.
Would like to prove [as done first by Weierstrass] that if \(s_1 \) and \(s_2 \) in \(S \) are integral over \(R \) then

- \(s_1 + s_2 \) is integral over \(R \);
- \(s_1 s_2 \) is integral over \(R \).

The key to their proof is the fact that both \(s_1 + s_2 \) and \(s_1 s_2 \) are elements of the subring \(R[s_1, s_2] \) which is finitely generated as an \(R \)-module

\[
R[s_1, s_2] = \sum_{i,j} R s_1^i s_2^j,
\]

where \(i \) and \(j \) are bounded by the degrees of the equations satisfied by \(s_1 \) and \(s_2 \).
Integrality Criterion

Proposition

Let M be a finitely generated R-module and $S = R[u]$ a ring such that $uM \subset M$. If M is a faithful S-module then u is integral over R.

Proof. Let x_1, \ldots, x_n be a set of R-generators of M. we have a set of relations with $a_{ij} \in R$

\[
ux_1 = a_{11}x_1 + \cdots + a_{1n}x_n \\
\vdots \\
u x_n = a_{n1}x_1 + \cdots + a_{nn}x_n
\]
Cayley-Hamilton

That is

\[0 = (a_{11} - u)x_1 + \cdots + a_{1n}x_n \]
\[\vdots \]
\[0 = a_{n1}x_1 + \cdots + (a_{nn} - u)x_n \]

Which we rewrite in matrix form

\[
\begin{bmatrix}
 a_{11} - u & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn} - u
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 \vdots \\
 0
\end{bmatrix}
= A[x] = O.
\]
Thus

\[(\text{adj } A)A[x] = \det A \cdot [x] = O.\]

This means that \(\det A\) annihilates each generator \(x_i\) of \(M\) and therefore \(\det A = 0\).

But

\[\det A = \pm u^n + \text{lower powers of } u \text{ with coefficients in } R\]

This shows that \(u\) is integral over \(R\).
Why are we allowed to write $\text{adj } \mathbf{A} \cdot \mathbf{A} = \det \mathbf{A} \cdot \mathbf{I}$ when the entries of \mathbf{A} lie in a commutative ring?

If $T = \mathbb{Z}[x_{ij}, 1 \leq i, j \leq n]$ is a ring of polynomials in the indeterminates x_{ij}, and use them as the entries of a matrix \mathbf{B}, certainly the formula $\text{adj } \mathbf{B} \cdot \mathbf{B} = \det \mathbf{B} \cdot \mathbf{I}$ makes sense since T lies in a field.

Now define a ring homomorphism $\phi : T \to R$, with $\phi(x_{ij})$ the corresponding entry in \mathbf{A}, to get the desired equality.
In our application, $M = R[s_1, s_2]$ and u is either $s_1 + s_2$ or $s_1 s_2$, and certainly M is faithful since $1 \in M$.

Corollary

If $R \hookrightarrow S$ are commutative rings, and s_1, s_2, \ldots, s_n are integral over R, then any element of $R[s_1, \ldots, s_n]$ is integral over R. Moreover, if T is the set of elements of S integral over R, T is a subring. It is called the integral closure of R in S.

Definition

If $T = S$, S is called an integral extension of R.
Transitivity

Proposition

If $R \hookrightarrow S_1 \hookrightarrow S_2$ are commutative rings with S_1 integral over R and S_2 integral over S_1, then S_2 is integral over R.

Proof. Let $u \in S_2$ be integral over S_1

$$u^n + s_{n-1}u^{n-1} + \cdots + s_1u + s_0 = 0, \quad s_i \in S_1.$$

It suffices to observe that

$$M = R[u, s_{n-1}, \ldots, s_1, s_0]$$

is a finitely generated R-module.
Surjections

Another use of the Cayley-Hamilton theorem is the following property of surjective epimorphims of modules:

Theorem

Let R be a commutative ring and M a finitely generated R. If $\varphi : M \to M$ is a surjective R-module homomorphism, then φ is an isomorphism.

Proof. We first turn M into a module over the ring of polynomials $S = R[t]$ by setting $t \cdot m = \varphi(m)$ for $m \in M$.

