Matrix Representation

We first discuss how to represent some linear transformations $\mathbf{T} : \mathbf{V} \rightarrow \mathbf{W}$ by matrices. Think of \mathbf{V} and \mathbf{W} as \mathbb{R}^n or \mathbb{C}^n. It is a process akin to representing vectors by coordinates. Recall that if $v \in \mathbf{V}$ and $\mathcal{B} = v_1, \ldots, v_n$ is a basis of \mathbf{V}, we have a unique expression

$$v = x_1 v_1 + \cdots + x_n v_n.$$

We say that the x_i are the coordinates of v with respect to \mathcal{B}. We write as

$$[v]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

If $\mathcal{C} = \{w_1, \ldots, w_m\}$ is a basis of \mathbf{W}, we would like to find the coordinates of $\mathbf{T}(v)$ in the basis \mathcal{C}

$$[\mathbf{T}(v)]_{\mathcal{C}} = \begin{bmatrix} ? \end{bmatrix}.$$
In other words, if $\mathbf{v} = x_1 \mathbf{v}_1 + \cdots + x_n \mathbf{v}_n$,

$$\mathbf{T}(\mathbf{v}) = y_1 \mathbf{w}_1 + \cdots + y_m \mathbf{w}_m,$$

we want to describe the y_i in terms of the x_j. The process will be called a matrix representation. It comes about as follows:

$$\sum y_i w_i = \mathbf{T}(\sum x_j \mathbf{v}_j) = \sum x_j \mathbf{T}(\mathbf{v}_j)$$

Thus if we have the coordinates of the $\mathbf{T}(\mathbf{v}_j)$,

$$\mathbf{T}(\mathbf{v}_j) = \begin{bmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{bmatrix}$$

we have

$$\begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \sum x_j \begin{bmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{bmatrix}$$
More pictorially

\[
[T(v)]_C = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = [T]_B^C \cdot [v]_B
\]

The \(n \times m \) matrix \([T]_B^C\)

is called the matrix representation of \(T \) relative to the bases \(B \) of \(V \) and \(C \) of \(W \).
Quickly: Once bases \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \) have been chosen, \(T \) is represented by

\[
\begin{bmatrix}
a_{ij}
\end{bmatrix}
\]

where the entries come from

\[T(v_j) = \sum_{i=1}^{m} a_{ij}w_i. \]
Example

Recall the transpose operation on a square matrix A: if a_{ij} is the (i, j)-entry of A, the (i, j)-entry of A^t is a_{ji}. This is a linear transformation T on the space $M_n(F)$:

$$(A + B)^t = A^t + B^t, \quad (cA)^t = cA^t.$$

Let us find its matrix representation on $M_2(F)$. This space has the basis

$$v_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$
Since

\[T(v_1) = v_1, \quad T(v_2) = v_3, \quad T(v_3) = v_2, \quad T(v_4) = v_4, \]

the matrix representation of transposing is

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Let $\mathbb{R}_3[x]$ be the space of real polynomials of degree at most 3 and T the differentiation operator.

A basis here are the polynomials $1, x, x^2, x^3$. The corresponding matrix representation is

$$
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{pmatrix}
$$
Consider the following differential equations (or systems of)

\[y' = ay, \quad a \in \mathbb{R} \]

\[y'' + ay' + by = 0, \quad a, b \in \mathbb{R} \]

\[
\begin{bmatrix}
 y_1' \\
 y_2'
\end{bmatrix}
=
\begin{bmatrix}
 10y_1 + 3y_2 \\
 3y_1 + 2y_2
\end{bmatrix}
\]

Question: What are their resemblances? Which ones can we solve directly?

They are equations, or systems, of linear differential equations with constant coefficients.
The first equation, \(y' = ay \), is the easiest to deal with: \(y = ce^{at} \) is the general solution.

We will argue that the others, with a formulation using vectors and matrices, have the same kind of solution. Let us do the last one first. Set

\[
Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \quad Y' = \begin{bmatrix} y'_1 \\ y'_2 \end{bmatrix}, \quad A = \begin{bmatrix} 10 & 3 \\ 3 & 2 \end{bmatrix}
\]

Now observe:

\[Y' = AY. \]

Question: This looks like \(y' = ay \), which has \(y = ce^{at} \) for solution. You should be tempted to expect the solution to be

\[Y = Ce^{tA}. \]

What is \(e^{tA} \), the **exponential** of the matrix \(tA \)? What could it be?
Let us turn to the second order D.E.

\[y'' + ay' + by = 0 \]

If we set \(z_1 = y \) and \(z_2 = y' = z_1' \),
\[z_2' = y'' = -ay' - by = -bz_1 - az_2 \]
which can be written in matrix formulation as

\[
\begin{bmatrix}
 z_1 \\
 z_2
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
 z_1' \\
 z_2'
\end{bmatrix}
\]

\[\mathbf{A} = \begin{bmatrix} 0 & -b \\ 1 & -a \end{bmatrix} \]

We get

\[\mathbf{Z}' = \mathbf{A}\mathbf{Z} \]

as above \(\mathbf{Z} = \mathbf{C} e^{t\mathbf{A}} \) if we could make sense of then exponential of a matrix.
The function e^x has a power series expansion

$$e^x = 1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!} + \cdots$$

If we replace x by the square matrix A (and 1 by I), we get

$$e^A = I + A + \frac{A^2}{2} + \cdots + \frac{A^n}{n!} + \cdots,$$

We just must make sure that a theory of series of makes sense. The answer will be sure. Think about the adjustments to be made.
Just for fun let us calculate the exponential of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

$A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$, $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, $A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$

$e^A = \begin{bmatrix} e & e \\ 0 & e \end{bmatrix}$
Convergence of e^A

That

$$e^A = I + A + \frac{A^2}{2} + \cdots + \frac{A^n}{n!} + \cdots$$

makes sense is due to the power of $n!$:

Suppose $A = [a_{ij}]$ is $m \times m$ and that the absolute value of its entries $|a_{ij}| \leq r$. This implies that the entries of A^2

$$\left| \sum_{k=1}^{m} a_{ik}a_{kj} \right| \leq mr^2$$

Similarly one finds that the entries of A^n are bounded by

$$m^{n-1}r^n$$
This implies that the series in any entry of e^A is bounded by the series

$$\sum_{n=0}^{\infty} \frac{m^{n-1} r^n}{n!}$$

that is convergent [e.g. use ratio test].

This proves e^A makes sense since the series in each of its entries is absolutely convergent.
Let us show a long application:

$$\det(e^A) = e^{\text{Trace}(A)}$$

This is obvious if A is a diagonal matrix,

$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}, \quad e^A = \begin{bmatrix} e^a & 0 & 0 \\ 0 & e^b & 0 \\ 0 & 0 & e^c \end{bmatrix}, \quad \det(e^A) = e^{a+b+c},$$

but in general...
Let \mathbf{V} be a finite dimensional vector space and

$$\mathbf{T} : \mathbf{V} \rightarrow \mathbf{V}$$

a linear transformation.

Question: Is there a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$ of \mathbf{V} so that the matrix representation

$$[\mathbf{T}]_{\mathcal{B}}$$

is as ‘simple’ [e.g. with plenty of 0’s] as possible?

Answer: Well... but for the most ‘interesting’ matrices the answer is YES.
Invariant subspace

Let \(V \) be a finite dimensional vector space and \(T : V \to V \) a linear transformation. If \(W \subset V \) is a subspace, it is of interest to know whether for \(w \in W \) its image \(T(w) \in W \). Clearly this will not happen often.

Definition

W is a **T-invariant subspace** if \(T(W) \subset W \). That is, the restriction of (the function) \(T \) to \(W \) is a linear transformation of it. We denote the restriction of \(T \) to \(W \) by \(T_W \).
Let us see what this implies for the matrix representation of T. Let $B = \{w_1, \ldots, w_r\}$ be a basis of W, and complete it to a basis of V

$$A = \{w_1, \ldots, w_r, v_{r+1}, \ldots, v_n\}.$$

Since $T(w_i) \in W$, it is a linear combination of the first r vectors, the first r columns of the matrix is

$$[T]_A = \begin{bmatrix} [T_{w_i}]_B & \ast & \cdots & \ast \\ O_{(n-r)\times r} & \ast & \cdots & \ast \\ \end{bmatrix} = \begin{bmatrix} a & b & \ast & \cdots & \ast \\ c & d & \ast & \cdots & \ast \\ 0 & 0 & \ast & \cdots & \ast \\ 0 & 0 & \ast & \cdots & \ast \\ \end{bmatrix}$$
Blocks

Suppose T is a L.T. of vector space V with a basis $\mathcal{A} = v_1, \ldots, v_r, v_{r+1}, \ldots, v_n$. Suppose $T(v_i)$ for $i \leq r$, is a linear combination of the first r basis vectors, and $T(v_i)$ for $i > r$, is a linear combination of the last $n - r$ basis vectors.

Claim: The matrix representation has the block format

$$[T]_{\mathcal{A}} = \begin{bmatrix}
\begin{array}{c}
 r \times r \\
 O
\end{array} &
\begin{array}{c}
 O \\
(n-r) \times (n-r)
\end{array}
\end{bmatrix}$$

This can be refined to more than two blocks. The extreme case is when all blocks are 1×1. The representation is then said to be diagonal.
The extreme case of an invariant subspace is one of the top 5 notions of L.A.:

Definition

An **eigenvector** of the linear transformation T is a **nonzero** vector v such that

$$T(v) = \lambda \cdot v.$$

The scalar λ is called the (corresponding) **eigenvalue**.

Means: The line Fv is an invariant subspace of T. Note that v must be **nonzero**, but that λ could be zero. Observe who comes first: **eigenvector** \rightarrow **eigenvalue**.
To keep in mind:

\[\mathbf{v} \neq \mathbf{O}, \quad \mathbf{T}(\mathbf{v}) = \lambda \mathbf{v} \]

Note: Any nonzero multiple of \(\mathbf{v} \) is also an eigenvector [with the same eigenvalue]

\[a\mathbf{v} \neq 0 \quad \mathbf{T}(a\mathbf{v}) = a\mathbf{T}(\mathbf{v}) = a\lambda \mathbf{v} = \lambda (a\mathbf{v}) \]

The subspace spanned by \(\mathbf{v} \) is \textbf{invariant} under \(\mathbf{T} \)
Examples

- One of the most important L.T. of Mathematics is $T := \frac{d}{dt}$. (On the appropriate V.S.) Its eigenvectors are
 \[\frac{d}{dt}(f(t)) = \lambda \cdot f(t), \]
 that is $f(t) = e^{\lambda t}$ and its nonzero scalar multiples $ce^{\lambda t}$.
- Let T be the identity L.T. I. Then any nonzero vector is a eigenvector. Same property for the [null] O mapping.
• For an angle $0 < \alpha < \pi$, let

$$\mathbf{T}(x, y) = (x \cos \alpha + y \sin \alpha, -x \sin \alpha + y \cos \alpha)$$

This is a rotation in the plane by α degrees. Clearly there is no nonzero vector v in the real plane \mathbb{R}^2 that is aligned with $\mathbf{T}(v)$.

• Let \mathbf{T} be the L.T.

