Math 451: Abstract Algebra I

Wolmer V. Vasconcelos

Set 5: Rings

Fall 2009
Outline

1. Rings
2. Integers and Polynomials
3. Homomorphisms
4. Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions
6. Homework #10
7. Maximal Ideals
8. Noetherian Rings
9. Algebraic Geometry
10. Diagonalization
11. Diagonalization and Minimal Polynomials
12. Homework #11
A ring R is a set with two composition laws, called ‘addition’ and ‘multiplication’, say $+$ and \times: $\forall a, b \in R$ have compositions $a + b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply ab.)

- $(R, +)$ is an abelian group
- (R, \times): multiplication is associative, and distributive over $+$, that is $\forall a, b, c \in R$,

\[
(ab)c = a(bc), \quad ab = ba, \quad a(b + c) = ab + ac
\]
• **existence of identity**: \(\exists e \in R \) such that

\[
\forall a \in R \quad e \times a = a \times e = a
\]

• If \(ab = ba \) for all \(a, b \in R \), the ring is called **commutative**

There is a unique identity element \(e \), usually we denote it by 1:

\[
e = ee' = e'e = e'
\]
Some terminology in studying a commutative ring

Let R be a commutative ring

- $u \in R$ is a **unit** if there is $v \in R$ such that $uv = 1$
- $a \in R$ is a **zero divisor** if there is $0 \neq b \in R$ such that $ab = 0$: $\overline{2} \cdot \overline{3} \equiv 0 \text{ in } \mathbb{Z}_6$.
- $a \in R$ is **nilpotent** if there is $n \in \mathbb{N}$ such that $a^n = 0$: $\overline{2}^3 \equiv 0 \text{ in } \mathbb{Z}_8$.
- R is an **integral domain** if 0 is the only zero divisor, in other words, if $a, b \in R$ are not zero, then $ab \neq 0$.

A field \mathbf{F} is a set with two composition laws, called ‘addition’ and ‘multiplication’, say $+\,$ and $\times:\, \forall a, b \in \mathbf{F}$ have compositions $a + b$ and $a \times b$. (The second composition is also written $a \cdot b$, or simply ab.)

- $(\mathbf{F}, +)$ is an abelian group
- (\mathbf{F}, \times): multiplication is associative, commutative and distributive over $+$, that is $\forall a, b, c \in \mathbf{F}$,

\[(ab)c = a(bc), \quad ab = ba, \quad a(b + c) = ab + ac\]
• **existence of identity** \(\exists e \in F \) such that

\[
\forall a \in F \quad a \times e = a
\]

• **existence of inverses** For every \(a \neq 0 \), there is \(b \in F \)

\[
a \times b = e.
\]

There is a unique element \(e \), usually we denote it by 1. For \(a \neq 0 \), the element \(b \) such that \(ab = 1 \) is unique; it is often denoted by \(1/a \) or \(a^{-1} \).

We can now define **scalars**: the elements of a field.
Fields are ubiquitous:

- \mathbb{R}: real numbers

- The integers \mathbb{Z} is not a field (not all integers have inverses), but \mathbb{Q}, the rational numbers is a field.

- \mathbb{C}: complex numbers, $z = a + bi$, $i = \sqrt{-1}$, with compositions

\[
(a + bi) + (c + di) = (a + c) + (b + d)i
\]

\[
(a + bi) \times (c + di) = (ac - bd) + (ad + bc)i
\]
The arithmetic here requires a bit more care:

If $a + bi \neq 0$,

$$\frac{1}{a + bi} = \frac{a - bi}{a^2 + b^2} = \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$
Exercise: Number fields

Let \(F \) be the set of all real numbers of the form
\[
z = a + b\sqrt{2}, \quad a, b \in \mathbb{Q}
\]
prove that \(F \) is a field.

Query: How to prove a subset \(F \) of the field \(\mathbb{R} \) is a field?
Suffices to check that \(F \) is closed under addition, product and inverse of nonzero element.
For instance, if \(a + b\sqrt{2} \neq 0 \),
\[
\frac{1}{a + b\sqrt{2}} = \frac{a - b\sqrt{2}}{a^2 - 2b^2} \in F
\]
Another noteworthy example is \mathbb{F}_2, the set made up by two elements \{0, 1\} (or (even, odd)) with addition defined by the table

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

$1 + 1 = 0!$

and multiplication by

\[
\begin{array}{c|cc}
\times & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\]
Exercise 1: Prove that in any field F the rule minus times minus is plus holds, that is for any $a, b \in F$,

$$-(-a) = a, \quad (-a)(-b) = ab.$$

Solution: The first assertion follows from

$$a + (-a) = (-a) + a = O.$$

Because of the above, we must show that $(-a)(-b)$ is the negative of $-(ab)$. We first claim $(-a)b = -(ab)$. Note

$$(-a) b + a b = ((-a) + a) b = Ob = O.$$

$$(-a) (-b) - (ab) = (-a) (-b) + (-a) b = (-a) ((-b) + b) = (-a) O = O.$$
A field is the mathematical structure of choice to do arithmetic. Given a field \mathbf{F}, fractions can defined as follows: If $a, b \in \mathbf{F}, \quad b \neq 0,$

$$\frac{a}{b} := ab^{-1}.$$

The usual calculus of fractions then follows, for instance

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}.$$
Rings of Functions

Let \mathbb{R} be a ring, S a nonempty set and S the set of all functions $f : S \rightarrow \mathbb{R}$.

Proposition

We endow \mathcal{R} with a ring structure by defining two operations:

For all $s \in S$,

$$(f + g)(s) := f(s) + g(s)$$

$$(f \cdot g)(s) := f(s) \cdot g(s)$$

Proof. It is clear that \mathcal{R} inherits all the ring axioms from \mathbb{R}.

- If $1 \in \mathbb{R}$, the function $l(s) = 1$ is the identity of \mathcal{R}.
- If \mathbb{R} is commutative, \mathcal{R} is also commutative.
- Major examples: If $S = \mathbb{R}$, and f are continuous.
Let $R = M_n(\mathbb{R})$ be the set of all $n \times n$ matrices (n fixed), with the ordinary matrix addition and multiplication.

R is a ring, but it is not \textit{commutative} if $n > 1$.
Subrings

Definition

A subring of a ring R is a subset S that satisfies:

1. S is a subgroup of R^+;
2. $1_R \in S$;
3. If $a, b \in S$, then $ab \in S$. (This product is the product of R.)

Example

$\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ is a tower of rings/subrings. Later, when we have more examples of rings, we will give various methods to construct subrings.
Rational Numbers

At the outset of our journey are the natural numbers

\[\mathbb{N} = \{1, 2, 3, 4, \ldots\} \]

Its ‘modern’ construction [e.g. Peano’s] is a paradigm of beauty. It is enlarged by the integers

\[\mathbb{N} \subset \mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\} \]

and the rational numbers

\[\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} = \left\{ \frac{m}{n}, \quad m, n \in \mathbb{Z}, n \neq 0 \right\} \]

These sets exhibit different structures: of a monoid, of a ring and of a field, respectively.
The construction by Peano of the set \(\mathbb{N} \) is grounded on two ingredients: The set \(\mathbb{N} \) contains a particular element 1.

- **[Successor Function]** There is a function \(s : \mathbb{N} \to \mathbb{N} \) that is injective, and for every \(n \in \mathbb{N} \) \(s(n) \neq 1 \).
- **[Induction Axiom]** If the subset \(S \subset \mathbb{N} \) has the properties

\[
1 \in S \quad \& \quad \text{whenever} \quad n \in S \Rightarrow s(n) \in S
\]

then \(S = \mathbb{N} \)
Given these definitions, we can define several operations/compositions and structures on \(\mathbb{N} \):

- \(a + b := ? \)

\[
\begin{align*}
 a + 1 & := s(a) \\
 a + s(n) & := s(a + n)
\end{align*}
\]

- \(a \times b := ? \)

\[
\begin{align*}
 a \times 1 & := a \\
 a \times s(n) & := a \times n + a
\end{align*}
\]
Out of these notions, addition and multiplication are defined in \mathbb{N}, and then extended to \mathbb{Z} and \mathbb{Q}. An interesting consequence that arises is a notion of order: $\forall a, b \in \mathbb{Q}$, exactly one of the following holds:

$$a < b, \quad a > b, \quad a = b$$

It has the properties: If $a > b$ then

$$\forall c \quad \Rightarrow \quad a + c > b + c$$
$$\forall c > 0 \quad \Rightarrow \quad ac > bc$$

Significance: This leads to metric properties: lengths, angles, etc.
Peano and Mathematical Induction

http://upload.wikimedia.org/wikipedia/commons/3/3a/Giuseppe_Peano.jpg
Induction

The set $\mathbb{N} = \{1, 2, 3, \ldots\}$ of natural numbers arises logically from the following construction of Peano.

\mathbb{Z} and Peano’s Axioms

- \mathbb{N} contains a particular element 1.
- **Successor function:** There is an injective [one-one] function $\sigma : \mathbb{N} \rightarrow \mathbb{N}$, for each $n \in \mathbb{N}$, $\sigma(n) \neq 1$. [Another notation: $\sigma(n) = n'$]
- **Induction axiom:** Suppose that $S \subset \mathbb{N}$ satisfies
 1. $1 \in S$;
 2. If $n \in S$ then $\sigma(n) \in S$. Then $S = \mathbb{N}$.

The second axiom means 3 things [there are 5 axioms in all]:
(1) every natural number has a successor; (2) no two natural numbers have the same successor; (3) 1 is not the successor of any natural number.
Defining Operations $+$ and \times

Operations

- **Addition:**
 \[m + 1 = m', \quad m + n' = (m + n)' \]

- **Multiplication:**
 \[m \cdot 1 = m, \quad m \cdot n' = m \cdot n + m \]
With these operations, \(\mathbb{N} \) satisfies:

- **Associativity properties:** For all \(x, y \) and \(z \) in \(\mathbb{N} \),

 \[
 x + (y + z) = (x + y) + z.
 \]

 \[
 x(yz) = (xy)z.
 \]

- **Commutativity properties:** For all \(x \) and \(y \) in \(\mathbb{N} \),

 \[
 x + y = y + x.
 \]

 \[
 xy = yx.
 \]

- **Distributivity properties:** For all \(x, y \) and \(z \) in \(\mathbb{N} \),

 \[
 x(y + z) = xy + xz.
 \]

 \[
 (y + z)x = yx + zx.
 \]
Order properties: For all x, y and z in \mathbb{N}, $x < y$ if there is $w \in \mathbb{N}$ such that $x + w = y$. Several properties arise: e.g. If $x < y$ then $\forall z \in \mathbb{N} \ x + z < y + z$.
\(\mathbb{N} \) can extended by 0 and ‘negatives’: \(\mathbb{Z} \). Operations also. Then all the ordinary properties of addition and multiplication are verified:

Let us illustrate with:

Proof of the associative law of addition for \(\mathbb{N} \):

\[(a + b) + n = a + (b + n) \quad \forall a, b, n \in \mathbb{N}\]

From the definitions check \(n = 1 \):

\[(a + b) + 1 = (a + b)' = a + b' = a + (b + 1)\]
Assume axiom holds for n and let us check for n' (induction hypothesis):

$$(a + b) + n' = (a + b) + (n + 1) \text{ (definition)}$$

$$= ((a + b) + n) + 1 \text{ (case } n = 1)$$

$$= (a + (b + n)) + 1 \text{ (ind. hypothesis)}$$

$$= a + ((b + n) + 1) \text{ (case } n = 1)$$

$$= a + (b + (n + 1)) \text{ (case } n = 1)$$

$$= a + (b + n') \text{ (definition)}$$
Principle of Mathematical Induction

Let us state Peano’s 5th Axiom again:

Definition (PMI)

If S is a subset of \mathbb{N} and

1. $1 \in S$,
2. for all $n \in \mathbb{N}$, if $n \in S$, then $n + 1 \in S$,

then $S = \mathbb{N}$.