The assumption means that $tM = M$. Using the proof of Cayley-Hamilton, we have
\[
\begin{bmatrix}
ta_{11} - 1 & \cdots & ta_{1n} \\
\vdots & \ddots & \vdots \\
ta_{n1} & \cdots & ta_{nn} - 1
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n
\end{bmatrix}
= \begin{bmatrix}
0 \\
\vdots \\
0
\end{bmatrix}
= A[x] = O.
\]

Which implies that \(\det A \) annihilates \(M \). Since

\[\det A = \pm 1 + tf(t),\]

it is clear that \(t \cdot m \neq 0 \) for \(m \neq 0 \), that is \(\phi \) is one-to-one.
Jacobson Radical

Definition
Let R be a commutative ring. Its Jacobson radical is the intersection $\bigcap Q$ of all maximal (proper) ideals.

Example: If R is a local ring, its Jacobson radical is its unique maximal ideal m.

If $R = \mathbb{Z}$, or $R = k[t]$, polynomial ring over the field k, then (0) is the Jacobson radical: from the infinity of prime elements.
Proposition

The Jacobson radical J of R is the set

$$J' = \{ a \in R : 1 + ra \text{ is invertible for all } r \in R \}.$$

Proof. If $a \in J$, then $1 + ra$ cannot be contained in any proper maximal ideal, that is it must be invertible.
Conversely, if $a \in J'$, suppose a does not belong to the maximal ideal Q. Therefore

$$(a, Q) = R$$

which means there is an equation $ra + q = 1$, $q \in Q$, and q would be invertible.
Nakayama Lemma

Theorem (Nakayama Lemma)

Let M be a finitely generated R module and J its Jacobson radical. If

$$M = JM,$$

then $M = 0$.

Proof. If M is cyclic, this is clear: $M = (x)$ implies $x = ux$ for some $u \in J$, so that $(1 - u)x = 0$, which implies $x = 0$ since $1 - u$ is invertible.

We are going to argue by induction on the minimal number of generators of M. Suppose $M = (x_1, \ldots, x_n)$. By assumption $x_1 \in JM$, that is we can write

$$x_1 = u_1 x_1 + u_2 x_2 + \cdots + u_n x_n, \quad u_i \in J.$$
Which we rewrite as

\[(1 - u_1)x_1 = u_2x_2 + \cdots + u_nx_n\]

This shows that \(x_1 \in J(x_2, \ldots, x_n)\), and therefore \(M = (x_2, \ldots, x_n)\).

Corollary

Let \(M\) be a finitely generated \(R\) module and \(N\) a submodule. If \(M = N + JM\) then \(M = N\).

Proof.

Apply the Nakayama Lemma to the quotient module \(M/N\)

\[M/N = N + JM/N = J(M/N).\]
Scholium

Let R be a commutative ring and M a finitely generated R-module. If for some ideal I, $IM = M$, then $(1 + a)M = 0$ for some $a \in I$.

Proof.

If $M = (x_1, \ldots, x_n)$, from the proof of Cayley-Hamilton, there are $a_{ij} \in I$

$$
\begin{bmatrix}
 a_{11} - 1 & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn} - 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 \vdots \\
 0
\end{bmatrix} = A[x] = 0.
$$

Which implies that $\det A$ annihilates M. Since $\det A = \pm 1 + a$, $a \in I$, done.
Corollary

Let R be a commutative ring and I a finitely generated ideal. Then $I = I^2$ if and only if I is generated by an idempotent, that is $I = Re, e^2 = e$.

Proof.

If $(1 + a)I = 0$, $I \subset (a)$ and $a^2 = a$.

\square
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Integral Morphisms

Let \(\varphi : R \to S \) an injective homomorphism of commutative rings.

Theorem (Lying-Over Theorem)

If \(S \) is integral over \(R \) then for each \(\mathfrak{p} \in \text{Spec}(R) \) there is \(P \in \text{Spec}(S) \) such that \(\mathfrak{p} = P \cap R \), that is the morphism

\[
\text{Spec}(S) \to \text{Spec}(R)
\]

is surjective.
Proposition

If S is integral over R and T is a multiplicative set of R, then $T^{-1}S$ is integral over $T^{-1}R$.

Proof.