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{bmatrix}$$

Its eigenvectors are (and their nonzero multiples)

$$\mathbf{T}(i) = 1 \cdot i, \quad \mathbf{T}(j) = 2 \cdot j, \quad \mathbf{T}(k) = 0 \cdot k$$
If T is a linear transformation of F^2 with a matrix representation

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix},$$

we know that

$$A^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Thus, if

$$A(v) = \lambda v, \quad v \neq 0$$

so $\lambda = 0$ since $v \neq O$.
Let V be the vector space of all $n \times n$ real matrices, and let T be the transformation

$$ T(A) = A^t $$

T is a linear transformation. If $A \neq O$ is one of its eigenvectors,

$$ A^t = \lambda A $$

So, transposing again we get

$$ A = (A^t)^t = \lambda A^t = \lambda^2 A $$

$$ (\lambda^2 - 1)A = O $$

This means that $\lambda = \pm 1$
- If $\lambda = 1$, A is symmetric
- If $\lambda = -1$, A is skew-symmetric
Given a n-by-n matrix A [usually representing some linear transformation T], how are the eigenvectors to be found? Although the eigenvalues come after the eigenvectors, in some approaches they will appear first. Look at the following analysis: $A\mathbf{v} = \lambda \mathbf{v}$, for $\mathbf{v} \neq \mathbf{0}$ means that

$$(A - \lambda I_n)\mathbf{v} = \mathbf{0},$$

Conclusion: \mathbf{v} is a nonzero vector of the nullspace of $A - \lambda I_n$ and therefore $\text{rank}(A - \lambda I_n) < n$. This in turn means that

$$\det(A - \lambda I_n) = 0.$$
The **characteristic polynomial** of the n-by-n matrix $A = [a_{ij}]$ is the polynomial

$$p(x) = \det(A - xI_n) = \det \begin{bmatrix} a_{11} - x & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} - x \end{bmatrix}.$$

The equation $p(x) = 0$ is called the **characteristic equation**.

Observe that $\det(A - xI_n)$ is a polynomial of degree n,

$$\det(A - xI_n) = (-1)^n x^n + c_{n-1} x^{n-1} + \cdots + c_0.$$
The characteristic polynomial of $\mathbf{A} = \begin{bmatrix} 10 & 3 \\ 3 & 2 \end{bmatrix}$ is

$$\det \begin{bmatrix} 10 - x & 3 \\ 3 & 2 - x \end{bmatrix} = (10 - x)(2 - x) - 9 = x^2 - 12x + 11$$

Its roots are

$$\lambda = \frac{12 \pm \sqrt{12^2 - 4 \times 11}}{2} = 6 \pm 5$$
With the eigenvalues in hand we solve for the eigenvectors.

$\lambda = 11$: Will determine the nullspace of $A - 11I_2$

\[
\begin{bmatrix}
10 - 11 & 3 \\
3 & 2 - 11
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]

$v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

$\lambda = 1$: Will determine the nullspace of $A - I_2$

\[
\begin{bmatrix}
10 - 1 & 3 \\
3 & 2 - 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
3 & 1 & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

$v_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$
Let us Verify that it will work out for any real symmetric matrix

\[A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \]

The characteristic polynomial is

\[
\det \begin{bmatrix} a-x & b \\ b & c-x \end{bmatrix} = (a-x)(c-x)-b^2 = x^2-(a+c)x+ac-b^2,
\]

whose roots are

\[
\lambda = \frac{a+c \pm \sqrt{(a+c)^2-4(ac-b^2)}}{2}
\]

Incredibly (?) the quantity under the sign is \((a - c)^2 + 4b^2 \geq 0\), so either there are two distinct real roots or \(a = c, b = 0\). In both cases the matrix is diagonalizable.
A different kind is the rotation R_α by α degrees in the plane \mathbb{R}^2:

$$
\begin{bmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{bmatrix}
.$$

Its characteristic polynomial is

$$
\det \begin{bmatrix}
\cos \alpha - x & -\sin \alpha \\
\sin \alpha & \cos \alpha - x
\end{bmatrix} = (\cos \alpha - x)^2 + \sin^2 \alpha = x^2 - (2 \cos \alpha) x + 1.
$$

Its roots are

$$
\lambda = \frac{2 \cos \alpha \pm \sqrt{4 \cos^2 \alpha - 4}}{2},
$$

which is not real unless $\alpha = 0, \pi$.

We already know that rotations $0 < \alpha < \pi$ have no real eigenvalues. Let us try $\alpha = \pi/2$ anyway: $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. The characteristic polynomial is $x^2 + 1$, so the (complex) eigenvalues are $\lambda = \pm i$.

$\lambda = i$: Will determine the nullspace of $A - iI_2$

$$\begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \rightarrow \begin{bmatrix} -i & 1 \\ 0 & 0 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 1 \\ i \end{bmatrix}$$

$\lambda = -i$: Will determine the nullspace of $A + iI_2$

$$\begin{bmatrix} i & 1 \\ -1 & i \end{bmatrix} \rightarrow \begin{bmatrix} i & 1 \\ 0 & 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
Proposition

Let A be a n-by-n matrix over the field F. A scalar $\lambda \in F$ is an eigenvalue for some eigenvector $v \in F^n$ iff λ is a root of the polynomial $\det(A - xI_n)$.

Proof.

We have already observed that if $Av = \lambda v$, $v \neq 0$, then λ is a root of the char polynomial. Conversely, if $\det(A - \lambda I_n) = 0$, then $\text{rank}(A - \lambda I_n) < n$. This implies, by the dimension formula, that the nullspace of $A - \lambda I_n \neq O$. Any nonzero vector in this nullspace will satisfy

$$Av = \lambda v.$$
Corollary

The number of distinct eigenvalues of the n-by-n matrix A is at most n. (The set of eigenvalues of a matrix—or of a linear transformation is called its spectrum).
It seems that we have only defined the characteristic polynomial for matrices. Suppose T is a L.T. If we have two bases A, B of the vector space, we have two representations

$$A = [T]_A, \quad B = [T]_B$$

and therefore we have, apparently, two possibly different polynomials

$$\det(A - xI_n), \quad \det(B - xI_n).$$

But we proved that A and B are related: There is an invertible matrix P such that $B = P^{-1}AP$. Now observe
\[
\begin{align*}
\det(B - xI_n) & = \det(P^{-1}AP - xI_n) = \det(P^{-1}AP - P^{-1}xI_nP) \\
& = \det(P^{-1})(A - xI_n)P) \\
& = \det(P^{-1}) \det(A - xI_n) \det(P) \\
& = \det(A - xI_n)
\end{align*}
\]

Conclusion: The characteristic polynomial is the same for all representations of \(T \).
Eigenspaces

Definition

If λ is an eigenvalue of A, the nullspace of $A - \lambda I_n$, denoted by E_λ, is called the eigenspace associated to λ.

Observe that E_λ is invariant under A: If $v \in E_\lambda$ then $Av \in E_\lambda$.
If $f(x) = a_nx^n + \cdots + a_0$ is a polynomial of degree n, with coefficients in the field \mathbb{F} a root is a scalar r such that $f(r) = 0$. It is a hard problem to find r.

Proposition

If $f(x)$ and $g(x)$ are two polynomials, then there exist polynomials $q(x)$ and $r(x)$ where

$$f(x) = q(x)g(x) + r(x),$$

where $r(x) = 0$ or degree $r(x) < \text{degree } g(x)$.

$q(x)$ is called the **quotient**, and $r(x)$ the **remainder** of the division of $f(x)$ by $g(x)$. They are found by the **long division** algorithm.
Corollary

If \(r \) is a root of the nonzero polynomial \(f(x) \), then
\[
 f(x) = (x - r)q(x),
\]
where \(\deg q(x) = \deg f(x) - 1 \). As a consequence, a polynomial \(f(x) \) of degree \(n \) has at most \(n \) roots.

Proof.

Any other root \(s \) of \(f(x) \) satisfies
\[
 f(s) = q(s)(s - r) = 0,
\]
so \(q(s) = 0 \) since \(s - r \neq 0 \).
Algebraic multiplicity of a root

If \(f(x) = a_n x^n + \cdots + a_0 \) is a nonzero polynomial and \(r \) is one of its roots,

\[
f(x) = (x - r)g(x).
\]

It may occur that \(r \) is a root of \(g(x) \), \(g(x) = (x - r)h(x) \). As the degrees of the quotients decrease, we eventually have

\[
f(x) = (x - r)^s q(x), \quad q(r) \neq 0.
\]

Definition

We say that \(r \) is a root of \(f(x) \) of **order** or **multiplicity** \(s \).
Let λ be an eigenvalue of the matrix \mathbf{A}. There are two notions of multiplicity associated to λ:

- If λ is a root of order s of the characteristic polynomial $\det(\mathbf{A} - x\mathbf{I}_n)$, we say that λ has **algebraic multiplicity** s.
- If the eigenspace E_λ has dimension t, we say that λ has **geometric multiplicity** t.
Proposition

For any eigenvalue λ of a matrix A,

\[\text{algebraic multiplicity} \geq \text{geometric multiplicity}. \]

Proof.

Assume v_1, \ldots, v_t is a basis of E_λ, and we use it as the beginning of a basis for the whole vector space, the representation of the L.T. has the block format

\[
\begin{bmatrix}
\lambda I_t & B \\
O & C
\end{bmatrix},
\]

\[\det(A - xI_n) = (\lambda - x)^t \det(C - xI_{n-t}). \]
Properties of eigenvalues

Let \(A \) be a square matrix.

1. If \(\lambda \) is an eigenvalue of \(A \), then \(\lambda^2 \) is an eigenvalue of \(A^2 \):

\[
A^2(v) = A(A(v)) = A(\lambda v) = \lambda A(v) = \lambda \lambda v = \lambda^2 v.
\]

2. More generally, if \(g(x) \) is a polynomial (e.g. \(x^2 - 2x + 1 \)) then

\[
g(A)(v) = g(\lambda)v, \quad (A^2 - 2A + I)(v) = (\lambda^2 - 2\lambda + 1)(v).
\]

3. If \(A \) is invertible, \(A^{-1}(v) = \frac{1}{\lambda}v \).
1. If \(p(x) = \det(A - xI_n) = (-1)^n x^n + \cdots + a_0 \) is the characteristic polynomial of \(A \), then \(a_0 = \det(A) \). Plug in \(x = 0 \) in \(p(x) \).

2. If \(\lambda_1, \ldots, \lambda_n \) are the eigenvalues of \(A \), then

\[
\det(A) = \lambda_1 \cdot \lambda_2 \cdots \lambda_n.
\]

In the decomposition of \(p(x) \),

\[
p(x) = (-1)^n (x - \lambda_1) \cdots (x - \lambda_n),
\]

plug in \(x = 0 \) and use the observation above.
If the field is the complex number filed \mathbb{C}, any polynomial $f(x) \in \mathbb{C}[x]$ factors completely

$$f(x) = a_n(x - r_1) \cdots (x - r_n)$$

As a consequence, the eigenvalues of a complex matrix always exist in the field.

If A is a real matrix, its characteristic polynomial $p(x) = \det(A - xI_n)$ is a real polynomial and always have a full set $\lambda_1, \ldots, \lambda_n$ of complex eigenvalues, some of which may be real.
If \(\lambda = a + bi \), is a complex root of \(f(x) \), \(f(\lambda) = 0 \), observe that

\[
f(a + bi) = 0 \Rightarrow f(a - bi) = 0,
\]
because all coefficients of \(f(x) \) are real. Let us explain: Say

\[
7(a + bi)^3 - 2(a + bi)^2 + 117(a + bi) + \pi = 0.
\]

Complex conjugation, \(a + bi \rightarrow \overline{a + bi} = a - bi \) has the property: \(\overline{z_1z_2} = \overline{z_1} \cdot \overline{z_2} \). But if \(z_1 \), say, is real (like the coefficients of the polynomial), \(\overline{z_1} = z_1 \), so they are not affected by changing all \(a + bi \) into \(a - bi \). So if one is a root, so will be the other.

Thus the complex conjugate \(a - bi \) of an eigenvalue \(a + bi \) is also an eigenvalue: So complex eigenvalues of a real matrix occur in pairs.
Groups

Let G be a finite group. There are many injective homomorphisms

$$\varphi : G \rightarrow GL_n(\mathbb{C})$$

Thus we have many ways to view G as a group of linear transformations. It helps a lot to know

Theorem

Every $T \in G$ is diagonalizable.