A set with Property (2) is called an **inductive set**. Examples, besides \mathbb{N} are \emptyset, $S = \{x : x \in \mathbb{N}, x \geq 10\}$. \mathbb{N} is the only inductive set containing 1: This is **PMI**.

The **PMI** is used to define mathematical objects and in proofs galore.
We are discussing the **Principle of Mathematical Induction** (**PMI** for short). It is a mechanism to study (i.e. prove) certain open sentences \(P(n) \) that depend on \(n \in \mathbb{N} \) when we seek to verify that it is true for all values.

The method is rooted in the following property of the **natural numbers** \(\mathbb{N} \):

If \(S \) is a subset of \(\mathbb{N} \) and

1. \(1 \in S \),
2. for all \(n \in \mathbb{N} \), if \(n \in S \), then \(n + 1 \in S \),

then \(S = \mathbb{N} \).
Verifying $P(n)$

To verify whether $S = \{ n : P(n) \}$ is equal to \mathbb{N}, we follow the template:

1. (Base step) $P(1)$ is true;
2. (Inductive step) If for some n, $P(n)$ is true then $P(n + 1)$ is also true.

PMI guarantees that $S = \mathbb{N}$.
Sequences

Definition
A sequence is a function f whose domain is \mathbb{N}.

It can be represented as

$$\{f(1), f(2), f(3), \ldots\}$$

or

$$\{f(0), f(1), f(2), f(3), \ldots\}$$

or

$$\{f(n), \ldots, \ n \geq n_0\}$$

We will first examine sequences of real numbers, $f : \mathbb{N} \rightarrow \mathbb{R}$.
Sequences with values in a ring

Let \(R \) be a ring and \(\mathcal{R} \) the set [actually a ring] of all sequences \(f : \mathbb{N} \rightarrow R \). The operations are:

\[
(a_1, a_2, a_3, \ldots) + (b_1, b_2, b_3, \ldots) = (a_1 + b_1, a_2 + b_2, a_3 + b_3, \ldots)
\]

\[
(a_1, a_2, a_3, \ldots) \times (b_1, b_2, b_3, \ldots) = (a_1 \cdot b_1, a_2 \cdot b_2, a_3 \cdot b_3, \ldots)
\]

This ring, sometimes denoted by \(R^\mathbb{N} \), is a direct product of copies of \(R \).

Note that we have also the operation

\[
 r(a_1, a_2, a_3, \ldots) = (ra_1, ra_2, ra_3, \ldots)
\]
Rings of Polynomials

Let us endow the set of sequences above with a different multiplication. For convenience we label the sequence as:

\[(a_0, a_1, a_2, a_3, \ldots), \quad a_i \in \mathbb{R}\]

\[(a_0, a_1, a_2, a_3, \ldots) \times (b_0, b_1, b_2, b_3, \ldots) = (c_0, c_1, c_2, c_3, \ldots)\]

\[
\begin{align*}
c_0 &= a_0b_0 \\
c_1 &= a_0b_1 + a_1b_0 \\
&\vdots \\
c_n &= \sum_{i+j=n} a_ib_j = a_0b_n + \cdots + a_nb_0
\end{align*}
\]
Special Sequences

\[I = (1, 0, 0, 0, \ldots) \]
\[x = (0, 1, 0, 0, \ldots) \]

\[x = (0, 1, 0, 0, \ldots) \]
\[x^2 = (0, 0, 1, 0, \ldots) \]
\[x^3 = (0, 0, 0, 1, \ldots) \]

And most importantly

\[(r_0, r_1, r_2, r_3, \ldots) = r_0 I + r_1 x + r_2 x^2 + r_3 x^3 + \ldots \]
Polynomials

Proposition

With the composition above:

1. The set of all sequences with values in \(\mathbb{R} \) is a ring, denoted \(\mathbb{R}[[x]] \).

2. The subset of all sequences \(\mathbf{f} \) such that \(\mathbf{f}(n) = 0 \) for all \(n \gg 0 \) is also a ring, called the ring of polynomials of \(\mathbb{R} \), and is denoted by \(\mathbb{R}[x] \).

As abelian groups:

1. \(\mathbb{R}[[x]] \cong \mathbb{R}^\mathbb{N} \)

2. \(\mathbb{R}[x] \cong \mathbb{R}^{\oplus \mathbb{N}} \)
Rings of Polynomials

Rings of polynomials in \(n \) indeterminates, \(n > 1 \), can be built on a similar construction: Let \(R \) be a ring

- Set \(\mathbb{N} = \{0, 1, 2, \ldots\} \) and \(\mathbb{M} = \mathbb{N}^n \) be the set \(\alpha = (\alpha_1, \ldots, \alpha_n) \). We refer to \(\deg \alpha = \alpha_1 + \cdots + \alpha_n \) as the total degree of \(\alpha \) (referred to as a multi-index).

- Let \(\mathcal{P}(n) \) the set of functions \(f: \mathbb{M} \to R \)

- Addition in \(\mathcal{P}(n) \) is defined by \((f + g)(\alpha) = f(\alpha) + g(\alpha) \)
Multiplication in $\mathcal{P}(n)$ is defined by the convolution rule:
Note that for each $\gamma \in \mathbf{M}$ there are only finitely many pairs (α, β) such that
$$\gamma = \alpha + \beta$$

Define multiplication by
$$ (f \cdot g)(\gamma) = \sum_{\alpha + \beta = \gamma} f(\alpha) \cdot g(\beta) $$

Proposition

$\mathcal{P}(n)$ is a ring with these operations.
The elements of $\mathcal{P}(n)$ are called polynomials in n indeterminates.

For a given multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$, the function f such that $f(\alpha) = 1$ and $f(\beta) = 0$ for $\beta \neq \alpha$, is written

$$f = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

or simply x^α. These functions are called monomials.

Every f can be written as a finite sum

$$f = \sum_{\alpha} c_{\alpha} x^\alpha,$$

where c_{α} is a constant function.

Typically f is a sum of several terms. It is called a binomial, trinomial etc if If f has few terms it is called a fewnomial...
The ring $\mathcal{P}(2)$ is noteworthy.

- The set of functions $f : M \to R$ such that $f(m) = 0$ for almost all $m \in M$ that we used to get $\mathcal{P}(2)$ can be realized another way.

- Let $F : \mathbb{N} \to R[x]$ which is zero for almost all $r \in \mathbb{N}$. For each $r \in \mathbb{N}$, $F(r) \in R[x]$ means that $F(r) : \mathbb{N} \to R$ which is zero for almost all $s \in \mathbb{N}$, that is

$$F(r)(s) = 0$$

for almost all $(r, s) \in \mathbb{N}^2$. These are the functions used to define $\mathcal{P}(2)$.

- This shows that $\mathcal{P}(2) = R[x, y]$. More precisely, we must still verify that the two products coincide—which is easy.
Definition

A homomorphism \(\varphi : R \rightarrow R' \) from one ring to another is a map which is compatible with the laws of composition and which carries 1 to 1, that is, a map such that

\[
\varphi(a + b) = \varphi(a) + \varphi(b), \quad \varphi(ab) = \varphi(a)\varphi(b), \quad \varphi(1_R) = 1_{R'},
\]

for all \(a, b \in R \). An isomorphism of rings is bijective homomorphism. If there is an isomorphism \(R \rightarrow R' \), the two rings are said to be isomorphic.

Example

Let \(R = \mathbb{C} \). complex conjugation, \(a + bi \rightarrow a - bi \) is an isomorphism of \(\mathbb{C} \).
Matrix Rings

Let $R = M_n(\mathbb{R})$ be the ring of $n \times n$ real matrices, and let A be an invertible matrix. Define

$$\varphi : R \to R, \quad \varphi(X) = AXA^{-1}$$

$$\varphi(I) = AIA^{-1} = I$$

$$\varphi(X + Y) = A(X + Y)A^{-1} = AXA^{-1} + AYA^{-1} = \varphi(X) + \varphi(Y)$$

$$\varphi(XY) = A(XY)A^{-1} = AXA^{-1}AYA^{-1} = \varphi(X)\varphi(Y)$$

Thus conjugation by A is an isomorphism of R.
The Substitution Principle

Proposition

Let \(\varphi : R \rightarrow R' \) be a ring homomorphism.

(a) Given an element \(\alpha \in R' \), there is a unique homomorphism \(\Phi : R[x] \rightarrow R' \) which agrees with the map \(\varphi \) on constant polynomials and which sends \(x \mapsto \alpha \).

(b) More generally, given elements \(\alpha_1, \ldots, \alpha_n \in R' \), there is a unique homomorphism \(\Phi : R[x_1, \ldots, x_n] \rightarrow R' \) from the polynomial ring in \(n \) variables to \(R' \), which agrees with \(\varphi \) on constant polynomials and which sends \(x_\nu \mapsto \alpha_\nu \), for \(\nu = 1, \ldots, n \).
Proof. If Φ exists,

$$\Phi(a_n x^n + \cdots + a_0) = \Phi(a_n)\Phi(x^n) + \cdots + \Phi(a_0) = \varphi(a_n)\alpha^n + \cdots + \varphi(a_0)$$

Thus Φ is uniquely defined by φ and $\Phi(x) = \alpha$.

To prove the existence, we define Φ by the formula above, and check that

$$\Phi(f(x)+g(x)) = \Phi(f(x))+\Phi(g(x)), \quad \Phi(f(x)g(x)) = \Phi(f(x))\Phi(g(x))$$

Having done this so many times in Calculus, we believe.
Corollary

Let \(x = (x_1, \ldots, x_m) \) and \(y = (y_1, \ldots, y_n) \) denote sets of variables. There is a unique isomorphism \(R[x, y] \rightarrow R[x][y] \) which is the identity on \(R \) and which sends the variables to themselves.
Proposition

Let \mathcal{R} denote the ring of continuous real-valued functions on \mathbb{R}^n. The map $\varphi : \mathbb{R}[x_1, \ldots, x_n] \to \mathcal{R}$ sending a polynomial to its associated polynomial function is an injective homomorphism.
Proposition

There is exactly one homomorphism

$$
\varphi : \mathbb{Z} \rightarrow R
$$

from the ring of integers to an arbitrary ring R. It is the map defined by

$$
\varphi(n) = 1_R + \cdots + 1_R \text{ (}n\text{ times)} \text{ if } n > 0, \text{ and } \\
\varphi(-n) = -\varphi(n).
$$
The property of the kernel of a ring homomorphism – that it is closed under multiplication by arbitrary elements of the ring – is abstracted in the concept of an ideal.