Let $s/t \in T^{-1}S$. s satisfies an equation

$$s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0 = 0, \quad a_i \in R.$$

Then

$$(s/t)^n + a_{n-1}/t(s/t)^{n-1} + \cdots + a_1/t^{n-1}s/t + a_0/t^n = 0,$$

$$a_i/t^{n-i} \in T^{-1}R.$$
Proof of Lying-Over

Suppose \(p \in \text{Spec}(R) \). Consider the integral extension \(R_p \hookrightarrow S_p \).

The maximal ideal of \(R_p \) is \(m = pR_p \).

Claim: \(mS_p \neq S_p \).

Otherwise we would have

\[
1 \in mS_p
\]

\[
1 = \sum_{i=1}^{n} a_is_i/t_i, \quad a_i \in m, \quad s_i \in S, \quad t_i \in R \setminus p
\]
1. Set $S' = R_p[s_1, \ldots, s_n]$.
2. S' is a finitely generated R_p-module with $S' = mS'$. By Nakayama Lemma, $S' = 0$.
3. Since $mS_p \neq S_p$, it is contained in a prime ideal P' of S_p. In particular, $P' \cap R_p = m$.
4. Since $P' = p_P$ for some $P \in \text{Spec}(S)$, it is clear that $P \cap R = p$, as desired.
Going-Up Theorem

Theorem

Let \(R \hookrightarrow S \) be an integral extension of commutative rings. Let \(p_1 \subsetneq p_2 \) be prime ideals of \(R \) and suppose \(P_1 \) is a prime ideal of \(S \) such that \(P_1 \cap R = p_1 \). Then there is a prime ideal \(P_1 \subsetneq P_2 \) of \(S \) such that \(P_2 \cap R = p_2 \).

Proof. Consider the diagram

\[
\begin{array}{ccc}
R & \hookrightarrow & S \\
\downarrow & & \downarrow \\
R/p_1 & \hookrightarrow & S/P_1
\end{array}
\]

Now apply the Lying-Over theorem to the integral extension

\(R/p_1 \hookrightarrow S/P_1 \).
Going-Down Theorem

? Is there

Theorem (Going-Down Theorem)

Let $R \hookrightarrow S$ be an integral extension of commutative rings. Let $p_1 \subsetneq p_2$ be prime ideals of R and suppose P_2 is a prime ideal of S such that $P_2 \cap R = p_2$. Then there is a prime ideal $P_1 \subsetneq P_2$ of S such that $P_1 \cap R = p_1$.

Yes, but needs additional assumptions. Proof uses some basic Galois theory.
Let $R \hookrightarrow S$ be an integral extension. Prove the following assertions:

1. If R and S are integral domains and one of them is a field, then the other is also a field.

2. Equivalently: Let $P \in \text{Spec}(S)$ and $p \in \text{Spec}(R)$ and $P \cap R = p$. Then P is maximal iff p is maximal.
Outline

1. Rings and Modules
2. Chain Conditions
3. Assignment #6
4. Prime Ideals
5. Assignment #7
6. Primary Decomposition
7. Intro Noetherian Rings
8. Assignment #8
9. Homework
10. Modules of Fractions
11. Assignment #9
12. Integral Extensions
13. Integral Morphisms
14. Assignment #10
15. TakeHome #1
Take Home #1

Do 5 problems.

- Describe [with proof] a method to construct a regular pentagon with ruler and compass.
- Show that if \(n \geq 3 \), then \(x^{2n} + x + 1 \) is reducible over \(\mathbb{Z}_2 \).
- Describe (with proofs) the maximal ideals of \(R = \mathbb{Z}[T] \), that is the closed points of \(\text{Spec} (R) \). \textbf{Achtung:} Pay attention to polynomials such as \(aT - 1 \).
- Let \(R = k[x_1, \ldots, x_n, \ldots] \), the ring of polynomials in a countable set of indeterminates over the field \(k \). Prove that every ideal of \(R \) admits a countable number of generators.
- Find the kernel of the homomorphism (\(K \) is a field)
 \[
 \varphi : K[x, y, z] \longrightarrow K[t],
 \]
 defined by \(\varphi(x) = t^4 \), \(\varphi(y) = t^5 \) and \(\varphi(z) = t^7 \).
- \(\varphi : \mathbb{Q}/\mathbb{Z} \rightarrow \mathbb{Q}/\mathbb{Z} \) is a one-one group homomorphism, prove it is onto. (You may want to look at the action on the primary components.)