You should ask how come, when being diagonalizable is kind of dicey.
Let \mathbf{T} be a L.T. (or matrix). Suppose there is a basis made up of eigenvectors, say $\mathcal{B} = \{v_1, \ldots, v_n\}$, $\mathbf{T}(v_i) = \lambda_i v_i$. The corresponding matrix representation is

$$[\mathbf{T}]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

This is not always possible: Let $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ whose characteristic polynomial is x^2. There is just one eigenvalue, $\lambda = 0$. But the corresponding eigenspace E_0 has for basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$. We do not have a basis of eigenvectors, so \mathbf{A} is not diagonalizable.
Let us explore what is needed to have a basis of eigenvectors.

Proposition

Let T be a linear transformation and let v_1, \ldots, v_r be a set of eigenvectors of T, associated to distinct eigenvalues $\lambda_1, \ldots, \lambda_r$. Then the v_i are linearly independent.
Proof. Suppose $c_1 v_1 + \cdots + c_r v_r = O$. Using induction on r, we are going to show that all $c_i = 0$. We are going to multiply the equation by λ_1 and apply T to it to obtain the following two equations:

$$\lambda_1 (c_1 v_1 + \cdots + c_r v_r) = \lambda_1 c_1 v_1 + \cdots + \lambda_1 c_r v_r = 0$$
$$T(c_1 v_1 + \cdots + c_r v_r) = \lambda_1 c_1 v_1 + \cdots + \lambda_r c_r v_r = 0$$

If we subtract one from the other we get the shorter equation,

$$(\lambda_2 - \lambda_1) c_2 v_2 + \cdots + (\lambda_r - \lambda_1) c_r v_r = 0$$

By the induction hypothesis, all $c_i(\lambda_i - \lambda_1) = 0$, for $i > 1$. Since $\lambda_i \neq \lambda_1$, this means $c_i = 0$ for $i > 1$. Finally, since $v_1 \neq 0$ this will imply $c_1 = 0$ as well.
Let $\lambda_1, \ldots, \lambda_r$ be the set of eigenvalues of T, and let $E_{\lambda_1}, \ldots, E_{\lambda_r}$ be the corresponding set of eigenspaces. For each of these we pick a basis B_i. For simplicity, take 3 eigenvalues and assume the bases chosen for the 3 eigenspaces are

$$\{ u_1, u_2, u_3 \}, \{ v_1, v_2 \}, \{ w_1, w_2 \}$$

Claim: These 7 vectors are linearly independent. Suppose

$$a_1 u_1 + a_2 u_2 + a_3 u_3 + b_1 v_1 + b_2 v_2 + c_1 w_1 + c_2 w_2 = 0,$$

which we write as $1 \cdot u + 1 \cdot v + 1 \cdot w = 0$. Note that if $u \neq 0$ it is an eigenvector (and v and w as well), by the Proposition, $u = v = w = 0$, and then that $a_1 = \cdots = c_2 = 0$, by the linear independence of the respective bases.
Theorem

Let \(\mathbf{A} \) be a \(n \times n \) matrix with \(n \) eigenvalues (maybe repeated). Then \(\mathbf{A} \) is diagonalizable iff for every eigenvalue its geometric multiplicity is equal to its algebraic multiplicity.

Proof. Let \(\lambda_1, \ldots, \lambda_r \) be the set of DISTINCT eigenvalues of \(\mathbf{A} \), and let \(E_{\lambda_1}, \ldots, E_{\lambda_r} \) be the corresponding set of eigenspaces. We have the equalities

\[
\sum_i \text{geom. mult. of } \lambda_i = \sum_i \dim E_{\lambda_i}
\]

\[
\sum_i \text{alg. mult. of } \lambda_i = n.
\]

Since \text{alg. mult. of } \lambda_i \geq \text{geom. mult. of } \lambda_i, \text{ if equality for each } i \text{ holds, the previous discussion shows that we can have a basis of eigenvectors by collecting bases in the } E_{\lambda_i}. \text{ The converse is clear.}
Corollary
Let A be a n-by-n matrix with n distinct eigenvalues. Then A is diagonalizable.

Theorem
Let A be a n-by-n matrix. A is invertible iff $\lambda = 0$ is not an eigenvalue.

Proof.
A is invertible iff it is one-one: $A(v) \neq 0 \cdot v$ if $v \neq O$.

\[
\begin{align*}
A(v) &= 0 \cdot v \\
\Rightarrow & \quad \text{(for } v \neq O) \\
A(v) &\neq 0 \\
\end{align*}
\]
Let A be a n-by-n matrix and assume $B = \{v_1, \ldots, v_n\}$ is a basis made up of its eigenvectors, $A(v_i) = \lambda_i v_i$. The matrix

$$P = [v_1 | \cdots | v_n]$$

is invertible since the v_i form a basis. **Claim:**

$$P^{-1}AP = D = \begin{bmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{bmatrix}$$

To prove we apply D to the standard basis e_1, \ldots, e_n. Note that $P(e_1) = v_1$. For instance

$$D(e_1) = P^{-1}(A(P(e_1))) = P^{-1}(A(v_1)) = P^{-1}(\lambda_1 v_1) = \lambda_1 P^{-1}(v_1) = \lambda_1 e_1$$
Note that if A is diagonalizable, that is there is an invertible matrix P such that $P^{-1}AP = D$ (= diagonal), a host of related matrices are also diagonalizable:

1. Any power of A is diagonalizable (let us do square):

$$D^2 = (P^{-1}AP)(P^{-1}AP) = P^{-1}A P P^{-1} = P^{-1}A^2P$$

and certainly D^2 is diagonal.

2. If A is invertible [and diagonalizable!] its inverse A^{-1} is also diagonalizable:

$$D^{-1} = (P^{-1}AP)^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P$$

3. If $g(x)$ is any polynomial and A is diagonalizable, then $g(A)$ is diagonalizable (check).
Diagonalization Summary

Let A be a n-by-n matrix for which we want to find a possible diagonalization.

1. Find the characteristic polynomial $p(x) = \det(A - xI_n)$. Rating: **Routine**, if at times long.

2. Decompose $p(x)$ and collect factors

 $$p(x) = (-1)^n(x - \lambda_1)^{m_1} \cdots (x - \lambda_r)^{m_r}$$

 Rating: **Very Hard**

3. For each λ_i find $\dim E_{\lambda_i}$ and check it is m_i. Rating: **Gaussian elim**

Comment: This is kind of vague. We need predictions. That is: Guarantees that certain kinds of matrices are diagonalizable.
Example: Let A be the real matrix

$$
\begin{bmatrix}
 2 & 1 & 1 \\
 0 & 1 & 2 \\
 0 & 0 & c
\end{bmatrix},
$$

where c is some number.

(a) What are the eigenvalues of A?

(b) If $c \neq 1, 2$, why is A diagonalizable? What happens when $c = 1$ or $c = 2$?

Answer: (a) The characteristic polynomial is

$$
\text{det}(A - xI_3) = (2 - x)(1 - x)(c - x),
$$

whose roots are the eigenvalues: $1, 2, c$.

(b) If $c \neq 1, 2$, there are [automatically] 3 independent eigenvectors and therefore the matrix is diagonalizable.
If \(c = 1 \) or \(c = 2 \), it may go either way [diagonalizable or not] so we must check further to see whether the geometric multiplicities are equal or not to the algebraic multiplicities. For \(c = 1 \): The nullspace of \(A - I_3 \)

\[
\begin{bmatrix}
1 & 1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

is generated by

\[
\begin{bmatrix}
-1 \\
1 \\
0 \\
\end{bmatrix}
\]

and \(A \) is not diagonalizable.

Doing likewise for \(c = 2 \) will again show that \(A \) is not diagonalizable.
Example:

Given the real matrix

\[
A = \begin{bmatrix}
2 & 0 & 3 \\
0 & 2 & 0 \\
3 & 0 & 5
\end{bmatrix}
\]

\[
A - xI_3 = \begin{bmatrix}
2 - x & 0 & 3 \\
0 & 2 - x & 0 \\
3 & 0 & 5 - x
\end{bmatrix}
\]

(a) Find its characteristic polynomial.
(b) Find its eigenvalues.
(c) Explain why \(A \) is diagonalizable. [You do not have to find the eigenvectors to answer.]

Answer: (a) To find \(\det(A - xI_3) \), we expand along the second column

\[
\det(A - xI_3) = (2 - x)((2 - x)(5 - x) - 9) = (2 - x)(x^2 - 7x + 1).
\]
(b) Use the quadratic formula to find the roots of the factor
\[x^2 - 7x + 1: \]
\[
= \frac{7 \pm \sqrt{49 - 4}}{2} = \frac{7 \pm 3\sqrt{5}}{2}
\]
Together with 2 these roots are the eigenvalues.

(c) Since the 3 eigenvalues are distinct, we have a basis of eigenvectors for \(\mathbb{R}^3 \) and \(A \) is diagonalizable.
Let λ be an eigenvalue of the matrix A: $Av = \lambda v$. To find $v \neq 0$ we find the nullspace of $A - \lambda I_n$.

Suppose a mistake was made and instead of λ we have $\lambda + \epsilon$. If this value is not an eigenvalue the nullspace of

$$A - (\lambda + \epsilon)I_n$$

is O, not a vector ‘close’ to v. What to do?
Some stability

Question: Assume A admits a basis of eigenvectors. How can we find one, or more eigenvectors, if we cannot solve the characteristic equation? Here is a popular technique. Let $u \in \mathbb{R}^n$ picked at random [?]. We know that

$$u = u_1 + u_2 + \cdots + u_r, \quad Au_i = \lambda_i u_i$$

where the u_i belong to different eigenspaces. Of course, the right hand of this equality is invisible to us. Let us assume $|\lambda_1| > |\lambda_i|, \quad i > 1$. Observe what happens when we apply A repeatedly to u:

$$A^n(u) = \lambda_1^n u_1 + \lambda_2^n u_2 + \cdots + \lambda_r^n u_r$$

The growth in the coordinates of $A^n(u)$ is coming from $\lambda_1^n u_1$.
If we compare the two vectors

\[A^n(u) = \lambda_1^n u_1 + \lambda_2^n u_2 + \cdots + \lambda_r^n u_r \]

\[A^{n+1}(u) = \lambda_1^{n+1} u_1 + \lambda_2^{n+1} u_2 + \cdots + \lambda_r^{n+1} u_r \]

It will follow that

\[\lim_{n \to \infty} \frac{\|A^{n+1}(u)\|}{\|A^n(u)\|} = |\lambda_1|, \]

more precisely: If we set \(v_n = \frac{A^n(u)}{\|A^n(u)\|} \), then

\[A(v_n) \approx \lambda_1 v_n, \quad n \gg 0. \]
Let us re-visit a problem and solve it in two different ways: It is the system of differential equations

\[
\begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix}, \quad \begin{bmatrix}
 y_1' \\
 y_2'
\end{bmatrix}, \quad \begin{bmatrix}
 10 & 3 \\
 3 & 2
\end{bmatrix}, \quad \begin{bmatrix}
 y_1' \\
 y_2'
\end{bmatrix} = \begin{bmatrix}
 10 & 3 \\
 3 & 2
\end{bmatrix} \begin{bmatrix}
 y_1 \\
 y_2
\end{bmatrix}.
\]

Earlier we found the eigenvalues and bases for the eigenspaces:

\[
\lambda = 11: \quad v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \lambda = 1: \quad v_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}
\]

If we change the coordinates

\[
Z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}, \quad Y = \begin{bmatrix} 3 & 1 \\ 1 & -3 \end{bmatrix} P
\]

Now observe:

\[
Z' = P^{-1} Y' = P^{-1} A Y = (P^{-1} A P) Z = \begin{bmatrix} 11 & 0 \\ 0 & 1 \end{bmatrix} Z.
\]
This is a system that is easy to solve

\[z_1' = 11z_1 \rightarrow z_1 = c_1 e^{11x} \]
\[z_2' = z_2 \rightarrow z_2 = c_2 e^x \]

From which we get the solution

\[Y = \begin{bmatrix} 3 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} c_1 e^{11x} \\ c_2 e^x \end{bmatrix} \]
Another solution

Let \(Y' = AY \) be a system of differential equations in the variable \(t \). If it is just \(y' = ay \), the solution would be \(y = ce^{at} \):

\[
y = ce^{ta} = c(1 + ta + t^2 \frac{a^2}{2} + \cdots + t^n \frac{a^n}{n!} + \cdots)
\]

Let us try the same with a matrix. If we replace \(a \) by the square matrix \(A \) (and 1 by \(I \)), we get

\[
e^{tA} = I + tA + t^2 \frac{A^2}{2} + \cdots + t^n \frac{A^n}{n!} + \cdots
\]

Note that the derivative of the \(n \)th term is

\[
nt^{n-1} \frac{A^n}{n!} = A(t^{n-1} \frac{A^{n-1}}{(n-1)!}),
\]

and thus if \(Y = e^{tA} \) then \(Y' = AY \).