Definition

An ideal I of a ring R is a subset of R with these properties:

- (i) I is a subgroup of R^+;
- (ii) If $a \in I$ and $r \in R$, then $ra \in I$.

Example

Let R be a commutative ring and $x \in R$. The set of multiples of x, $Rx = \{ra; r \in R\}$, is an ideal. It is called a principal, or one-generated ideal.
Example

If R is a ring and $S = \{a_1, \ldots, a_n\}$ is a set of elements of R, the set of all combinations

$$r_1a_1 + \cdots + r_na_n, \quad r_i \in R$$

is an ideal. It is called the ideal generated, or spanned, by S.

If R is not commutative, there are other notions of ideals:

- I is a **left ideal** if I is a subgroup of R^+, and for every $a \in I$, $r \in R$, $ra \in I$.
- I is a **right ideal** if I is a subgroup of R^+, and for every $a \in I$, $r \in R$, $ar \in I$.
- I is a **two-sided ideal** if I is a subgroup of R^+, and for every $a \in I$, $r, s \in R$, $ras \in I$.
Ideals of Fields

Proposition

(a) Let F be a field. The only ideals of F are the zero ideal and the unit ideal.

(b) Conversely, if a ring R has exactly two ideals, then R is a field.

Proof.

(a) Let I be a nonzero ideal. If $0 \neq a \in I$, since F is a field, $a^{-1} \in F \implies 1 = a^{-1}a \in I$. Thus $I = R$.

(b) If $0 \neq a$, Ra is a nonzero ideal, so $Ra = R$, which means there $r \in R$ such that $ra = 1$.
Corollary

Let F be a field and let R' be a nonzero ring. Every homomorphism $\varphi : F \to R'$ is injective.

Proof.

Let I be $\ker \varphi$. Since $\varphi(1_F) = 1_R$, φ is not the null mapping, and thus its kernel $\neq F$. But the only other ideal of F is (0). □
The ideals of \mathbb{Z}

Proposition

Every ideal in the ring \mathbb{Z} of integers is a principal ideal.

Proof.

Every ideal I of \mathbb{Z} is a subgroup of \mathbb{Z}^+. But we have already seen that the subgroups of \mathbb{Z} are cyclic, that is $I = \mathbb{Z}a$, for some integer a. Note $\mathbb{Z}a$ is also closed multiplication by elements of \mathbb{Z}.

Long Division Algorithm

Proposition

Let R be a ring and let f, g be polynomials in $R[x]$. Assume that the leading coefficient of f is a unit in R. (This is true, for instance, if f is a monic polynomial.) Then there are polynomials $q, r \in R[x]$ such that

$$g(x) = f(x)q(x) + r(x),$$

and such that the degree of the remainder r is less than the degree of f or else $r = 0$.

Proof. We may assume that $\deg g(x) \geq \deg f(x)$, as otherwise there is nothing to prove. We are going to induction on $\deg g(x)$ assuming that the assertion is true for polynomials of lesser degree.
\[g(x) = b_m x^m + \text{lower degree} \]
\[f(x) = a_n x^n + \text{lower degree} \]

By assumption \(u = a_n \) is invertible. Note that

\[
h(x) = g(x) - b_m u^{-1} x^{m-n} f(x)
\]

satisfies \(\deg h(x) < \deg g(x) \).
By induction we have

\[h(x) = f(x)q'(x) + r(x), \quad \deg r(x) < \deg f(x) \]

and therefore

\[g(x) = f(x)(q'(x) + b_m u^{-1} x^{m-n}) + r(x), \quad \deg r(x) < \deg f(x) \]

Corollary

Let \(g(x) \) be a monic polynomial in \(R[x] \), and let \(\alpha \) be an element of \(R \) such that \(g(\alpha) = 0 \). Then \(x - \alpha \) divides \(g \) in \(R[x] \).
Proposition

Let F be a field. Every ideal in the ring $F[x]$ of polynomials in a single variable x is a principal ideal.

Proof. Let I be an ideal of $F[x]$. If $I = (0)$ there is nothing to prove.

If $I \neq (0)$, let $f(x)$ be a nonzero polynomial of least degree. We claim that every element $g(x)$ of I is a multiple of $f(x)$. If $g(x) = 0$, there is nothing to do, so assume $g(x) \neq 0$. Since the leading coefficient of $f(x)$ is invertible, by the Long Division Algorithm there are polynomials $q(x)$ and $r(x)$ such that

$$g(x) = f(x)q(x) + r(x), \quad \deg r(x) < \deg f(x)$$

But $r(x) = g(x) - f(x)q(x)$ is an element of I, so must be 0 by the choice of $f(x)$.
Corollary

Let F be a field, and let f and g be polynomials which are not both zero. There is a unique monic polynomial $d(x)$ called the greatest common divisor of f and g, with the following properties:

1. d generates the ideal (f, g) of $F[x]$ generated by the two polynomials f, g.
2. d divides f and g.
3. If h is any divisor of f and g, then h divides d.
4. There are polynomials $p, q \in F[x]$ such that $d = pf + qg$.

Recall: The ideal (f, g) is made up of all combinations

$$a(x)f(x) + b(x)g(x)$$
Radical of an Ideal

Definition

Let I be an ideal of the commutative ring R. The *radical* of I is the set

$$\sqrt{I} = \{ x \in R : x^n \in I \text{ some } n = n(x) \}.$$

Proposition

\sqrt{I} is an ideal.

Proof.

If $a, b \in \sqrt{I}$, $a^m \in I$, $b^n \in I$, then

$$(a + b)^{m+n-1} = \sum_{i+j=m+n-1} \binom{m+n-1}{i} a^i b^j \in I,$$

since $i \geq m$ or $j \geq n$.

Principal Ideal Ring

Definition

A ring \(R \) is a principal ideal ring if every ideal \(I \) is generated by one element, \(I = \{ ra : r \in R \} \).

- \(\mathbb{Z} \) and \(F[x] \) where \(F \) is a field are principal ideal rings.
- \(R = F[x, y] \) is not: The ideal \(I \) generated by \(x, y \) cannot be generated by 1 element.
Idempotents

Let $\mathbb{R} = \mathbb{Z}_6$ and consider the element $z = 3$. Note $z^2 = 9 = 3 = z$. These elements are called:

Definition
The element $e \in \mathbb{R}$ is called **idempotent** if $e^2 = e$.

Definition
\mathbb{R} is a **Boolean** ring if $z^2 = z$ for all $z \in \mathbb{R}$.

Proposition

If \mathbb{R} is a Boolean ring, then

1. $2z = 0$ for $z \in \mathbb{R}$;
2. If $a, b \in \mathbb{R}$, then a, b are multiples of $a + b - ab$.

Class proof
Example: Boolean ring

For a non-empty set X let R the set of all functions $f : X \rightarrow \mathbb{Z}_2$.

- $(f + g)(s) = f(s) + g(s)$, and
- $(f \cdot g)(s) = f(s) \cdot g(s)$, define a ring structure on R.
- $f^2(s) = f(s) \cdot f(s) = f(s)$, so R is Boolean.
Outline

1. Rings
2. Integers and Polynomials
3. Homomorphisms
4. Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions
6. Homework #10
7. Maximal Ideals
8. Noetherian Rings
9. Algebraic Geometry
10. Diagonalization
11. Diagonalization and Minimal Polynomials
12. Homework #11
Quotient rings

The most effective method to build new rings is the following:

Let I be a two-sided proper ideal of the R and denote by $\overline{R} = R/I$ the corresponding cosets $\{a + I : a \in R\}$. It defines on \overline{R} an abelian group structure called the **quotient ring** R/I:

$$(a + I) + (b + I) = (a + b) + I$$
We claim that this operation and

$$(a + I) \times (b + I) = ab + I$$

defines a ring structure. Let us verify that if $a' + I = a + I$ and $b + I = b' + I$, then $ab + I = a'b' + I$: Since $a' = a + r$, $b' = b + s$, with $r, s \in I$

$$a'b' = (a + r)(b + s) = ab + (rb + sa + rs)$$

and thus $a'b'$ and ab live in the same coset.

The axioms of associativity and distributivity are easily verified.

This is a source to many new rings
Example

Let $R = \mathbb{Z}$ and $I = \mathbb{Z}n$. Then R/I is the ring of integers modulo n.
Examples: Quotient rings

\((2) \subset \mathbb{Z} \Rightarrow \mathbb{Z}_2 = \mathbb{Z}/(2)\)

\((x^2 + x + 1) \subset \mathbb{Z}_2[x] \Rightarrow \mathbb{Z}_2[x]/(x^2 + x + 1) = \mathbb{F}_4\)

\((x^2 + 1) \subset \mathbb{R}[x] \Rightarrow \mathbb{C} = \mathbb{R}[x]/(x^2 + 1)\)

\((1 + 3i) \subset \mathbb{Z}[i] \Rightarrow \mathbb{Z}_{10} = R = \mathbb{Z}[i]/(1 + 3i)\)

Will check out some of these soon.
Theorem

Let I be an ideal of a ring R.

(a) There is a unique ring structure on the set of cosets $\overline{R} = R/I$ such that the canonical map $\pi : R \to \overline{R}$ sending $a \mapsto \overline{a} = a + I$ is a homomorphism.

(b) The kernel of π is I.

Mapping property of quotient rings

Proposition

Let $f : R \rightarrow R'$ be a ring homomorphism with kernel I and let J be an ideal which is contained in I. Denote the residue ring R/J by \overline{R}.

(a) There is a unique homomorphism $\overline{f} : \overline{R} \rightarrow R'$ such that $\overline{f}\pi = f$:

(b) *(First Isomorphism Theorem)* If $J = I$, then \overline{f} maps \overline{R} isomorphically to the image of f.
Correspondence Theorem

Proposition

Let $\overline{R} = R/J$, and let π denote the canonical map $R \to \overline{R}$.

(a) There is a bijective correspondence between the set of ideals of R which contain J and the set of all ideals of \overline{R}, given by

$$I \mapsto \pi(I), \quad \text{and} \quad \pi^{-1}(I) \mapsto \overline{I}.$$

(b) If $I \subset R$ corresponds to $\overline{I} \subset \overline{R}$, then R/I and $\overline{R}/\overline{I}$ are isomorphic rings.
\[\mathbb{Z}[i]/(1 + 3i) \cong \mathbb{Z}/(10) \]

Proposition

The ring \(\mathbb{Z}[i]/(1 + 3i) \) is isomorphic to the ring \(\mathbb{Z}/10\mathbb{Z} \) of integers modulo 10.