We just must make sure that a theory of series makes sense and taking derivatives of these expressions makes sense. At the end we will also put in a constant: \(Y = e^{tA}Y_0 \).
The expression we wrote above for e^{tA} is actually a set of 2^2 series, one for each cell (i, j) of the 2-by-2 matrix. That is, when we consider the sum of the terms

$$t^n \frac{A^n}{n!}$$

we observe that convergence, for one, comes from the fact that the $n!$ factor grows much faster than the entries $A^n_{(i,j)}$. Let us give an example. Suppose A is a 2-by-2 diagonal matrix with 1 and 1 on the diagonal. A^n is also diagonal with entries 11^n and 1^n. Adding the series would give the matrix

$$\begin{bmatrix} e^{11t} & 0 \\ 0 & e^t \end{bmatrix} = \begin{bmatrix} 1 + 11t + 1/2(11t)^2 + \cdots & 0 \\ 0 & 1 + t + 1/2t^2 + \cdots \end{bmatrix}$$

Not only this is a nice computation, but tells us the same would work whenever A is a diagonal matrix. Let us show how it would work when A diagonalizable.
Let us show how compute e^{tA} if $A = PDP^{-1}$, with D diagonal.

Noting that

$$A^n = PD^nP^{-1},$$

we have

$$e^{tA} = \sum \frac{t^n}{n!} A^n = \sum \frac{t^n}{n!} PD^nP^{-1} = P(\sum \frac{t^n}{n!} D^n)P^{-1} = Pe^{tD}P^{-1}$$

Exercise: $\det e^A = e^{\text{Trace} (A)}$. (This is beautiful because while we have a great deal of trouble with e^A, its determinant is easy!)
Theorem

The solution of the differential equation $Y' = AY$ is

$$Y = e^{tA}C,$$

for some constant vector C.

Observe where the constant goes. If you set $t = 0$, $Y_0 = C$, that is the components of C are the initial condition: $y_1(0), y_2(0)$.

Clearly the method will work for matrices of any size.

If A is diagonalizable we know how to compute e^{tA}. If not ... also!
Let \(\mathbf{A} \) be a \(3 \times 3 \) real matrix with entries 0, \(\pm 1 \). Determine how large \(\det \mathbf{A} \) can be. Care to consider the \(4 \times 4 \) version?

Prove that for any real \(n \times n \) matrix \(\mathbf{A} \), \(\det(e^{\mathbf{A}}) = e^{\text{trace} (\mathbf{A})} \):

First prove for \(\mathbf{A} \) upper triangular, and then use the fact that there are complex matrices \(\mathbf{P} \) and \(\mathbf{B} \) such that \(\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{B} \), where \(\mathbf{B} \) is upper triangular.
Let V be a vector space over the field F. We want to develop a geometry for V. For that, it is helpful to have a notion of distance, or length. We will transport and then extend numerous constructions of ordinary geometry and their calculus.

We will restrict ourselves to the cases of $F = \mathbb{R}$, or $F = \mathbb{C}$. In the case of \mathbb{C}, we use the standard notation for the complex conjugate of the complex number $z = a + bi$

$$\bar{z} = a - bi.$$

Some of its properties are:

\[
\begin{align*}
 z\bar{z} &= a^2 + b^2 \\
 \bar{z_1} + \bar{z_2} &= \bar{z_1} + \bar{z_2} \\
 \bar{z_1} \cdot \bar{z_2} &= \bar{z_1} \cdot \bar{z_2} \\
 \frac{1}{\bar{z}} &= \frac{1}{z} \\
 z \neq 0
\end{align*}
\]
For certain operations, like solving polynomial equations, the polar representation of complex numbers

\[a + bi = r(\cos \theta + i \sin \theta), \quad r = \sqrt{a^2 + b^2}, \quad \tan \theta = \frac{a}{b} \]

is useful. For instance,

\[
\sqrt{i} = \pm (\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})^{1/2} = \pm (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = \pm \frac{\sqrt{2}}{2} (1+i).
\]
An **inner product vector space** \(V \) is a V.S. over \(\mathbb{R} \) or \(\mathbb{C} \) with a mapping

\[
V \times V \rightarrow F, \quad (u, v) \rightarrow \langle u, v \rangle = u \cdot v \in F
\]
satisfying certain conditions. Let us give an example to guide us in what is needed. Let \(V = \mathbb{R}^n \) and define

\[
\begin{bmatrix}
a_1 \\
\vdots \\
a_n
\end{bmatrix} \cdot \begin{bmatrix}
b_1 \\
\vdots \\
b_n
\end{bmatrix} = a_1 b_1 + \cdots + a_n b_n = \sum_{i=1}^{n} a_i b_i
\]

Note the properties: bi-additive; \(v \cdot v \) is a non-negative real number, so we can use \(\sqrt{v \cdot v} \) to define the **magnitude** of \(v \).

Question: Could we use the same formula to define an inner product for \(\mathbb{C}^n \)? Well... \((i) \cdot (i)\) would be \(-1\). Of course the formula still defines a nice bilinear mapping but would not meet our need.
Dot product

Definition

An inner product vector space is a vector space with a mapping

\[V \times V \rightarrow F, \quad (u, v) \rightarrow u \cdot v \in F \]

satisfying:

1. \((u_1 + u_2) \cdot v = u_1 \cdot v + u_2 \cdot v\)
2. \((cu) \cdot v = c(u \cdot v)\)
3. \(u \cdot v = v \cdot u\)
4. \(u \cdot u > 0 \text{ if } u \neq 0\)

The better notation for this product is

\[u \cdot v = \langle u, v \rangle \]
Examples

Of course, the example above of \mathbb{R}^n is the grandmother of all examples. Let us modify it a bit to get an example for \mathbb{C}^n:

$$
\begin{bmatrix}
a_1 \\
\vdots \\
a_n
\end{bmatrix}
\cdot
\begin{bmatrix}
b_1 \\
\vdots \\
b_n
\end{bmatrix}
= a_1 \overline{b_1} + \cdots + a_n \overline{b_n} = \sum_{i=1}^{n} a_i \overline{b_i}.
$$

Note the properties: additive; $v \cdot v$ is a non-negative real number

$$
v \cdot v = \sum_{i=1}^{n} a_i \overline{a_i}
$$

so we can use $\sqrt{v \cdot v}$ to define the magnitude of v. Note the lack of full symmetry.
Example of Function Space

Let us give an example from left field: Let V be the vector space of all real continuous functions on the interval $[a, b]$, and define for $f(t), g(t) \in V$,

$$\langle f(t), g(t) \rangle = f(t) \cdot g(t) = \int_a^b f(t)g(t)\,dt.$$

An important case: If m, n are integers,

$$\langle \sin nt, \cos mt \rangle = \int_0^{2\pi} \sin nt \cos mt \,dt = 0$$

$$\langle \sin nt, \sin mt \rangle = \int_0^{2\pi} \sin nt \sin mt \,dt = 0, \ m \neq n$$

$$\langle \cos nt, \cos mt \rangle = \int_0^{2\pi} \cos nt \cos mt \,dt = 0, \ m \neq n$$

$$\langle \sin nt, \sin nt \rangle = \int_0^{2\pi} \sin^2 nt \,dt = \pi, \ n \neq 0$$
Example: $\mathbb{M}_n(\mathbb{F})$

Let $\mathbf{V} = \mathbb{M}_n(\mathbb{F})$ be the V.S. of all n-by-n matrices. For any such matrix $\mathbf{A} = [a_{ij}]$ define the adjoint of \mathbf{A} (unfortunately we have already used the word for a very different notion!) to be the matrix

$$\mathbf{A}^* = [\overline{a_{ji}}],$$

that is, we transpose \mathbf{A} and take the complex conjugate of each entry. Define the product (Frobenius product)

$$\langle \mathbf{A}, \mathbf{B} \rangle = \text{trace}(\mathbf{AB}^*) = \sum_i (\mathbf{AB}^*)_{ii}.$$

It is clear that this product has the properties of an inner product. We just check the positivity condition:

$$\langle \mathbf{A}, \mathbf{A} \rangle = \text{trace}(\mathbf{AA}^*) = \sum_i (\mathbf{AA}^*)_{ii}$$

$$\sum \sum a_{ij} \overline{a_{ij}} = \sum |a_{ij}|^2 > 0.$$
Proposition

If \(V \) is an inner product space, the following hold:

1. \(\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \)
2. \(\langle u, cv \rangle = \overline{c} \langle u, v \rangle \)
3. \(\langle u, O \rangle = \langle O, v \rangle = 0 \)
4. \(\langle u, u \rangle = 0 \) iff \(u = O \)
5. \(\langle u, v \rangle = \langle u, w \rangle \) for all \(u \in V \) then \(v = w \)

Proof of 1: Note

\[
\langle u, v + w \rangle = \overline{\langle v + w, u \rangle} = \overline{\langle v, u \rangle + \langle w, u \rangle} = \langle v, u \rangle + \langle w, u \rangle = \langle u, v \rangle + \langle u, w \rangle
\]
Length of a vector

Definition

Let $V, \langle \cdot, \cdot \rangle$ be an inner product space. If $v \in V$, the **length** or **norm** of v is the real number $\|v\| = \sqrt{\langle v, v \rangle}$.

If $V = \mathbb{C}^n$, $v = (a, \ldots, a_n)$,

$$\|v\| = \left[\sum_{i=1}^{n} |a_i|^2 \right]^{1/2}$$

If V is the space of real continuous functions on $[0, 1]$ and inner product is that we defined previously,

$$\|f(t)\|^2 = \int_0^1 f(t)^2 \, dt.$$
The following assertions permits the construction of ‘recognizable’ objects in any inner product space:

Theorem

If \(\mathbf{V} \) *is an inner product space, then for all* \(u, v \in \mathbf{V} \)

1. [Cauchy-Schwarz Inequality]

\[
|\langle u, v \rangle| \leq \|u\| \cdot \|v\|
\]

2. [Triangle Inequality]

\[
\|u + v\| \leq \|u\| + \|v\|.
\]
The Cauchy-Schwarz Inequality will allow the introduction of \textbf{angles} and its \textbf{trigonometry} in V, while the Triangle Inequality will lead to many constructions extending those we are familiar with in 2- and 3-space.
To prove Cauchy-Schwarz Inequality: Note that for ANY $c \in \mathbb{F}$, $v \neq 0$

\[
0 \leq \|u - cv\|^2 = \langle u - cv, u - cv \rangle = \langle u, u - cu \rangle - c\langle v, u - cv \rangle \\
= \langle u, u \rangle - \bar{c}\langle u, v \rangle - c\langle v, u \rangle + c\bar{c}\langle v, v \rangle
\]

If we set $c = \frac{\langle u, v \rangle}{\langle v, v \rangle}$ the inequality becomes

\[
0 \leq \langle u, u \rangle - \frac{|\langle u, v \rangle|^2}{\|v\|^2},
\]

which proves the assertion.
For the Δ-inequality: Consider

\[
\|u + v\|^2 = \langle u + v, u + v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle
\]

\[
= \|u\|^2 + 2\langle u, v \rangle + \|v\|^2 = \|u\|^2 + 2\Re\langle u, v \rangle + \|v\|^2
\]

\[
\leq \|u\|^2 + 2\|u\| \cdot \|v\| + \|v\|^2 \quad \text{by C-S inequality}
\]

\[
= (\|u\| + \|v\|)^2.
\]

We used that for any complex number $z = a + bi$, its real part $\Re z = a \leq |z| = \sqrt{a^2 + b^2}$.
Example

To illustrate the power of the axiomatic method, compare the proof above [which holds for ALL examples] with the work needed to check the inequalities just the case of the following example:

$$\left|\sum_{i=1}^{n} a_i b_i\right| \leq \left[\sum_{i=1}^{n} |a_i|^2\right]^{1/2} \left[\sum_{i=1}^{n} |b_i|^2\right]^{1/2}$$

$$\left[\sum_{i=1}^{n} |a_i + b_i|^2\right]^{1/2} \leq \left[\sum_{i=1}^{n} |a_i|^2\right]^{1/2} + \left[\sum_{i=1}^{n} |b_i|^2\right]^{1/2}$$
Angles and Distances

Equipped with these results, we can define angles and distances, with many of the usual properties, in any inner product space. For example, for a real inner product space, the Cauchy-Schwarz inequality says that for any two [will assume nonzero] vectors \(u, v \),

\[
\langle u, v \rangle \leq \| u \| \cdot \| v \|,
\]

that is

\[
-1 \leq \frac{\langle u, v \rangle}{\| u \| \cdot \| v \|} \leq 1
\]

This means that the ratio can be identified to the cosine, \(\cos \alpha \), of a unique angle \(0 \leq \alpha \leq \pi \): So we can write

\[
\langle u, v \rangle = \| u \| \cdot \| v \| \cos \alpha
\]

and say that \(\alpha \) is the angle between the vectors \(u \) and \(v \).
An important relationship between two vectors \(u, v \) is when \(\langle u, v \rangle = 0 \): We then say that \(u \) and \(v \) are **orthogonal** or **perpendicular**. One notation for this situation is:

\[
\mathbf{u} \perp \mathbf{v}
\]

The **distance** between the vectors \(u, v \) is defined by

\[
\text{dist}(u, v) = \|u - v\| = \langle u - v, u - v \rangle^{1/2}
\]

One of its properties follow from the triangle inequality: If \(u, v, w \) are three vectors

\[
\text{dist}(u, w) \leq \text{dist}(u, v) + \text{dist}(v, w).
\]
These notions have numerous consequences. Let us begin with:

Proposition

Let v_1, \ldots, v_n be nonzero vectors of the inner product space V. If $v_i \perp v_j$ for $i \neq j$, then these vectors are linearly independent.

Proof.

Suppose we have a linear combination

$$c_1 v_1 + c_2 v_2 + \cdots + c_n v_n = 0.$$

We claim all $c_i = 0$. To prove, say $c_1 = 0$, take the inner product of the linear combination with v_1:

$$c_1 \langle v_1, v_1 \rangle + c_2 \langle v_2, v_1 \rangle + \cdots + c_n \langle v_n, v_1 \rangle = \langle O, v_1 \rangle = 0.$$
A vector v of length $||v|| = 1$ is called a **unit** vector. They are easy to find: given a nonzero vector u, $v = \frac{u}{||u||}$ is a unit vector.

A set of vectors v_1, \ldots, v_n is said to be **orthonormal** if $v_i \perp v_j$, for $i \neq j$ and $||v_i|| = 1$ for any i. Of course, a good example are the ordinary coordinate vectors of 3-space.
Proposition

Let \(V \) be an inner product space with an orthonormal basis \(v_1, \ldots, v_n \). Then for any \(v \in V \),

\[
v = c_1 v_1 + \cdots + c_n v_n,
\]

where \(c_i = \langle v, v_i \rangle \). The \(c_i \) are called the Fourier coefficients of \(v \) relative to the basis.

Proof.

To get \(c_i \), it suffices to form the inner product of \(v \) with \(v_i \):

\[
\langle v, v_i \rangle = c_i \langle v_i, v_i \rangle = c_i,
\]

since \(\langle v_i, v_i \rangle = 1 \) and all other \(\langle v_j, v_i \rangle = 0 \).
Orthonormal bases are also useful in finding the matrix representation of a L.T. $T : V \rightarrow V$:

Let $\mathcal{A} = \{v_1, \ldots, v_n\}$ be such a basis. Then $[T]_{\mathcal{A}} = [a_{ij}]$ where a_{ij} are the coefficients in the expression

$$T(v_j) = a_{1j}v_1 + \cdots + a_{ij}v_i + \cdots + a_{nj}v_n$$

To select a_{ij} it suffices to ‘dot’ with v_i

$$\langle T(v_j), v_i \rangle = a_{1j} \langle v_1, v_i \rangle + \cdots + a_{ij} \langle v_i, v_i \rangle + \cdots + a_{nj} \langle v_n, v_i \rangle$$

$$= 0 \quad = 1 \quad = 0$$

$$[T]_{\mathcal{A}} = [\langle T(v_j), v_i \rangle]$$
Exercise: If u, v are vectors of an inner product space V, verify the parallelogram law:

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2).$$

Draw a picture to illustrate this equality.
We will prove that every finite-dimensional vector space W of an inner product space V has an orthonormal basis.

This will allow us to express the distance from a vector $v \in V$ to the subspace W. For instance, if

$$Ax = b$$

is a consistent system of linear equations, that is, if there is some solution $Ax_0 = b$, we know that the solution set is the set

$$x_0 + N(A),$$

where $N(A)$ is the nullspace of A. Now we will be able to find the solution of smallest length, if need be.
Let us show how to obtain an orthonormal basis of a vector space from an arbitrary basis $A = \{u_1, \ldots, u_n\}$.

If $n = 1$, $v_1 = \frac{u_1}{\|u_1\|}$ is the answer.

Assume now that we have a basis of two vectors u_1, u_2. We need to find two nonzero vectors v_1, v_2 in the span of u_1, u_2 so that $v_1 \perp v_2$. We use a projection trick: we set $v_1 = u_1$ and look for c so that

$$v_2 = u_2 - cu_1 \perp v_1,$$

that is

$$\langle v_2, v_1 \rangle = \langle u_2, v_1 \rangle - c\langle u_1, v_1 \rangle = 0$$

$$c = \frac{\langle u_2, v_1 \rangle}{\langle v_1, v_1 \rangle}$$

Observe that v_1, v_2 have same span as u_1, u_2. Now replace v_i by $v_i/\|v_i\|$.
\[v - w \perp u \]

\(w = \text{Projection of } v \text{ along } u \)
Projection formula

If L is a line defined by the vector $u \neq O$ and v is another vector,

$$w = \frac{\langle v, u \rangle}{\langle u, u \rangle} u$$

is the **projection** of v along L or u.

Proposition

$v - w$ is perpendicular to L and the smallest distance from v to any vector of L is $\|v - w\|$.

Proof.

We have already seen that $v - w \perp v$. If cu is a vector of L, the square distance from v to cu is $(v - w \perp L$, so will use Pythagorean Theorem)

$$\|v - cu\|^2 = \|(v - w) + (w + cu)\|^2 = \|v - w\|^2 + \|w + cu\|^2.$$
Gram-Schmidt Algorithm

The routine to obtain a basis that is orthogonal from another basis [Gram–Schmidt process]:

1. **Input:** \(A = \{u_1, \ldots, u_n\} \) given basis
2. **Set** \(v_1 = u_1 \)
3. **Compute** \(v_2, \ldots, v_n \) successively, one at a time, by

\[
v_i = u_i - \left(\frac{u_i \cdot v_1}{v_1 \cdot v_1} \right) v_1 - \left(\frac{u_i \cdot v_2}{v_2 \cdot v_2} \right) v_2 - \cdots - \left(\frac{u_i \cdot v_{i-1}}{v_{i-1} \cdot v_{i-1}} \right) v_{i-1}
\]

4. **Set** \(w_i = \frac{v_i}{\|v_i\|} \)
5. **Output:** \(B = \{w_1, \ldots, w_n\} \) is an orthonormal basis.
Hadamard’s Inequality

Let \mathbf{A} be a matrix whose columns form a basis $\{u_1, u_2, \ldots, u_n\}$ of \mathbb{R}^n (put $n = 3$ for simplicity)

$$\mathbf{A} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$$

Now consider the matrix

$$\mathbf{B} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} u_1 & u_2 - a_1 u_1 & u_3 - b_1 u_1 - b_2 u_2 \end{bmatrix}$$

where the coefficients are chosen so that the v_i's are perpendicular to one another. Note that \mathbf{B} is obtained from \mathbf{A} by adding scalar multiples of columns to another, so

$$\det(\mathbf{A}) = \det(\mathbf{B}).$$

Furthermore, for each i

$$||v_i|| \leq ||u_i||$$

by the projection formula.
Let us calculate $\det(A)^2$:

$$
\det(A)^2 = \det(B)^2 = \det(B) \det(B^t) = \det[v_1 \mid v_2 \mid v_3] \det[v_1 \mid v_2 \mid v_3]^t
$$

$$
= \begin{bmatrix}
\langle v_1, v_1 \rangle & 0 & 0 \\
0 & \langle v_2, v_2 \rangle & 0 \\
0 & 0 & \langle v_3, v_3 \rangle
\end{bmatrix}
$$

$$
= \prod \langle v_i, v_i \rangle
$$
Theorem (Hadamard)

For any square real matrix \(A = [u_1, \ldots, u_n] \),

\[
|\det(A)|^2 \leq \prod_{i=1}^{n} \langle u_i, u_i \rangle.
\]

For instance, if \(A \) is a 4 \(\times \) 4 whose entries are 0, 1, \(-1\), its column vectors have length at most 2, so that \(\det(A) \leq 16 \). According to Joe, there is a such a matrix.
General Projection Formula

Proposition

Let \mathbf{W} be a subspace with an orthonormal basis $A = \{u_1, \ldots, u_n\}$. For any vector v, the vector of \mathbf{W}

$$ w = \text{proj}_W(v) = \langle v, u_1 \rangle u_1 + \cdots + \langle v, u_n \rangle u_n $$

is the projection of v onto \mathbf{W}. It has the following properties

1. $v - w$ is perpendicular to any vector of \mathbf{W}. (We say that it is perpendicular to \mathbf{W})
2. $\|v - w\|$ is the shortest distance from v to \mathbf{W}.

The proof is like above.
Orthogonal Complement

If W is a subspace of an inner product space V, its \textbf{orthogonal complement} W^\perp is the set of all vectors v that are perpendicular to each vector w of W. In ordinary 3-space \mathbb{R}^3, the z-axis is the orthogonal complement of the xy-plane.

Proposition

W^\perp is a subspace of V.

Proof.

Clearly $O \in W^\perp$. If $v_1, v_2 \in W^\perp$, for any vector $w \in W$

$$\langle c_1 v_1 + c_2 v_2, w \rangle = c_1 \langle v_1, w \rangle + c_2 \langle v_2, w \rangle = 0,$$

so W^\perp passes the subspace test.
Example

Let \mathbf{A} be an $m \times n$ real matrix. The nullspace of \mathbf{A} is the set of all n-tuples \mathbf{x} such that

$$\mathbf{Ax} = 0.$$

This means that the nullspace is the orthogonal complement of the row space of \mathbf{A}:

$$N(\mathbf{A}) = \text{row space}^\perp.$$

Similarly, the left nullspace of \mathbf{A}, left $N(\mathbf{A})$, are the m-tuples \mathbf{y} such that

$$\mathbf{yA} = \mathbf{O}$$

that is the orthogonal complement of the column space of \mathbf{A}.
These observations suggest several properties of the \perp operation:

1. Let V be a vector space with a basis e_1, \ldots, e_n. If W is spanned by u_1, \ldots, u_m, W^\perp is the set of all vectors $x_1 e_1 + \cdots + x_n e_n$ such that

$$x_1 \langle e_1, u_i \rangle + \cdots + x_n \langle e_n, u_i \rangle = 0, \quad i = 1, \ldots, m.$$

Thus we find W by solving a system of linear equations.