Proof. Consider the homomorphism

\[\varphi : \mathbb{Z} \to \mathbb{Z}[i] \to R = \mathbb{Z}[i]/(1 + 3i) \]

induced by the embedding of \(\mathbb{Z} \) in \(\mathbb{Z}[i] \). We claim that \(\varphi \) is a surjection of kernel 10\(\mathbb{Z} \):

\[
1 + 3i \equiv 0 \Rightarrow i(1 + 3i) \equiv 0 \Rightarrow i - 3 \equiv 0 \Rightarrow i \equiv 3
\]

\[a + bi \equiv a + 3b \Rightarrow \varphi \text{ is surjection} \]

For \(n \) in kernel of \(\varphi \),

\[
n = z(1 + 3i) = (a + bi)(1 + 31)
\]

\[
= (a - 3b) + (3a + b)i \quad \Rightarrow \quad b = -3a \quad \Rightarrow \quad n = 10a
\]
The Circle Ring

Proposition

\[\mathbb{R}[x, y]/(x^2 + y^2 - 1) \cong \mathbb{R}[\cos t, \sin t]. \]

The ring \(R = \mathbb{R}[x, y]/(x^2 + y^2 - 1) \): known as the **circle ring**

- Consider the natural homomorphism

 \[f : \mathbb{R}[x, y] \rightarrow \mathbb{R}[\cos t, \sin t], \quad f(x) = \cos t, \ f(y) = \sin t \]

 \(\mathbb{R}[\cos t, \sin t] \) is the ring of trigonometric polynomials.

- \(f(x^2 + y^2 - 1) = 0 \) so there is an induced surjection

 \[\varphi : \mathbb{R}[x, y]/(x^2 + y^2 - 1) \rightarrow \mathbb{R}[\cos t, \sin t] \]

- \(\varphi \) is an isomorphism because: (i) \(\mathbb{R}[\cos t, \sin t] \) is an infinite dimensional \(\mathbb{R} \)-vector space (why?); for any ideal \(L \) larger than \((x^2 + y^2 - 1) \), \(\mathbb{R}[x, y]/L \) is a finite dimensional \(\mathbb{R} \)-vector space (why?).
Proposition

The ring $\mathbb{R}[x, y]/(xy)$ is isomorphic to the subring of the product ring $\mathbb{R}[x] \times \mathbb{R}[y]$ consisting of the pairs $(p(x), q(y))$ such that $p(0) = q(0)$.

Proof. Let us sketch the proof, leaving the details to reader:

$$\mathbb{R}[x, y]/(xy) \cong \{(p(x), q(y)) : p(0) = q(0)\}$$

Consider the homomorphism

$$\varphi : \mathbb{R}[x, y]/(xy) \to \mathbb{R}[x, y]/(y) \times \mathbb{R}[x, y]/(x)$$

$$\varphi(a + (xy)) = (a + (y), a + (x))$$

Check that φ is one-one and determine its image.
Outline

1. Rings
2. Integers and Polynomials
3. Homomorphisms
4. Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions
6. Homework #10
7. Maximal Ideals
8. Noetherian Rings
9. Algebraic Geometry
10. Diagonalization
11. Diagonalization and Minimal Polynomials
12. Homework #11
Definition

An **integral domain** R is a nonzero ring having no zero divisors. That is, if $ab = 0$, then $a = 0$ or $b = 0$.

Example

Any subring R of a field F is an integral domain.
Properties

Proposition

1. If R is an integral domain then the polynomial ring $R[x]$ is also an integral domain.

2. An integral domain with finitely many elements is a field.

Proof. Class proof.
Embedding

Theorem

Let \mathbf{R} be an integral domain. There exists an embedding of \mathbf{R} into a field, meaning an injective homomorphism $\varphi : \mathbf{R} \to \mathbf{F}$, where \mathbf{F} is a field.

Proof. We are going to build fractions with the elements of \mathbf{R}.

- Let S be the set of all ordered pairs $(a, b), \ a, b \in \mathbf{R}, \ b \neq 0$. Define the following relation on S:

 $$(a, b) \sim (c, d) \iff ad = bc$$

- **Claim:** \sim is an equivalence relation.
 - reflexive: $(a, b) \sim (a, b)$ clear
 - symmetric: $(a, b) \sim (c, d) \iff (c, d) \sim (a, b)$
 - transitive: $(a, b) \sim (c, d) \sim (e, f) \Rightarrow$

 $$ad = bc, cf = de \Rightarrow adf = bcfbcf = bde \Rightarrow af = be$$
Field of fractions

Let \(F \) be the set of equivalence classes. We denote the equivalence of \((a, b)\) by \(a/b \).

- We define a field structure on \(F \) by the rules:

\[
(a/b)(c/d) = ac/bd, \quad a/b + c/d = \frac{ad + bc}{cd}
\]

- It must be verified that these definitions do not depend on the representative taken, for instance, if \(a/b = a'/b' \), then \((a/b)(c/d) = (a/b')(c/d)\). We believe!

- With these rules, \(F \) is a field. For instance, if \(a/b \) is such that \(a \neq 0 \), then \((a/b)^{-1} = (b/a)\).

- Finally, define \(\varphi : \mathbb{R} \rightarrow F \) by the rule \(\varphi(a) = a/1 \). It is easy to verify that \(\varphi \) is an injective homomorphism.
Examples

- What are fractions in \mathbb{Q}?
- $\mathbb{Z} \rightarrow \mathbb{Q}$
- $\mathbb{R}[x] \rightarrow \mathbb{R}(x) : \frac{p(x)}{q(x)}$
Class Exercise

Proposition

Let \mathbf{R} be an integral domain, with field of fractions \mathbf{F}, and let $\varphi : \mathbf{R} \to \mathbf{K}$ be an injective homomorphism of \mathbf{R} to the field \mathbf{K}. Then the rule

$$\Phi(a/b) = \varphi(a)\varphi(b)^{-1}$$

defines the unique extension of φ to a homomorphism $\Phi : \mathbf{F} \to \mathbf{K}$.
Outline

1. Rings
2. Integers and Polynomials
3. Homomorphisms
4. Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions
6. Homework #10
7. Maximal Ideals
8. Noetherian Rings
9. Algebraic Geometry
10. Diagonalization
11. Diagonalization and Minimal Polynomials
12. Homework #11
1. If R is a Boolean ring, prove that every finitely generated ideal I is generated by one element.

2. If R is a finite Boolean ring, $|R| = 2^n$, for some integer n.
 Hint: For each $e \in R$, show that $R = Re \times R(1 - e)$. Note that Re is a Boolean ring with identity e.

3. Prove that if R is a finite integral domain then:
 - R is a field;
 - R contains a subfield \mathbb{Z}_p, for some prime p;
 - $|R| = p^n$

4. Let R_1, R_2 be two rings. Describe the ideals of $R_1 \times R_2$ in terms of the ideals of R_1 and R_2.

Homework #10

Rings Integers and Polynomials Homomorphisms Quotient rings and relations in a ring Integral Domains and Rings of...
Outline

1. Rings
2. Integers and Polynomials
3. Homomorphisms
4. Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions
6. Homework #10
7. **Maximal Ideals**
8. Noetherian Rings
9. Algebraic Geometry
10. Diagonalization
11. Diagonalization and Minimal Polynomials
12. Homework #11
Maximal Ideals

Definition
An ideal M is maximal if $M \neq \mathbb{R}$ but M is not contained in any ideals other than M or \mathbb{R}.

Proposition
1. An ideal M of a ring \mathbb{R} is maximal iff $\overline{\mathbb{R}} = \mathbb{R}/M$ is a field.
2. The zero ideal of \mathbb{R} is maximal iff \mathbb{R} is a field.
Examples

Proposition

The maximal ideals of \(\mathbb{Z} \) are the ideals \((p)\), where \(p \) is a nonzero prime number.

Proposition

The maximal ideals of the ring \(\mathbb{C}[x] \) of complex polynomials are the ideals \((f(x))\) where \(f(x) = x - c \), were \(c \in \mathbb{C} \).

Proof.

Let \(M \) be a maximal ideal; clearly \(M \neq (0) \). We know that \(\mathbb{C}[x] \) is a principal ideal ring that every ideal is generated by a single polynomial, \(M = (f(x)) \). If \(\deg(f(x)) > 1 \), and \(c \) is a root, \(f(x) = (x - c)g(x) \).

It follows that \(M \subset (x - c) \). Since \(M \) is maximal, \(M = (x - c) \).
Example

Let $\mathbb{R} = \mathbb{R}[x, y]$, the ring of polynomials in two indeterminates over \mathbb{R}. Define a homomorphism

$$\varphi : \mathbb{R} \to \mathbb{C}, \quad x \to i, \ y \to i$$

Let M be the kernel. Note that $x - y \to 0$ and $x^2 + 1 \to 0$, and $r \to r$ if $r \in \mathbb{R}$

Note that φ is surjective, so $\mathbb{R}/M \cong \mathbb{C}$. Therefore M is maximal. **Claim:** $M = (x - y, x^2 + 1)$.
Example from Analysis

Let \mathbf{R} be the ring of real continuous functions on the interval $I = [0, 1]$. For each $a \in I$, the evaluation $f(x) \mapsto f(a)$ defines a surjective homomorphism

$$\varphi : \mathbf{R} \to \mathbf{R}$$

The kernel is $M = \{f(x) : f(a) = 0\}$. Since $\mathbf{R}/M \simeq \mathbf{R}$, M is a maximal ideal.

Now we are going to use hard analysis to prove the converse. We are going to use the fact that the interval I is compact: any covering

$$I \subset \bigcup (a_i, b_i)$$

has a finite subcover.
For maximal ideal M of the ring \mathbb{R} of continuous functions on $I = [0, 1]$ there is $a \in I$ such that $M = \{f(x) : f(a) = 0\}$.

Proof. Deny it. This means that for each $a \in I$ there is $f(x) \in M$ such that $f(a) \neq 0$. Since $f(x)$ is continuous with $f(a) \neq 0$, in a small interval (c, d) about a, $f(x) \neq 0$ for $x \in (c, d)$.

This gives rise to a covering

$$I \subset \bigcup_{i=1}^{n} (c_i, d_i)$$

by such intervals (actually a finite collection) and functions $f_i(x) \in M$ nonvanishing on (c_i, d_i).
Consider the function

\[f(x) = \sum_{i=1}^{n} f_i(x)^2 \]

\(f \in M \) and does not vanish anywhere in \(I \). This implies that \(1/f(x) \in R \), and therefore \(1 = (1/f(x))f(x) \in M \), a contradiction.
Prime Ideals

Definition
Let R be a commutative ring. An ideal P of R is prime if $P \neq R$ and whenever $a \cdot b \in P$ then $a \in P$ or $b \in P$.

Equivalently:

- R/P is an integral domain
- If I and J are ideals and $I \cdot J \subseteq P$ then $I \subseteq P$ or $J \subseteq P$
Prime ideals and homomorphisms

prime ideals of R morphisms $\varphi : R \rightarrow S$
Prime ideals arise in issues of factorization and very importantly:

Proposition

Let $\phi : R \rightarrow S$ be a homomorphism of commutative ring. If S is an integral domain, then $P = \ker(\phi)$ is a prime ideal. More generally, if S is an arbitrary commutative ring and Q is a prime ideal, then $P = \phi^{-1}(Q)$ is a prime ideal of R.

Proof. Inspect the diagram
Exercise

Consider the homomorphism of rings

\[\varphi : k[x, y, z] \rightarrow k[t] \]
\[x \rightarrow t^3 \]
\[y \rightarrow t^4 \]
\[z \rightarrow t^5 \]

Let \(P \) be the kernel of this morphism. Note that \(x^3 - yz, y^2 - xz \) and \(z^2 - x^2y \) lie in \(P \).