2. $W \cap W^\perp = (O)$.

3. $\dim W + \dim W^\perp = \dim V$.

4. $(W^\perp)^\perp = W$.
Proposition

\[\dim W + \dim W^\perp = \dim V. \]

Proof.

Let \(u_1, \ldots, u_m \) be an orthonormal basis of \(W \). We define a mapping \(T : V \to V \) as follows

\[T(v) = \langle v, u_1 \rangle u_1 + \cdots + \langle v, u_m \rangle u_m. \]

\(T \) is clearly a linear transformation: This is the orthogonal projection of \(V \) onto \(W \). Its range \(R(T) \) is \(W \). Its nullspace \(N(T) \) is the set of vectors \(v \) such that \(\langle v, u_i \rangle = 0 \) for each \(u_i \). This is precisely \(W^\perp \). From the dimension formula

\[\dim V = \dim R(T) + \dim N(T) = \dim W + \dim W^\perp. \]
Let G be a finite subgroup of $GL_n(\mathbb{C})$. Prove that every $T \in G$ is diagonalizable.
If V is a vector space over the field F, a linear functional is a linear transformation

$$f : V \rightarrow F.$$

For example, if $V = F^n$ and $a = [a_1, \ldots, a_n]$ is a matrix, then for every column vector $v \in F^n$, the function

$$v \mapsto a \cdot v$$

is a linear functional. In fact, every linear functional f has this description.

Inner product spaces, finite/infinite dimensional have a natural method to define linear functionals. Let us exploit it.
Let V be an inner product space. If $u \in V$, the mapping

$$f : V \to \mathbb{F}, \quad f(v) = \langle v, u \rangle$$

is a linear functional. Observe that if $\langle v, u \rangle = \langle v, w \rangle$, for all v, then $\langle v, u - w \rangle = 0$ and therefore $u = w$.

Proposition

If V is a finite-dimensional inner product space, for every linear functional f on V, there is a unique vector u such that $f(v) = \langle v, u \rangle$ for all $v \in V$.

Proof.

Let v_1, \ldots, v_n be an orthonormal basis of V, and let

$$u = \overline{f(v_1)}v_1 + \cdots + \overline{f(v_n)}v_n.$$

Note that for each v_j, $\langle v_j, u \rangle = \overline{f(v_j)} = f(v_j)$, so the functionals defined by u and f agree on each basis vector, so are equal.
Adjoint of a Linear Transformation

Let T be a L.T. of the inner product space V. We are going to build another L.T. associated to T, which will be called the adjoint of T. It is the parent [or child] of the transpose!

Fix the vector $u \in V$. Consider the mapping $v \to \langle T(v), u \rangle$. This is a linear functional. According to the previous Proposition, there is a unique w such that

$$\langle T(v), u \rangle = \langle v, w \rangle, \quad \forall v \in V.$$

We set $w = S(u)$. This gives a function $S: V \to V$. It is routine to check that if $w_1 = S(u_1)$ and $w_2 = S(u_2)$, then $S(u_1 + u_2) = w_1 + w_2$, and also $S(cu) = cS(u)$. This L.T. is denoted T^* and termed the adjoint of T.
Proposition

Let \mathbf{T} be a L.T. and let $\mathbf{A} = [a_{ij}]$ be its matrix representation relative to the orthonormal basis v_1, \ldots, v_n. Then the matrix representation of the adjoint \mathbf{T}^* is $\overline{\mathbf{A}}^t = [\overline{a_{ji}}]$, the conjugate transpose of \mathbf{A}.

Proof.

To find the matrix representation $[b_{ij}]$ of \mathbf{T}^* we write $\mathbf{T}^*(v_j) = \sum_i b_{ij}v_i$, so that

$$\overline{b_{ij}} = \langle v_i, \mathbf{T}^*(v_j) \rangle = \langle \mathbf{T}(v_i), v_j \rangle = a_{ji},$$

as desired.
Problem

Given 3 (or more) points \(P_1 = (x_1, y_1) \), \(P_2 = (x_2, y_2) \), \(P_3 = (x_3, y_3) \) in \(\mathbb{R}^2 \), find the best fit line (what does this mean?):
\[Y = at + b, \quad Y_i = at_i + b, \quad \text{error} = |Y_i - y_i| \]

\(t \)	\(y \)	\(Y \) \\
\(t_1 \)	\(y_1 \)	\(Y_1 \) \\
\vdots	\vdots	\vdots \\
\(t_n \)	\(y_n \)	\(Y_n \) \\

\[E = \text{Square Error} = \sum_{i=1}^{n} |Y_i - y_i|^2 = \sum_{i=1}^{n} |at_i + b - y_i|^2 \]

Problem: Find \(a \) and \(b \) so that the square error is as small as possible. To answer, we first write the problem in vector notation.
\[
y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}, \quad A = \begin{bmatrix} t_1 & 1 \\ \vdots & \vdots \\ t_m & 1 \end{bmatrix}, \quad x = \begin{bmatrix} a \\ b \end{bmatrix}
\]

\[
E = ||y - Ax||^2
\]

We are going to do much better: Given a \(m \times n\) matrix \(A\) and a vector \(y \in F^m\), we are going to find a vector \(x_0 \in F^n\) such that

\[
||y - Ax_0||^2 \leq ||y - Ax||^2
\]

for all \(x \in F^n\).
We know that the answer to this will be affirmative: Let W be the range of A, that is the set of all vectors Ax, for $x \in F^n$. There is a vector $w \in W$, that is $w = Ax_0$ such that

$$||y - Ax_0||^2 \leq ||y - Ax||^2.$$

The issue is how to find x_0 more explicitly. For this we use the notion of the adjoint of a linear transformation:

$$T : F^n \rightarrow F^m, \quad T^* : F^m \rightarrow F^n$$

$$\langle T(u), v \rangle_m = \langle u, T^*(v) \rangle_n$$

To derive the desired formula (known as the projection formula) we need two properties of T^*.
Proposition

Let A be an $m \times n$ complex matrix and A^* its adjoint (conjugate transpose). Then

1. $\text{rank}(A) = \text{rank}(A^*A)$.
2. If $\text{rank}(A) = n$ then A^*A is invertible.

Proof.

It will suffice to show that A and A^*A have the same nullspace. Why?

If $A^*A(x) = 0$, then for all $z \in F^n$

$$0 = \langle A^*A(x), z \rangle_n = \langle Ax, (A^*)^*z \rangle_m = \langle Ax, Az \rangle_m$$

so $Ax = O$ by choosing $z = x$.

The second assertion now follows: Since A^*A is an $n \times n$ matrix of rank n, it is invertible.
Projection Formula

Theorem

Let A be an $m \times n$ complex matrix and let $y \in F^m$. Then there exists $x_0 \in F^n$ such that $A^*A(x_0) = A^*y$ and $\|Ax_0 - y\| \leq \|Ax - y\|$ for all $x \in F^n$. If A has rank n then

$$x_0 = (A^*A)^{-1}A^*y.$$

Proof.

Since $Ax_0 - y$ is perpendicular to the range of A,

$$0 = \langle Ax, Ax_0 - y \rangle_m = \langle x, A^*(Ax_0 - y) \rangle = \langle x, ((A^*A)x_0 - A^*y) \rangle$$

for all $x \in F^n$. Thus $(A^*A)x_0 - A^*y = 0$ and therefore

$$x_0 = (A^*A)^{-1}A^*y,$$
Illustration

\[A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix}, \quad \text{rank}(A) = 2, \quad y = \begin{bmatrix} 2 \\ 3 \\ 5 \\ 7 \end{bmatrix} \]

\[A^*A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 30 & 10 \\ 10 & 4 \end{bmatrix} \]

\[(A^*A)^{-1} = \frac{1}{20} \begin{bmatrix} 4 & -10 \\ -10 & 30 \end{bmatrix} \]
\[
x_0 = \begin{bmatrix}
a \\
b \\
\end{bmatrix} = \frac{1}{20} \begin{bmatrix}
4 & -10 \\
-10 & 30 \\
\end{bmatrix} \begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
\end{bmatrix} \begin{bmatrix}
2 \\
3 \\
5 \\
7 \\
\end{bmatrix} = \begin{bmatrix}
1.7 \\
0 \\
\end{bmatrix}
\]

Answer: The least squares line is

\[
y = 1.7t
\]

The error is

\[
E = \|Ax_0 - y\|^2 = 0.3
\]
The method is very general: Suppose we are given a number of points and we want to fit a quadratic polynomial

\[Y = at^2 + bt + c \]

to the data.

\[
A = \begin{bmatrix}
 t_1^2 & t_1 & 1 \\
 \vdots & \vdots & \vdots \\
 t_n^2 & t_n & 1
\end{bmatrix}, \quad
\mathbf{x}_0 = \begin{bmatrix}
 a \\
 b \\
 c
\end{bmatrix}, \quad
\mathbf{y} = \begin{bmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{bmatrix}
\]

Now \(\text{rank}(A) = 3 \) if there are 3 distinct values of \(t \).
We are going to find the **shortest** solution of a consistent system of equations \((m \times n)\)

\[
Ax = b.
\]

This will be a solution \(u\) such that \(\|u\|\) is minimal. The argument will also show that \(u\) is unique.

Let \(x_0\) be a special solution and denote by \(N(A)\) the nullspace of \(A\). The solution set is

\[
x_0 + N(A) = \{x_0 + v, \quad v \in N(A)\}.
\]

To pick out of this set the vector \(x_0 + v\) of smallest length, note that \(\|x_0 + v\|\) is the distance from \(x_0\) to \(-v\). So we have our answer: Pick for \(-v\) the projection \(w\) of \(x_0\) into \(N(A)\). Then \(s = x_0 - w\) is the desired solution:
\[\mathbf{x}_0 - \mathbf{w} \perp N(A) \]

\(\mathbf{w} = \text{Projection of } \mathbf{x}_0 \text{ along } N(A) \)
One algorithm for the shortest solution

1. Find an orthonormal basis u_1, \ldots, u_r for $N(A)$
2. Determine the projection w of x_0 onto $N(A)$:

$$w = \sum_{i=1}^{r} \langle x_0, u_i \rangle u_i$$

3. $x_0 - w$ is the shortest solution of $Ax = b$
This solution requires the calculation of the projection of x_0 into $N(A)$. Let us discuss another, more direct, approach. If $v \in N(A)$, $A(v) = O$,

$$0 = \langle x, A(v) \rangle = \langle A^*(x), u \rangle$$

which means $v \perp A^*(x) = 0$ for all x. This means that the range of A^*, $R(A^*)$, is contained in the orthogonal complement $N(A) \perp$ of $N(A)$. By the dimension formula we have $N(A) \perp = R(A^*)$.

Summary: The minimal vector s satisfies

$$As = b, \quad s \in R(A^*)$$

That is, pick any solution of

$$AA^*y = b,$$

and set

$$s = A^*y.$$
Homework #9

Section 6.3: 3a, 6, 10, 13, 18, 22a, 23
1. Normal Operators ($TT^* = T^*T$): real symmetric/skew symmetric
2. Hermitian Operator
4. Spectral Theorem
5. Goodies: Applications
Interesting diagonalizable operators

We are going to show a class of linear transformations that are diagonalizable. It will include the class represented by real symmetric matrices.

Let $T : V \rightarrow V$ be a L.T. of a complex inner product space. We have defined the adjoint T^* of T as the L.T. with the property

$$\langle T(u), v \rangle = \langle u, T^*(v) \rangle, \quad \forall u, v \in V.$$

Let us compare the eigenvalues and eigenvectors of T and T^*.
Proposition

If λ is an eigenvalue of T then $\overline{\lambda}$ is an eigenvalue of T^*.

Proof: Suppose $T(u) = \lambda u$, $u \neq O$. Then for any $v \in V$,

$$0 = \langle O, v \rangle = \langle (T - \lambda I)(u), v \rangle = \langle u, (T - \lambda I)^*(v) \rangle = \langle u, (T^* - \overline{\lambda} I)(v) \rangle$$

This says that $O \neq u \perp \text{range}(T^* - \overline{\lambda} I)$, so the range of $T^* - \overline{\lambda} I$ is not the whole of V, which implies nullspace of $T^* - \overline{\lambda} I \neq O$. This means that $\overline{\lambda}$ is an eigenvalue of T^*.
Let us use this result to decide when a L.T. T of an inner product space V admits a basis A such that

$$[T]_A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix},$$

that is, T admits a matrix representation that is upper triangular.

Note that the characteristic polynomial has all of its roots in the field

$$\det(T - xI) = (a_{11} - x)(a_{22} - x) \cdots (a_{nn} - x),$$

that is the characteristic polynomial splits. Recall that this is always the case when the field is \mathbb{C}.
Theorem (Schur)

Let \(T \) be a L.T. of the inner product space \(V \). If the characteristic polynomial of \(T \) splits, then \(V \) admits an orthonormal basis \(A \) such that \([T]_A \) is upper triangular.

Proof: We will argue by induction on \(\dim V = n \). If \(n = 1 \), the assertion is obvious. Let us assume that the assertion holds for dimension \(n - 1 \). By the Proposition above, we know that \(T^* \) has one eigenvalue \(\lambda \). Let \(u \) be a unit vector so that \(T^*(u) = \lambda u \), and set \(W \) for the subspace spanned by \(u \). We claim that \(W^\perp \) is \(T \)-invariant: If \(v \in W^\perp \)

\[
\langle T(v), u \rangle = \langle v, T^*(u) \rangle = \langle v, \lambda u \rangle = \bar{\lambda} \langle v, u \rangle = 0
\]

So \(T(v) \in W^\perp \).
We also have \(\dim W + \dim W^\perp = \dim V = n \), so \(\dim W^\perp = n - 1 \). Now we apply the induction hypothesis to the restriction of \(T \) to \(W^\perp \): Let \(v_1, \ldots, v_{n-1} \) be an orthonormal basis of \(W^\perp \) for which the restriction of \(T \) is upper triangular. If we add to the \(v_i \) the vector \(u \), we get the orthonormal basis \(A = v_1, \ldots, v_{n-1}, u \). The matrix representation

\[
[T]_A = \begin{bmatrix}
[T]_{W^\perp} & \begin{bmatrix} a_{1n} \\ \vdots \\ a_{nn} \end{bmatrix} \\
0 & 0 & \cdots & 0
\end{bmatrix},
\]

which has the desired form.
Normal operator

Observe that if there is an orthonormal basis \(\mathcal{A} \) of eigenvectors of \(T \), \([T]_{\mathcal{A}} \) is a diagonal matrix, and since \([T^*]_{\mathcal{A}} = [T]_{\mathcal{A}}^* \), this matrix is also diagonal. Since diagonal matrices commute, we have \(TT^* = T^*T \).

Definition

A linear transformation \(T \) of an inner product space is **normal** if \(TT^* = T^*T \).

Example: If \(A \) is a symmetric real matrix, \(A^* = A^t = A \), so \(A \) commutes with itself! Skew-symmetric real matrices, \(A^* = -A \), are also normal.
Theorem

If T is a normal operator ($TT^* = T^*T$) of a complex inner vector space V, then there is an orthonormal basis of eigenvectors of T. (The converse was proved already so this is a characterization of normal operators.)

This is an important result, it has many useful consequences. To prove it we shall need some properties of normal operators.
Proposition

Let T be a normal operator ($TT^* = T^*T$) of the inner vector space V. Then:

1. $\|T(u)\|^2 = \|T^*(u)\|^2$ for every $u \in V$.
2. $T - cI$ is normal for every $c \in F$.
3. If $T(u) = \lambda u$ then $T^*(u) = \bar{\lambda}u$.
4. If λ_1 and λ_2 are distinct eigenvalues of T with corresponding eigenvectors u_1 and u_2, then $u_1 \perp u_2$.

Proof:

1. For any vector $u \in V$,

$$\|T(u)\|^2 = \langle T(u), T(u) \rangle = \langle T^*T(u), u \rangle = \langle TT^*(u), u \rangle = \langle T^*(u), T^*(u) \rangle = \|T^*(u)\|^2$$

2. $(T - cI)(T^* - \bar{c}I) = (T^* - \bar{c}I)(T - cI)$: check
3. Suppose $T(u) = \lambda u$. Let $U = T - \lambda I$. Then $U(u) = 0$ so by 2. U is normal and by 1. $U^*(u) = 0$. That is $T^*(u) = \overline{\lambda}u$.

4. Let λ_1 and λ_2 be distinct eigenvalues of T with corresponding eigenvectors u_1 and u_2. Then by 3.

$$\lambda_1 \langle u_1, u_2 \rangle = \langle \lambda_1 u_1, u_2 \rangle = \langle T(u_1), u_2 \rangle = \langle u_1, T^*(u_2) \rangle$$

$$= \langle u_1, \overline{\lambda_2} u_2 \rangle = \lambda_2 \langle u_1, u_2 \rangle.$$

Since $\lambda_1 \neq \lambda_2$, $\langle u_1, u_2 \rangle = 0$.
We are now in position to prove that a normal operator T admits an orthonormal basis v_1, v_2, \ldots, v_n of eigenvectors. We already know, by Schur theorem, that there is an orthonormal basis for which the matrix representation is upper triangular

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 0 & a_{22} & a_{23} \\
 0 & 0 & a_{33}
\end{bmatrix}
\]

We want to show that the off-diagonal elements are 0, that is, all the v_i are eigenvectors. [For simplicity we take $n = 3$] Note that $T(v_1) = a_{11} v_1$, so v_1 is an eigenvector. To show v_2 is an eigenvector notice that

\[T(v_2) = a_{12} v_1 + a_{22} v_2 \]

We must show $a_{12} = 0$.
\[\mathbf{T}(v_2) = a_{12}v_1 + a_{22}v_2 \]

We must show \(a_{12} = 0 \):

\[a_{12} = \langle \mathbf{T}(v_2), v_1 \rangle = \langle v_2, \mathbf{T}^*(v_1) \rangle = \langle v_2, a_{11}v_1 \rangle = a_{11}\langle v_2, v_1 \rangle = 0 \]

as desired. Now with \(v_1, v_2 \) eigenvectors, we show that \(a_{13} = a_{23} = 0 \). We consider

\[\mathbf{T}(v_3) = a_{13}v_1 + a_{23}v_2 + a_{33}v_3 \]

The proof is similar: For instance

\[a_{23} = \langle \mathbf{T}(v_3), v_2 \rangle = \langle v_3, \mathbf{T}^*(v_2) \rangle = \langle v_3, a_{22}v_2 \rangle = a_{22}\langle v_3, v_2 \rangle = 0 \]
We have already remarked that real symmetric matrices, $A = A^t$, are normal. It turns out that complex symmetric matrices are not always normal. Truly the complex cousins of real symmetric matrices are called:

Definition

Let T be a linear operator of the inner product space V. T is called **self-adjoint** (Hermitian) if $T = T^*$.

$$A = \begin{bmatrix} 2 & 3 + 5i \\ 3 - 5i & 6 \end{bmatrix}$$
Lemma

Let \(T \) be a self-adjoint linear operator of the inner product space \(V \). Then

1. Every eigenvalue is real.
2. If \(V \) is a real vector space then the characteristic polynomial splits.

Proof: 1. Suppose \(T(u) = \lambda u, u \neq O \). By a previous result, \(T^*(u) = \overline{\lambda} u \). Since \(T = T^* \), \(\lambda \) is real.

2. Let \(n = \dim V \), \(\mathcal{B} \) an orthonormal basis of \(V \) and \(A = \begin{bmatrix} T \end{bmatrix}_\mathcal{B} \). Then \(A \) is self-adjoint. Let \(T_A \) be the linear operator of \(\mathbb{C}^n \) defined by \(T_A(u) = Au \) for all \(u \in \mathbb{C}^n \).
Note that T_A is self-adjoint because $[T_A]_C = A$, where C is the standard (orthonormal) basis of \mathbb{C}^n. So the eigenvalues of T_A are real. Since the characteristic polynomial of T_A is equal to the characteristic polynomial of A, which is equal to the characteristic of T, the characteristic polynomial of T splits.

What we are saying is the following: Let A be a $n \times n$ symmetric real matrix and employ it to define a L.T. of the complex vector space \mathbb{C}^n

$$ T = T_A : \mathbb{C}^n \rightarrow \mathbb{C}^n, \quad T(u) = A(u). $$

Note $\det(T - xI) = \det(A - xI)$.
First Main Theorem of the Course

Theorem

Let T be a linear operator on the finite-dimensional inner product space V. Then T is self-adjoint if and only if there exists an orthonormal basis of V consisting of eigenvectors of T.
Unitary Operators

Definition

A linear operator T of the inner product space V is called **unitary** if $TT^* = T^*T = I$. If V is a real inner product space, T is called **orthogonal**.

The rotation operator

$$T(x, y) = (x \cos \alpha + y \sin \alpha, -x \sin \alpha + y \cos \alpha)$$

is a major example.

If A is a complex n-by-n matrix and $AA^* = A^*A = I$, the column vectors of A form an orthonormal basis of \mathbb{C}^n.

We now develop quickly some basic properties of these operators.
Let T be a linear operator of the finite-dimensional inner product space V. TFAE:

1. T is an unitary operator: $TT^* = T^*T = I$.
2. $\langle T(u), T(v) \rangle = \langle u, v \rangle$ for all $u, v \in V$.
3. For every orthonormal basis $\mathcal{B} = v_1, \ldots, v_n$ of V, $T(v_1), \ldots, T(v_n)$ is also an orthonormal basis of V.
4. For some orthonormal basis $\mathcal{B} = v_1, \ldots, v_n$ of V, $T(v_1), \ldots, T(v_n)$ is also an orthonormal basis of V.
5. $\|T(u)\| = \|u\|$ for every $u \in V$.

Proof. $1 \Rightarrow 2, 3, 4, 5$: (Other \Rightarrow LTR)

$$\langle u, v \rangle = \langle T^*T(u), v \rangle = \langle T(u), (T^*)^*(v) \rangle = \langle T(u), T(v) \rangle.$$

$$\delta_{ij} = \langle v_i, v_j \rangle = \langle T(v_i), T(v_j) \rangle.$$
Properties of unitary operators

Let T be an unitary operator of the inner product space V.

1. The eigenvalues of T have length 1: If $T(u) = \lambda u$,

\[\langle u, u \rangle = \langle T(u), T(u) \rangle = \langle \lambda u, \lambda u \rangle = \lambda \lambda \langle u, u \rangle \]

and thus $\lambda \lambda = 1$.

2. If A is a matrix representation of T, $|\det(A)| = 1: \det(A) \det(A^*) = 1$

3. If T is orthogonal, $\det(A) = \pm 1$.

4. If T and U are unitary operators, then T^* and $T \circ U$ are also unitary operators.
Orthogonal operators of \mathbb{R}^2

We have already mentioned rotations, R_α. Let us analyze the possibilities. Let

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = [v_1 | v_2], \quad ||v_1|| = ||v_2|| = 1, \quad v_1 \perp v_2$$

be an orthogonal matrix. This means

$$a^2 + c^2 = 1, \quad b^2 + d^2 = 1, \quad ab + cd = 0$$

We can set $a = \cos \alpha, \ c = \sin \alpha$ and $b = \cos \beta, \ d = \sin \beta$ so that

$$ab + cd = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos(\alpha - \beta) = 0.$$

This means that $\alpha - \beta = \pm \pi/2$. The two possibilities lead to

$$R_\alpha = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, \quad T = \begin{bmatrix} \cos \beta & \sin \beta \\ \sin \beta & -\cos \beta \end{bmatrix}$$
To analyze
\[T = \begin{bmatrix} \cos \beta & \sin \beta \\ \sin \beta & -\cos \beta \end{bmatrix} \]
we look at its eigenvalues:

\[
\text{det}(T - xI) = \begin{bmatrix} \cos \beta - x & \sin \beta \\ \sin \beta & -\cos \beta - x \end{bmatrix} = x^2 - 1
\]

So \(\lambda = \pm 1 \). This means we have an orthonormal basis \(v_1, v_2 \), and \(T(v_1) = v_1, T(v_2) = v_2 \).