Task: Prove that \(P \) is generated by these 3 polynomials.

Task: Describe the prime ideals of the ring

\[R = \mathbb{C}[x, y]/(y^2 - x(x - 1)(x - 2)). \]
Significance: Prime and Maximal Ideals

These ideals give rise to new interesting rings:

- Prime ideals are significant because: R/P is a domain
- Maximal ideals are significant because: R/P is a field
- In particular maximal ideals are prime
Let \mathbb{R} be a ring. Given a proper ideal I, how to add something to it an still get a proper ideal?

- If $a \notin I$, add a to I, which means form all $ra + s$, $r \in \mathbb{R}$, $s \in I$.

- This ideal, (a, I), may be improper, $(a, I) = \mathbb{R}$, that is we have a term $ra + s = 1$. Hard to predict.
A theorem for believers

Theorem

Let \mathbf{R} be a ring. Every ideal I of \mathbf{R} which is not the unit ideal is contained in a maximal ideal.

How we are going to do this?

Proof. [?]

- Let I be an ideal. If I is maximal, we are done.
- If not, there is a larger proper ideal $I \subset I_1$. If I_1 is maximal,...
- In this manner we get a chain of proper ideals $I \subset I_1 \subset \cdots \subset I_n \subset$
- Observation: $\bigcup_n I_n$ is a proper ideal—obviously closed under addition, multiplication and 1 is not in the union.
What else can we do?
Zorn Lemma

This is an extra axiom which when added to the more common axioms of mathematics asserts:

Any subset \(Y \) of a partially ordered set \(X \) such the chains of elements of \(Y \) have a supremum has maximal elements
Outline

1. Rings
2. Integers and Polynomials
3. Homomorphisms
4. Quotient rings and relations in a ring
5. Integral Domains and Rings of Fractions
6. Homework #10
7. Maximal Ideals
8. Noetherian Rings
9. Algebraic Geometry
10. Diagonalization
11. Diagonalization and Minimal Polynomials
12. Homework #11
Emmy Noether (1882-1935)

http://upload.wikimedia.org/wikipedia/commons/e/e5/Noether.jpg
Noetherian Rings

Definition

\(R \) is a **Noetherian** if every ascending chain of ideals is stationary, that is \(A_n = A_{n+1} = \ldots \) from a certain point on.

Definition

The ring \(R \) has the **Maximal Condition** if every subset \(S \) of the \(X \) (set of ideals ordered by inclusion) contains a **maximum submodule**
Example

Let $R = \mathbb{Z}$: a chain of ideals

$$(a_1) \subset (a_2) \subset \cdots \subset (a_n)$$

means a sequence of integers $a_2 | a_1$, $a_3 | a_2$, \ldots, each dividing the preceding, in a process that must stop. The same argument applies of the ring $R = F[x]$, where F is a field.
Proposition

\textbf{R} is a Noetherian ring iff \textbf{R} has the Maximal Condition.

\textbf{Proof.} Let \(S \) be a set of ideals of \(\textbf{R} \). If \(S \) contains no maximal element, we can build an ascending chain

\[
A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots
\]

contradicting the assumption that \(\textbf{R} \) is Noetherian. The converse has a similar proof.
Proposition

\textbf{R} is Noetherian iff every ideal is finitely generated.

\textbf{Proof.} Suppose \textbf{R} is Noetherian. Let us deny. Let \(A \) be an ideal of \textbf{R} and assume it is not finitely generated. It would permit the construction of an increasing sequence of submodules of \(A \),

\[(a_1) \subset (a_1, a_2) \subset \cdots \subset (a_1, a_2, \ldots, a_n) \subset \cdots ,\]

\(a_{n+1} \in A \setminus (a_1, \ldots, a_n)\).

Conversely if \(A_1 \subseteq A_2 \subseteq \cdots \) is an increasing sequence of ideals, let \(B = \bigcup_{i \geq 1} A_i \) is an ideal and therefore \(B = (b_1, \ldots, b_m) \).

Each \(b_i \in A_{n_i} \) for some \(n_i \). If \(n = \max\{n_i\}, A_n = A_{n+1} = \cdots \).
Hilbert Basis Theorem

Theorem (HBT)

If R is Noetherian then $R[x]$ is Noetherian.

1. If R is Noetherian and x_1, \ldots, x_n is a set of independent indeterminates, then $R[x_1, \ldots, x_n]$ is Noetherian.

2. $\mathbb{Z}[x_1, \ldots, x_n]$ is Noetherian.

3. If k is a field, then $k[x_1, \ldots, x_n]$ is Noetherian.
Proof of the HBT

Suppose the \(R[x] \)-ideal \(I \) is not finitely generated. Let \(0 \neq f_1(x) \in I \) be a polynomial of smallest degree, \(f_1(x) = a_1x^{d_1} + \text{lower degree terms} \).

Since \(I \neq (f_1(x)) \), let \(f_2(x) \in I \setminus (f_1(x)) \) of least degree. In this manner we get a sequence of polynomials

\[
f_i(x) = a_ix^{d_i} + \text{lower degree terms},
\]

\[
f_i(x) \in I \setminus (f_1(x), \ldots, f_{i-1}(x)), \quad d_1 \leq d_2 \leq d_3 \leq \cdots
\]

Set \(J = (a_1, a_2, \ldots) = (a_1, a_2, \ldots, a_m) \subseteq R \).
Let \(f_{m+1}(x) = a_{m+1}x^{d_{m+1}} + \text{lower degree terms} \). Then

\[
a_{m+1} = \sum_{i=1}^{m} s_i a_i, \quad s_i \in R.
\]

Consider

\[
g(x) = f_{m+1} - \sum_{i=1}^{m} s_i x^{d_{m+1} - d_i} f_i(x).
\]

\(g(x) \in I \setminus \langle f_1(x), \ldots, f_m(x) \rangle \), but \(\deg g(x) < \deg f_{m+1}(x) \), which is a contradiction.
Examples

- \(\mathbb{Z} \) is Noetherian, so is \(R = \mathbb{Z}[x_1, \ldots, x_n] \)
- A field \(F \) is Noetherian, so is \(R = F[x_1, \ldots, x_n] \)
- \(A \) is Noetherian, so is \(R = A[x_1, \ldots, x_n]/I \)
Power Series Rings

Another construction over a ring R is that of the power series ring $R[[x]]$:

$$f(x) = \sum_{n \geq 0} a_n x^n, \quad g(x) = \sum_{n \geq 0} b_n x^n$$

with addition component wise and multiplication the Cauchy operation

$$f(x)g(x) = h(x) = \sum_{n \geq 0} c_n x^n$$

$$c_n = \sum_{i+j=n} a_i b_{n-i}$$

Theorem

If R is Noetherian then $R[[x]]$ is Noetherian.
Proposition

A commutative ring \(R \) is Noetherian iff every prime ideal is finitely generated.

Proof. If \(R \) is not Noetherian, there is an ideal \(I \) maximum with the property of not being finitely generated (Zorn’s Lemma). We assume \(I \) is not prime, that is there exist \(a, b \notin I \) such that \(ab \in I \).
The ideals \((I, a)\) and \((I : a)\) are both larger than \(I\) and therefore are finitely generated:

\[
(I : a) = (a_1, \ldots, a_n) \\
(I, a) = (b_1, \ldots, b_m, a), \quad b_i \in I
\]

Claim: \(I = (b_1, \ldots, b_m, a, a_1, \ldots, a_n)\)

If \(c \in I\),

\[
c = \sum_{i=1}^{m} c_i b_i + ra, \quad r \in I : a
\]
Proof. Let P be a prime ideal of $R[[x]]$. Set $p = P \cap R$. p is a prime ideal of R and therefore it is finitely generated.

Denote by $p[[x]] = pR[[x]]$ the ideal of $R[[x]]$ generated by the elements of p. It consists of the power series with coefficients in p and $R[[x]]/p[[x]]$ is the power series ring $R/p[[x]]$.

We have the embedding

$$P' = P/p[[x]] \hookrightarrow (R/p)[[x]]$$

P' is a prime ideal of $R/p[[x]]$ and $P' \cap R/p = 0$. It will suffice to show that P' is finitely generated.
We have reduced the proof to the case of a prime ideal \(P \subset R[[x]] \) and \(P \cap R = (0) \).

If \(x \in P \), \(P = (x) \) and we are done.
For \(f(x) = a_0 + a_1 x + \cdots \in P \), let \(J = (b_1, \ldots, b_m) \subset R \) be the ideal generated by all \(a_0 \),

\[f_i = b_i + \text{higher terms} \in P. \]

Claim: \(P = (f_1, \ldots, f_m) \).

From \(a_0 = \sum_i s_i^{(0)} b_i \), we write

\[f(x) - \sum_i s_i^{(0)} f_i = xh \quad \Rightarrow h \in P. \]
We repeat with h and write

$$f(x) = \sum_i s_i^{(0)} f_i + x \sum_i s_i^{(1)} f_i + x^2 g, \quad g \in P.$$

Iterating we obtain

$$f(x) = \sum_i (s_i^{(0)} + s_i^{(1)} x + s_i^{(2)} x^2 + \cdots) f_i.$$
What is Algebraic Geometry?

Needs lots of space [it is, in fact, about Space] to describe all it is about.
David Hilbert (1862-1943)

Mathematician
Algebraist
Topologist
Geometrist
Number Theorist
Physicist
Analyst
Philosopher
Genius
And modest too...

"Physics is much too hard for physicists." - Hilbert, 1912
Do polynomials have roots?

Let $f(x) = f(x_1, \ldots, x_n)$ be a nonconstant polynomial of $R = \mathbb{C}[x] = \mathbb{C}[x_1, \ldots, x_n]$, $n > 1$.

Fact: There is $c \in \mathbb{C}^n$ such that $f(c) = 0$.

The answer is easy when

$$f(x_1, \ldots, x_n) = x_n^d + g(x_1, \ldots, x_n),$$

where $g(x)$ is a polynomial of degree $< d$ in the variable x_n.

For example: Discuss

$$x^6 + yx^5 + y^8 + 1$$
More generally, let $f_1(x), \ldots, f_m(x)$ be a set of elements of $R = \mathbb{C}[x]$.

Question: What are the obstructions to finding $c \in \mathbb{C}^n$ such that

$$f_1(c) = f_2(c) = \cdots = f_m(c) = 0 ?$$

Obviously one is: there exist $g_1(x), \ldots, g_m(x)$ such that

$$g_1(x)f_1(x) + \cdots + g_m(x)f_m(x) = 1$$

What else?
Volunteer!

- Sketch the graph of the equation

 \[y^2 = x(x - 1)(x - 2) \]

- Can you see a group in the graph?
Let k be a field and denote by \overline{k} its algebraic closure. (What are these? Like \mathbb{R} and \mathbb{C}) We stay with \mathbb{C}.

The Hilbert Nullstellensatz is about qualitative results on systems of polynomial equations.

Let $f_i(x_1, \ldots, x_n) \in R = k[x_1, \ldots, x_n], 1 \leq i \leq m$, be a set of polynomials.

Definition

The algebraic variety defined by the f_i is the set of zeros

\[V(f_1, \ldots, f_m) = \{ c = (c_1, \ldots, c_n) \in \mathbb{C}^n : f_i(c) = 0, \quad 1 \leq i \leq m \}. \]

A hypersurface is a variety defined by a single equation $V(f)$. If I is the ideal generated by the f_i, then the variety defined by I is $V(I) = V(f_1, \ldots, f_m)$.
Notes about \mathbb{C}

- \mathbb{C} is a two-dimensional vector space over \mathbb{R}

- If $\mathbb{C} \subset \mathbb{F}$ is a field that is of finite dimension over \mathbb{C}, obviously it is of (double) finite dimension over \mathbb{R}

- This means that if $u \in \mathbb{F}$, the vector subspace spanned by the powers of u,

 \[1, u, u^2, \ldots, \]

 is finite dimensional over \mathbb{R} and thus there must be a polynomial $f(x) \in \mathbb{R}[x]$ such that $f(u) = 0$. This will imply $u \in \mathbb{C}$—that is \mathbb{C} is algebraically closed
The field extensions of \mathbb{C},

$$\mathbb{C} \rightarrow \mathbb{F}$$

have the property

- If $u \in \mathbb{F}$ satisfies an equation

$$f(u) = 0,$$

$$u \in \mathbb{C}$$

- Otherwise u said to be transcendental over \mathbb{C}. This is the case for every nonconstant

$$u = \frac{f(x)}{g(x)} \in \mathbb{C}(x)$$
Hilbert Nullstellensatz

Theorem

If the ideal \(I \subset R = \mathbb{C}[x_1, \ldots, x_n] \) is proper, i.e. \(I \neq R \), then \(V(I) \neq \emptyset \)—that is, if \(I \neq R \), there is \(c \) such that \(f(c) = 0 \) for all \(f \in I \).

Proof. We make two reductions.

1. Let \(m \) be a maximal ideal of \(R \) containing \(I \). Since \(V(m) \subset V(I) \), ETA that \(I \) is maximal.

2. Indeed, if \(c \in \mathbb{C}^n \) is such that \(f(c) = 0 \) for all \(f(x) \in m \), then \(g(c) = 0 \) for all \(g \in I \subset m \).
Nullstellensatz

After these reductions the assertion is:

Theorem

If M is a maximal ideal of $R = \mathbb{C}[x_1, \ldots, x_n]$, then there is

$$c = (c_1, \ldots, c_n) \in \mathbb{C}^n$$

such that

$$f(c) = 0 \quad \forall f(x) \in M.$$
Special case: \(\mathbb{C} \)

Consider the field \(\mathbf{F} = \mathbb{C}[x_1, \ldots, x_n]/M. \)

Proposition

It is ETS that \(\mathbf{F} \) is isomorphic to \(\mathbb{C} \).

Proof. Indeed, if \(\mathbf{F} \cong \mathbb{C} \), for each indeterminate \(x_i \) its equivalence class in \(\mathbb{C}[x_1, \ldots, x_n]/M \) contains some element \(c_i \) of \(\mathbb{C} \), that is \(x_i - c_i \in M. \) this means that

\[
(x_1 - c_1, \ldots, x_n - c_n) \subset M.
\]

But \((x_1 - c_1, \ldots, x_n - c_n) \) is also a maximal ideal, therefore it is equal to \(M. \) Clearly every polynomial of \(M \) vanishes at \(c = (c_1, \ldots, c_n). \) \(\square \)
Proof of $\mathbb{C} = \mathbb{C}[x_1, \ldots, x_n]/M$

1. ETS that the extension $\mathbb{C} \rightarrow F = \mathbb{C}[x_1, \ldots, x_n]/M$ is algebraic.

2. Observe that $[F : \mathbb{C}]$, the dimension of F as a vector space over \mathbb{C}, is countable, F being a homomorphic image of the countably generated vector space $\mathbb{C}[x_1, \ldots, x_n]$.

3. If F is not algebraic over \mathbb{C}, suppose $t \in F$ is transcendental over \mathbb{C}.

4. Consider the uncountable set $\{1/(t - c), c \in \mathbb{C}\}$.
Since they cannot be linearly independent, there are distinct \(c_i \), \(1 \leq i \leq m \) and nonzero \(r_i \in \mathbb{C} \) such that

\[
r_1 \frac{1}{t - c_1} + \cdots + r_m \frac{1}{t - c_m} = 0.
\]

Clearing denominators gives the equality of two polynomials of \(\mathbb{C}[t] \):

\[
r_1(t - c_2)(t - c_3) \cdots (t - c_m) = (t - c_1)g(t),
\]

which is a contradiction as the \(c_i \) are distinct.
Comaximal ideals

Definition

Two ideals I and J of a ring R are **comaximal** if

$$I + J = R.$$

Example

$R = \mathbb{Z}$, $I = (6)$, $J = (35)$, then $I + J = \mathbb{Z}$.

Partition of the Unity

If R is a commutative ring, a partition of the unity is an special decomposition of the form

$$R = J_1 + \cdots + J_n, \quad J_i \text{ ideals of } R$$

Suppose I_1, \ldots, I_n is a set of ideals that is pairwise co-maximal, meaning $I_i + I_j = R$, for $i \neq j$. This obviously is a partition of the unity.

Another arises from it [check!] if we set $J_i = \prod_{j \neq i} I_j$

$$R = J_1 + \cdots + J_n, \quad J_i \text{ ideals of } R$$
Chinese Remainder Theorem

Theorem
If \(I_i, i \leq n, \) is a family of ideals that is pairwise co-maximal, then for \(I = I_1 \cap I_2 \cap \cdots \cap I_n \) there is an isomorphism

\[
R/I \cong R/I_1 \times \cdots \times R/I_n.
\]

Proof. Set \(J_i = \prod_{j \neq i} I_j. \) Note that \(I_i + J_i = R. \) Since \(J_1 + \cdots + J_n = R, \) there is an equation

\[
1 = a_1 + \cdots + a_n, \quad a_i \in J_i
\]

Note that for each \(i, a_i \cong 1 \mod I_i. \) Define a mapping \(h \) from \(R \) to \(R/I_1 \times \cdots \times R/I_n, \) by \(h(x) = (xa_1, \ldots, xa_n). \) We claim that \(h \) is a surjective homomorphism of kernel \(I. \)
1. Since $a_i \equiv 1 \mod l_i$,

$$h(x) = (xa_1, \ldots, xa_n) = (\bar{x}_1, \ldots, \bar{x}_n)$$

which is clearly a homomorphism.

2. The kernel consists of the x such that $\bar{x}_i = 0$ for each i, that is $x \in l_i$ for each i—that is, $x \in l$.

3. To prove h surjective, for $u = (\bar{x}_1, \ldots, \bar{x}_n)$, setting

$$x = x_1 a_1 + \cdots + x_n a_n$$

gives $h(x) = u$.
Example

How ancient astronomers calculated 1°: That is, how to divide the circle by 360.

- $360 = 8 \times 9 \times 5$: primary decomposition.
- The numbers 72, 40 and 45 have no common factor, so form a partition of the 1:

$$1 = 5 \times 45 - 2 \times 72 - 2 \times 40$$

$$\frac{1}{360} = \frac{5}{8} - \frac{2}{5} - \frac{2}{9}$$
GCD of polynomials

If $f(x)$ and $g(x)$ are polynomials in $F[x]$, the **greatest common divisor** is the monic polynomial of highest degree $h(x)$ that divides $f(x)$ and $g(x)$

$$\gcd(f(x), g(x)) = h(x)$$

For example,

$$\gcd((x - 1)^3(x - 2)^2, (x - 1)(x - 2)^4) = (x - 1)(x - 2)^2.$$

An elementary, but very useful fact, is that **long division** provides an effective method to find gcds.
Proposition

A polynomial $f(x) \in \mathbb{R}[x]$ of degree $f(x) \geq 1$ has multiple roots if and only if $\gcd(f(x), f'(x)) \neq 1$.

Thus, while it is hard to find the roots of a polynomial $f(x)$, it is easy to determine whether it has multiple roots!

The explanation is very simple: If $f(x)$ has a root of algebraic multiplicity m,

$$f(x) = (x - a)^m g(x), \quad g(a) \neq 0,$$

its derivative

$$f'(x) = m(x - a)^{m-1} g(x) + (x - a)^m g'(x)$$

has a as a root with multiplicity $m - 1$. This implies that $(x - a)^{m-1}$ is a common factor of $f(x)$ and $f'(x)$, and therefore will be a factor of $\gcd(f(x), f'(x))$.
If \(\gcd(f(x), f'(x)) = 1 \), then \(f(x) \) has no repeated (complex) roots.

Suppose \(f(x) \) is the characteristic polynomial of a 3-by-3 complex matrix \(A \), and we must decide whether it is diagonalizable. What to do?

1. If \(\gcd(f(x), f'(x)) = 1 \), by the discussion above the roots are distinct, and we are done: \(A \) is diagonalizable.

2. If there is a double root \(a \) and a single root \(b \), \(\gcd(f(x), f'(x)) = (x - a) \). We check the dimension of the eigenspace \(E_a \), if \(\dim E_a = 2 \), ok, otherwise not diagonalizable.

3. If \(a \) is a triple root, \(\gcd(f(x), f'(x)) = (x - a)^2 \). Again we check whether \(\dim E_a = 3 \).
Recall the long division algorithm for polynomials in $\mathbb{F}[x]$: If $f(x), g(x) \neq 0$ are polynomials, there exist polynomials $q(x), r(x)$ such that

$$f(x) = q(x)g(x) + r(x), \quad r(x) = 0 \text{ or } \deg r(x) < \deg g(x)$$

Look at a consequence:

$$\gcd(f(x), g(x)) = \gcd(g(x), r(x))$$

since any polynomial $p(x)$ that divides (both) $f(x), g(x)$ will divide $g(x), r(x)$, and conversely. Note that the data of $g(x), r(x)$ has lower degrees, so we can turn this into an algorithm:
Starting at

\[f(x) = q(x)g(x) + r(x), \]

1. Iterating, if \(r(x) \neq 0 \) and we divide
 \[g(x) = q_1(x)r(x) + r_1(x), \]
 then any polynomial \(p(x) \) that divides (both) \(f(x), g(x) \) will divide \(r(x), r_1(x) \), and conversely.

2. Since \(\deg g(x) > \deg r(x) > \deg r_1(x) > \cdots \), ultimately we shall have
 \(r_{n-1}(x) = q_{n-1}(x)r_n(x), \quad r_n(x) \neq O. \)

3. \(r_n(x) \) is (a) largest degree polynomial that divides both \(f(x) \) and \(g(x) \), and any such polynomial will divide \(r_n(x) \).
Theorem

If \(r_n(x) \) is the last nonzero remainder in the sequence of long divisions, then \(r_n(x) \) divides \(f(x) \) and \(g(x) \). Moreover, there exist polynomials \(a(x), b(x) \) such that

\[
r_n(x) = a(x)f(x) + b(x)g(x).
\]

\(r_n(x) \) is called the (a) \textbf{GCD} of \(f(x) \) and \(g(x) \).