Thus the line \(\mathbb{R}v_1 \) is fixed under \(T \), and the perpendicular line \(\mathbb{R}v_2 \) is flipped about \(\mathbb{R}v_1 \). These transformations are called reflections.

Summary: If \(A \) is an orthogonal 2-by-2 matrix, then if \(\text{det} A = 1 \), it is a rotation, and if \(\text{det} A = -1 \), it is a reflection.
Matrix product and dot product

Let \(u \) and \(v \) be two vectors of \(\mathbb{R}^n \). Their dot product

\[
\begin{bmatrix}
a_1 \\
\vdots \\
a_n
\end{bmatrix} \cdot \begin{bmatrix}
b_1 \\
\vdots \\
b_n
\end{bmatrix}
\]

can be expressed as a matrix product

\[
\begin{bmatrix}
a_1 & \cdots & a_n
\end{bmatrix}
\begin{bmatrix}
b_1 \\
\vdots \\
b_n
\end{bmatrix}
\]

Keep in mind

\[
u^t v = u \cdot v
\]
Spectral Decomposition

Let \(A \) be a \(n \)-by-\(n \) symmetric real matrix, \(P = [v_1 | \cdots | v_n] \) a matrix whose columns form an orthonormal basis of eigenvectors of \(A \):

\[
A = PDP^t = [v_1 | \cdots | v_n] \cdot \begin{bmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{bmatrix} \cdot \begin{bmatrix}
v_1^t \\
\vdots \\
v_n^t
\end{bmatrix}
\]

Instead of this representation of \(A \) as a product of 3 matrices, we are going to express \(A \) as a sum of simple matrices of rank 1.
Expanding we get

\[
A = PDP^t = [v_1 | \cdots | v_n] \cdot \begin{bmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{bmatrix} \cdot \begin{bmatrix}
v_1^t \\
\vdots \\
v_n^t
\end{bmatrix}
\]

\[
= [\lambda_1 v_1 | \cdots | \lambda_n v_n] \cdot \begin{bmatrix}
v_1^t \\
\vdots \\
v_n^t
\end{bmatrix}
\]

\[
= \lambda_1 v_1 v_1^t + \cdots + \lambda_n v_n v_n^t
\]

\[
= \sum \lambda_i P_i, \quad P_i = v_i v_i^t.
\]

Let us examine the matrices \(P_i \).
1. P_i has rank 1 and is symmetric

$$P_i = v_i v_i^t, \quad P_i^t = (v_i v_i^t)^t = (v_i^t)^t v_i^t = P_i$$

2. P_i is a projection

$$P_i P_i = (v_i v_i^t)(v_i v_i^t) = v_i (v_i^t v_i) v_i^t = v_i v_i^t = P_i$$

since $v_i^t v_i = \langle v_i, v_i \rangle = 1$

3. $P_i P_j = O$ for $i \neq j$

$$P_i P_j = (v_i v_i^t)(v_j v_j^t) = v_i (v_i^t v_j) v_j^t = O$$

since $v_i^t v_j = \langle v_i, v_j \rangle = 0$
The equality

\[A = \sum \lambda_i P_i, \ P_i = v_i v_i^t \]

is called the **spectral decomposition** of \(A \).

Example: Let \(A = \begin{bmatrix} 3 & -4 \\ -4 & -3 \end{bmatrix} \)

The eigenvalues are 5 and \(-5\), with corresponding [normalized] eigenvectors

\[v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \quad v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \]

\[P_1 = v_1 v_1^t = \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix}, \quad P_2 = v_2 v_2^t = \begin{bmatrix} 1/5 & 2/5 \\ 2/5 & 4/5 \end{bmatrix} \]
Exercise:

Let \(A \) be a real symmetric matrix. Prove that there is a symmetric matrix \(B \) such that \(B^3 = A \).

We know that there is an orthonormal basis \(v_1, \ldots, v_n \) of eigenvectors of \(A \). The matrix \(P = [v_1 | \cdots | v_n] \) is orthogonal [i.e. \(P^{-1} = P^t \)] and

\[
P^{-1}AP = D
\]

is a real diagonal matrix. Let \(E \) be a real ‘cubic root’ of \(D \) (if a diagonal entry of \(D \) is \(d_{ii} \), the corresponding entry of \(E \) is the real root \(d_{ii}^{1/3} \)).

Set \(B = P^{-1}EP \). Note

\[
B^t = (P^{-1}EP)^t = P^tE^t(P^{-1})^t = P^{-1}EP = B,
\]

\[
B^3 = P^{-1}E^3P = A.
\]
Exercise: Let A be skew-symmetric matrix. Prove that $\det A \geq 0$. *Hint:* Recall that A is normal, then pair up the complex eigenvalues of A. Moreover, show that if A has integer entries, then $\det A$ is the square of an integer.
Real quadratic forms

A real **quadratic form** in n variables is a polynomial

$$q(x) = \sum_{i,j} a_{ij} x_i x_j.$$

They occur in the elementary theory of conic sections--e.g. what is $10x^2 + 6xy + 2y^2 = 5$, an ellipse, a parabola, or a hyperbola?-- but also in the theory of max and min of functions $f(x_1, \ldots, x_n)$ of several variables. In both endeavors, a solution arises after an appropriate change of variables, $x = P(y)$,

$$q(x) = q(P(y)) = \sum_i d_i y_i^2.$$

Let us see how this comes about:
Let us begin with $Ax^2 + Bxy + Cy^2$, which we write as $ax^2 + 2bxy + cy^2$. (For general fields this would require $2 \neq 0$.) Now look:

$$ax^2 + 2bxy + cy^2 = x(ax + by) + y(bx + cy)$$

$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= x^tQx$$

where $x = \begin{bmatrix} x \\ y \end{bmatrix}$ and Q is a symmetric matrix.

It is routine to verify that every quadratic form $q(x)$ has such a representation,

$$q(x) = x^tQx, \quad Q = Q^t$$

Now we can apply to Q the spectral theorem we have developed.
Since \mathbf{Q} is (orthogonally) diagonalizable, there is an orthogonal matrix \mathbf{P} (formed by an orthonormal basis of eigenvectors of \mathbf{Q}) such that

$$\mathbf{P}^{-1} \mathbf{Q} \mathbf{P} = \mathbf{D} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

This means that in $q(\mathbf{x}) = \mathbf{x}^t \mathbf{Q} \mathbf{x}$, if we change the variables by the rule $\mathbf{x} = \mathbf{P} \mathbf{y}$,

$$q(\mathbf{x}) = \mathbf{x}^t \mathbf{Q} \mathbf{x} = \mathbf{y}^t \mathbf{P}^{-1} \mathbf{Q} \mathbf{P} \mathbf{y} = \mathbf{y}^t \mathbf{D} \mathbf{y} = \sum_i \lambda_i y_i^2.$$
Among the potential applications, we mentioned the identification of conics. For example, \(10x_1^2 + 6x_1x_2 + 2x_2^2 = 5\):

The matrix

\[
Q = \begin{bmatrix}
10 & 3 \\
3 & 2
\end{bmatrix}
\]

has for eigenvalues 11, 1 with

\[
P = \frac{1}{\sqrt{10}} \begin{bmatrix}
1 & -3 \\
3 & 1
\end{bmatrix}
\]

The change of variables \(x = Py\) gives

\[11y_1^2 + y_2^2 = 5,
\]

the equation of an ellipse.
Another application, to the theory of max and min appears as follows: If \(\mathbf{a} \) is a critical point of the function \(f(\mathbf{x}) \) – that is all the partial derivatives vanish at \(\mathbf{x} = \mathbf{a} \), \(\frac{\partial f}{\partial x_i}(\mathbf{a}) = 0 \), Taylor’s expansion of \(f \) in a neighborhood of \(\mathbf{a} \) gives

\[
f(\mathbf{x}) = f(\mathbf{a}) + q(h) + \text{error}
\]

where \(q \) is a quadratic polynomial on the vector \(\mathbf{h} = \mathbf{x} - \mathbf{a} \). The corresponding symmetric matrix is

\[
Q = \begin{bmatrix}
\frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j}(\mathbf{a}) \\
\end{bmatrix}
\]

If all the eigenvalues of \(Q \) are positive [negative], \(q(h) \geq 0 \) Then \(f(\mathbf{x}) \geq f(\mathbf{a}) \) in a neighborhood of \(\mathbf{a} \): local max [local min]. The other cases are saddle points [the higher dimensional analogues of inflection points]
Rigid Motion

A **rigid motion** on the inner product space \mathbf{V} is a mapping

$$ \mathbf{T} : \mathbf{V} \rightarrow \mathbf{V} $$

with the property

$$ ||\mathbf{T}(u) - \mathbf{T}(v)|| = ||u - v||, \quad \forall u, v \in \mathbf{V}. $$

That is, \mathbf{T} preserves distance of the images. A simple example is a translation: If \mathbf{a} is a fixed vector, the function

$$ \mathbf{T}(v) := \mathbf{a} + v $$

is obviously a rigid motion. What else? We have seen that orthogonal transformations \mathbf{S}, $\mathbf{S}^\dagger = \mathbf{I}$, preserve distances. Another such motion is obtained by composition: following a translation with an orthogonal mapping. What else? That is it!
Theorem

Any rigid motion T of V decomposes into $T = S \circ U$, where S is an orthogonal transformation and U is a translation.

Proof: Set $a = T(O)$. Then the function $F(u) = T(u) - a$ is a rigid motion and $F(O) = O$. It is enough to prove that F is orthogonal. Note that

$$||F(u) - F(O)|| = ||u - O||,$$

so F preserves lengths, which is the key property of orthogonal transformations. BUT we are NOT assuming that F is linear, we must prove it.

We first prove that F preserves dot products: $\langle F(u), F(v) \rangle = \langle u, v \rangle$: We start from the equality and expand both sides
Thus proving
\[
\langle \mathbf{F}(u), \mathbf{F}(v) \rangle = \langle u, v \rangle.
\]

Now we are going to prove that \(F \) is a linear function by first showing that it is additive:
\[\| F(u + v) - F(u) - F(v) \|^2 \geq 0 \]

\[\| F(u + v) \|^2 + \| F(u) \|^2 + \| F(v) \|^2 - 2 \langle F(u + v), F(u) \rangle - 2 \langle F(u + v), F(v) \rangle + 2 \langle F(u), F(v) \rangle = \| (u + v) - u - v \|^2 = 0. \]

Scaling, that \(F(cu) = cF(u) \) for any \(c \in \mathbb{R} \), has a similar proof: Expand

\[\| F(cu) - cF(u) \|^2 \]
Homework #10

Section 6.4: 2f, 4, 6, 12, 13, 15

Section 6.5: 6, 10, 11, 17, 27a
1. Section 6.5, Problem 27d
Let \(A \) be a \(3 \times 3 \) orthogonal matrix. Prove that \(A \) is similar to a matrix of the form

\[
\begin{bmatrix}
R & O \\
O & \pm 1
\end{bmatrix}
\]

where \(R \) is a \(2 \times 2 \) orthogonal matrix.

2. Section 6.3, Problem 22c
Let \(A \) be a skew-symmetric real matrix. If \(A \) diagonalizable, prove that \(A = 0 \).