Proof: For simplicity suppose \(n = 2 \), so we have the divisions

\[
f = qg + r, \quad g = q_1 r + r_1, \quad r = q_2 r_1 + r_2, \quad r_1 = q_3 r_2
\]

\[
r_2 = r - q_2 r_1 = r - q_2(g - q_1 r) = r(1 + q_2 q_1) - q_2 g
\]

\[
= (f - qg)(1 + q_2 q_1) - q_2 g
\]

Now we collect the coefficient of \(f \)–it will be \(a(x) \)–and of \(g \)–it will be \(b(x) \): \(\gcd(f, g) = a(x)f(x) + b(x)g(x) \).
We are now going to apply these observations to the characteristic polynomial $p(x) = \det(A - xI)$ of a matrix A, whose eigenvalues λ_i exist in the field F. Note for $F = \mathbb{C}$, this is the case for all matrices.

Underlying the following discussion is the assumption that

$$p(x) = \pm \prod_{i=1}^{m} (x - \lambda_i)^{m_i}.$$
1. If \(f(x) = (x - \lambda)^m \), \(g(x) = (x - \mu)^n \) and \(\lambda \neq \mu \) are different scalars, then \(\gcd(f(x), g(x)) = 1 \), this means that there is a (decomposition) \(1 = a(x)f(x) + b(x)g(x) \).

2. Consider now the case of the 3 polynomials,

\[
f(x) = (x - \lambda_1)^m(x - \lambda_2)^n, \quad g(x) = (x - \lambda_1)^m(x - \lambda_3)^p, \quad h(x) = (x - \lambda_2)^n(x - \lambda_3)^p,
\]

where \(\lambda_1, \lambda_2, \lambda_3 \) are distinct. Note that

\[
\begin{align*}
\gcd(f, g) & = (x - \lambda_1)^m \\
\gcd(f, h) & = (x - \lambda_2)^n \\
\gcd(g, h) & = (x - \lambda_3)^p \\
\gcd(f, g, h) & = \gcd((x - \lambda_1)^m, h) = 1
\end{align*}
\]

3. These equations will imply that we have an equality

\[
1 = a(x)f(x) + b(x)g(x) + c(x)h(x).
\]
Suppose the characteristic polynomial of T has a decomposition

$$\det(xI - T) = (x - a)^m(x - b)^n(x - c)^p.$$

The polynomials $f(x) = (x - b)^n(x - c)^p$, $g(x) = (x - a)^m(x - c)^p$, $h(x) = (x - a)^m(x - b)^n$, have $\gcd = 1$ as they have no common divisor. According to the observation above, we have an equality

$$1 = A(x)f(x) + B(x)g(x) + C(x)h(x)$$

Evaluating $x \rightarrow T$ gives the equality

$$\mathbf{1} = A(T)f(T) + B(T)g(T) + C(T)h(T)$$
Applying to an arbitrary vector \(\mathbf{v} \) we have

\[
\mathbf{v} = \mathbf{l}(\mathbf{v}) = A(T)(T - bl)^n(T - cl)^p(\mathbf{v}) + B(T)(T - al)^m(T - cl)^p(\mathbf{v}) \tag{v_1} + C(T)(T - al)^m(T - bl)^n(\mathbf{v}) \tag{v_3}
\]

\[
\mathbf{V} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3
\]

\[
(T-al)^m(\mathbf{v}_1) = A(T)(T-al)^m(\mathbf{v}_1) = A(T)(T-al)^m(T-bl)^n(T-cl)^p(\mathbf{v}) = 0
\]

by Cayley-Hamilton. This says that every vector \(\mathbf{v} \) is a sum of vectors in \(K_a, K_b \) and \(K_c \). It is also easy to see that \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) are linearly independent.
Chinese Remainder Theorem

Theorem

Let \(f_1(x), \ldots, f_m(x) \) be polynomials of \(\mathbb{F}[x] \). If \(g(x) = \gcd(f_1(x), \ldots, f_m(x)) \) there are polynomials \(a_i(x) \) such that

\[
g(x) = a_1(x)f_1(x) + \cdots + a_m(x)f_m(x).
\]

Let \(T \) be a linear operator on the finite-dimensional vector space \(V \). Suppose its characteristic polynomial \(\det(T - xI) \) splits:

\[
f(x) = \pm \prod_{i=1}^{m} (x - \lambda_i)^{n_i}, \quad \text{distinct } \lambda_i.
\]

For each \(i \), setting \(f_i(x) = \frac{f(x)}{(x-\lambda_i)^{n_i}} \), gives us a collection \(f_1(x), \ldots, f_m(x) \) of \(\gcd = 1 \): In

\[
1 = a_1(x)f_1(x) + \cdots + a_m(x)f_m(x)
\]

\[
\text{replace } x \rightarrow T
\]
\[I = a_1(T)f_1(T) + \cdots + a_m(T)f_m(T) \]

Now we are going to make several observations about this decomposition.

1. The range of \(f_i(T) \) is contained in the generalized eigenspace \(K_{\lambda_i} \): If \(u = f_i(T)(v) \),

\[
(T - \lambda_i)^{n_i}f_i(T)(v) = f(T)(v) = 0,
\]

since by the Cayley-Hamilton theorem \(f(T) = 0 \).

2. For every \(v \in V \)

\[
v = I(v) = \underbrace{a_1(T)f_1(T)(v)}_{\in K_{\lambda_1}} + \cdots + \underbrace{a_m(T)f_m(T)(v)}_{\in K_{\lambda_m}}
\]
Generalized eigenvectors and eigenspaces

- If T is a linear operator of the vector space V and λ is a scalar, a nonzero vector $v \in V$ is a **generalized eigenvector** of T if $(T - \lambda I)^p(v) = O$ for some positive integer p. We denote this set, together with the vector O, by K_λ. K_λ is usually bigger than the eigenspace E_λ.

- In fact,

$$V = \bigoplus_i K_{\lambda_i},$$

in particular, V has a basis made up of generalized eigenvectors.
This representation says that every vector \(\mathbf{v} \in \mathbf{V} \) can be written as

\[
\mathbf{v} = \mathbf{v}_1 + \cdots + \mathbf{v}_m, \quad \mathbf{v}_i \in K_{\lambda_i}
\]

Since we already proved that \(\dim K_{\lambda_i} \leq n_i \), the algebraic multiplicity of \(\lambda_i \), this equality proves equality of the dimensions. It can be written as

\[
\mathbf{V} = K_{\lambda_1} \oplus \cdots \oplus K_{\lambda_m},
\]

and the matrix representation of \(\mathbf{T} \) has the block format (after picking bases of the \(K_{\lambda_i} \)'s)

\[
[\mathbf{T}] = \begin{bmatrix}
[\mathbf{T}]_1 & \cdots & \mathbf{O} \\
\vdots & \ddots & \vdots \\
\mathbf{O} & \cdots & [\mathbf{T}]_m
\end{bmatrix}
\]
What this does is to allow us to assume that the characteristic polynomial of T has the form $(x - \lambda)^n$. We will argue that such linear operator have a matrix representation made up of Jordan blocks with the same λ. Let us look at one such $p \times p$ block

$$A = [v_1 | \cdots | v_p] = \begin{bmatrix}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{bmatrix}$$

$A(v_1) = \lambda v_1$, $A(v_2) = v_1 + \lambda v_2$, \cdots, $A(v_p) = v_p - 1 + \lambda v_p$

If we write these equations in the reverse order, we get
\((A - \lambda I)(v_p) = v_{p-1}\)
\[(A - \lambda I)^2(v_p) = v_{p-2}\]
\[\vdots\]
\[(A - \lambda I)^{p-1}(v_p) = v_1\]
\[(A - \lambda I)^p(v_p) = 0\]

Starting on \(v_p\) and applying \(U = A - \lambda I\) repeatedly we get all the vectors of the basis

\[v_p \rightarrow v_{p-1} \rightarrow \cdots \rightarrow v_2 \rightarrow v_1 \rightarrow 0\]

We will say that \(v_p\) is the generator of the basis, and that \(\gamma = \{v_1, v_2, \ldots, v_p\}\) is a cycle of generalized eigenvectors, \(v_1\) is the initial and \(v_p\) the end vectors: They form a so-called dot diagram
Proposition

Let T be a linear operator on the vector space V. For some scalar λ and some integer p, suppose v is a nonzero vector such that

$$(T - \lambda I)^p(v) = O, \quad (T - \lambda I)^{p-1}(v) \neq O.$$

Then the p vectors $(T - \lambda I)^{p-1}(v), \ldots, (T - \lambda I)(v), v$ are linearly independent. They span a T-invariant subspace W and the matrix representation of $[T]_W$ with respect to this basis is a Jordan block.

Proof: Let us denote these vectors by $v_1, \ldots, v_p = v$, respectively. Suppose we have a linear relation

$c_1 v_1 + \cdots + c_p v_p = O$. Let us prove all $c_i = 0$. Let us argue just one case as the general case is similar. Suppose $c_p \neq 0$. Apply the operator $(T - \lambda I)^{p-1}$ to the relation to obtain
\[v_i = (T - \lambda I)^{p-i}(v) \]
\[c_1(T - \lambda I)^{p-1}(v_1) + \cdots + c_p \underbrace{(T - \lambda I)^{p-1}(v_p)}_{=v_1} = O \]

Note that all terms vanish, except for the last. This contradicts \(c_p \neq 0 \).

The subspace \(W \) clearly satisfies \(T(W) \subset W \). Finally, note that

\[
T(v_i) = T(T - \lambda I)^{p-i}(v) = (T - \lambda I)^{p-i+1}(v) + \lambda(T - \lambda I)^{p-i}(v) = v_{i-1} + \lambda v_i,
\]
which shows that the matrix representation is

\[
\begin{bmatrix}
\lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
0 & 0 & \cdots & \lambda
\end{bmatrix}
\]
We come now to the crux of the problem: Given a linear operator T whose characteristic polynomial is $\pm(x - \lambda)^n$, to prove that there is a matrix representation made up of λ-Jordan blocks (same λ)

\[
\begin{bmatrix}
J_1 & O & O \\
O & J_2 & O \\
O & O & J_3
\end{bmatrix}
= \begin{bmatrix}
\lambda & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \lambda & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \lambda & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \lambda & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \lambda
\end{bmatrix}
\]

We are going to prove the existence of such representation and the uniqueness of the number and sizes of the blocks.
Situation:

\(T : K_\lambda \to K_\lambda, \dim K_\lambda = n, \) characteristic polynomial of \(T \) is \((x - \lambda)^n\). The eigenspace is \(E_\lambda \subset K_\lambda \).

Goal: We will show that \(K_\lambda \) has a basis

\[
B = \bigcup_{i=1}^{m} \gamma_i
\]

where each \(\gamma_i \) is a cycle of generalized eigenvectors. The Jordan representation comes from the corresponding matrix representation. For example, if \(K_\lambda = E_\lambda \), then a basis of \(E_\lambda \) gives the cycles, all of length 1, and the matrix representation is just \(\lambda I_n \).
We are going to argue by induction on \(n = \dim K_\lambda \). If \(n = 1 \) (or, more generally, \(K_\lambda = E_\lambda \)), there is nothing to prove.

Let \(Z \) be the range of \(T - \lambda I \). For simplicity of notation call this map \(U : K_\lambda \to K_\lambda \). Note that \(E_\lambda \) is the nullspace of \(U \), and therefore \(\dim E_\lambda + \dim Z = n \), by the dimension formula.

Since \(\dim Z < n \) and the characteristic polynomial of the restriction of \(T \) to \(Z \) divides \((x - \lambda)^n\), the induction hypothesis guarantees a basis for \(Z \):

\[\gamma' : w, (T - \lambda I)(w), \ldots, (T - \lambda I)^{p-1}(w) \]

\[\mathcal{B}' = \bigcup_{i=1}^{r} \gamma_i' \]

where each \(\gamma_i' \) is a cycle of generalized eigenvectors of \(Z \). Let us consider one of these cycles \(\gamma' \):
\[\gamma_i': \; w, (T - \lambda I)(w), \ldots, (T - \lambda I)^{p-1}(w) \]

But \(w \) belongs to the range of \((T - \lambda I)\), that is \(w = (T - \lambda I)(v) \), for some \(v \in V \). This gives a cycle of \(V \) itself:

\[\gamma_i : v, (T - \lambda I)(v), \ldots, (T - \lambda I)^p(v) \]

In this manner, for every \(\gamma_i' \) of \(Z \) we get a longer cycle (by 1 more vector) of \(V \).

We recall that vector at the end of the list are the only eigenvectors and that

\[
\bigcup_{i=1}^{r} \gamma_i
\]

contains just \(r \) independent eigenvectors, the same set as the basis \(B' \) of \(Z \). If these eigenvectors are \(u_1, \ldots, u_r \), add (if necessary) \(u_{r+1}, \ldots, u_s \) to form a basis of the eigenspace \(E_\lambda \). Each of these \(u_i \) defines a new cycle \(\gamma_i \) of length 1, \(i > r \).
Dot Diagrams and Enlarged Cycles

•: vectors in the set B'
•: vectors added.

$T - \lambda I$ maps each dot to dot under. Last row is a basis of E_λ: it is mapped to O.
Proposition (Very technical, I apologize)

The vectors in the set

\[\mathcal{B} = \bigcup_{i=1}^{s} \gamma_i \]

form a basis of \(V \).

Proof: First let us count the number of elements of added to pass from the basis \(\mathcal{B}' \) of \(Z \) to the set \(\mathcal{B} \) of \(V \):

\[r \ (1 \text{ for each of the } r \text{ cycles in } \mathcal{B}') + (s - r) = s = \dim E_\lambda \]

Therefore \(\text{cardinality of } \mathcal{B}' + s = \dim Z + s = n = \dim V \)

To prove \(\mathcal{B} \) is a basis, ETS that it spans \(V \), as they have already the right number of elements for a basis.
Let \(u \in V \) and consider \((T - \lambda I)(u) \in Z\). Since every vector in \(B' \) is the image under \(T - \lambda I \) of some vector in \(B \), we can write

\[
(T - \lambda I)(v) = \text{Linear combination of } (T - \lambda I)(v_i), \quad v_i \in B.
\]

This implies that

\[
(T - \lambda I) \left(v - \text{Linear combination of } v_i \right) = O = w
\]

Thus \(w \in E_\lambda \). Since \(B \) contains a basis of \(E_\lambda \), this implies \(v \) lies in the span of \(B \).
To illustrate the uniqueness of Jordan decomposition, suppose T gives rise to two different cycle decomposition for K_λ:

\[
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}
\quad \text{and} \quad
\begin{array}{c}
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}
\]

Observe that many things match: $\dim K_\lambda = 12$ [number of dots, red or black], $\dim E_\lambda = 5$ (number of piles, columns). Now we are going to observe things that are off:

\[(T - \lambda I)^4\text{(any } \bullet \text{)} = 0, \quad (T - \lambda I)^4\text{(top } \bullet \text{)} \neq 0\]
This illustrate the argument: The number of dots at level ℓ is the dimension of the subspace of the vectors v of V such that

$$(T - \lambda I)^\ell(v) = 0$$
Diagonalization and Minimal Polynomials

Let S be the ring of $n \times n$ matrices and $A \in S$. We look at A as a linear transformation $A : \mathbb{F}^n \rightarrow \mathbb{F}^n$. S is a ring which as a \mathbb{F}-vector space has dimension n^2. Consider the ring homomorphism defined by the evaluation

$$\varphi : R = \mathbb{F}[x] \rightarrow S, \quad \varphi(x) = A$$

Proposition

$\ker \varphi \neq (0)$.

Proof.

φ cannot be injective since it maps the infinite dimensional vector space $\mathbb{F}[x]$ into the finite dimensional vector space S. □
Minimal Polynomial

By the theorem about the ideals of $F[x]$, $\ker(\varphi) = (m(x))$. For convenience we pick $m(x)$ as monic. Thus, given a square matrix A, there are polynomials $f(x)$ such that

$$f(A) = 0.$$

The best known is $f(x) = \det(A - xI)$, the characteristic polynomial: by Cayley-Hamilton:

$$f(A) = 0.$$

What else?
Definition

Let A be a n-by-n matrix. The **minimal polynomial** of A is the monic polynomial $m(x) = x^m + c_{m-1}x^{m-1} + \cdots + c_0$ of least degree such that

$$m(A) = A^m + c_{m-1}A^{m-1} + \cdots + c_0I = O.$$

1. If $A = I_n$, then $m(x) = x - 1$.
2. If $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $m(x) = x^2$.
3. In the case of [the Jordan block] $J = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$,
 $$m(x) = (x - \lambda)^3.$$
 For a block of size n, $m(x) = (x - \lambda)^n$.
\[\mathbf{J} = \begin{bmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 1 & 0 \\ 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{bmatrix}, \quad \mathbf{U} = \mathbf{J} - \lambda \mathbf{I} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

\[\mathbf{U}^2 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{U}^3 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{U}^4 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

\[m(x) = (x - \lambda)^4 \]

Observe the right drift of the diagonal of 1’s until it leaves the matrix!
Corollary

The minimal polynomial $m(x)$ of A divides the characteristic polynomial $p(x) = \det(A - xI)$ of A. In particular $\deg m(x) \leq n$.
Diagonalization

Theorem

A is diagonalizable if and only if its minimal polynomial \(m(x) \) has no repeated root.

Proof. In the forward direction, the assertion is clear: If \(A \) is made up of diagonal blocks

\[
A = \begin{bmatrix}
\lambda_1 I_1 & 0 & \cdots & 0 \\
0 & \lambda_2 I_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_r I_r
\end{bmatrix},
\]

with \(\lambda_i \) distinct, its minimal polynomial is

\[
m(x) = \prod_{i=1}^{r} (x - \lambda_i)
\]
For the converse, suppose the characteristic polynomial of T has a decomposition

$$\det(xI - T) = (x - a)^m(x - b)^n(x - c)^p.$$

The polynomials $f(x) = (x - b)^n(x - c)^p$, $g(x) = (x - a)^m(x - c)^p$, $h(x) = (x - a)^m(x - b)^n$, their gcd = 1 as they have no common divisor. According to earlier observations, above we have an equality

$$1 = A(x)f(x) + B(x)g(x) + C(x)h(x)$$

Evaluating $x \rightarrow T$ gives the equality

$$I = A(T)f(T) + B(T)g(T) + C(T)h(T)$$
Applying to an arbitrary vector \mathbf{v} we have

$$
\mathbf{v} = \mathbf{I}(\mathbf{v}) = \underbrace{A(T)(T - bl)^n(T - cl)^p(\mathbf{v})}_{\mathbf{v}_1} + \underbrace{B(T)(T - al)^m(T - cl)^p(\mathbf{v})}_{\mathbf{v}_2} + \underbrace{C(T)(T - al)^m(T - bl)^n(\mathbf{v})}_{\mathbf{v}_3}
$$

$$
\mathbf{V} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3
$$

$$(T - al)^m(\mathbf{v}_1) = A(T)(T - al)^m(\mathbf{v}_1) = A(T)(T - al)^m(T - bl)^n(T - cl)^p(\mathbf{v}) = 0$$

by Cayley-Hamilton. This says that every vector \mathbf{v} is a sum of vectors in K_a, K_b and K_c. It is also easy to see that \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 are linearly independent.
Now we are going to make several observations about this decomposition.

1. The range of $f_i(T)$ is contained in the generalized eigenspace K_{λ_i}: If $u = f_i(T)(v)$,

$$
(T - \lambda_i)^{n_i} f_i(T)(v) = f(T)(v) = 0,
$$

since by the Cayley-Hamilton theorem $f(T) = 0$.

2. For every $v \in V$

$$
v = I(v) = \underbrace{a_1(T)f_1(T)(v)}_{\in K_{\lambda_1}} + \cdots + \underbrace{a_m(T)f_m(T)(v)}_{\in K_{\lambda_m}}
$$
Generalized eigenvectors and eigenspaces

- If T is a linear operator of the vector space V and λ is a scalar, a nonzero vector $v \in V$ is a **generalized eigenvector** of T if $(T - \lambda I)^p(v) = 0$ for some positive integer p. We denote this set, together with the vector 0, by K_λ. K_λ is usually bigger than the eigenspace E_λ.
- In fact,
 \[V = \bigoplus_{i} K_{\lambda_i}, \]
 in particular, V has a basis made up of generalized eigenvectors.
This representation says that every vector \(\mathbf{v} \in \mathbf{V} \) can be written as
\[
\mathbf{v} = \mathbf{v}_1 + \cdots + \mathbf{v}_m, \quad \mathbf{v}_i \in K_{\lambda_i}
\]
Since we already proved that \(\dim K_{\lambda_i} \leq n_i \), the algebraic multiplicity of \(\lambda_i \), this equality proves equality of the dimensions. It can be written as
\[
\mathbf{V} = K_{\lambda_1} \oplus \cdots \oplus K_{\lambda_m},
\]
and the matrix representation of \(\mathbf{T} \) has the block format (after picking bases of the \(K_{\lambda_i} \)'s)
\[
[T] = \begin{bmatrix}
[T]_1 & \cdots & O \\
\vdots & \ddots & \vdots \\
O & \cdots & [T]_m
\end{bmatrix}
\]
Conclusion:

- This block decomposition says that the minimal polynomial $f(x)$ of T is the product of the minimal polynomials of the restrictions on K_{λ_i}

$$f(x) = p_1(x) \cdots p_m(x)$$

- If some T_i is not diagonalizable, its minimal polynomial has a factor $(x - a)^2$, and $f(x)$ will have some multiple root.
Group Representations

Theorem

Let G be a finite subgroup of $GL_n(\mathbb{C})$. Then any element $A \in G$ is diagonalizable.

Proof.

- Since G is finite, A has finite order, that is $A^r = I$ for some integer r.
- This implies that $x^r - 1$ lies in the ideal $(m(x))$ generated by the minimal polynomial of A, and therefore $x^r - 1 = m(x)p(x)$.
- It follows that every root of $m(x)$ is a root of $x^r - 1$. But the roots of $x^r - 1$ are distinct (the derivative is rx^{r-1}, whose roots are zero). Therefore the roots of $m(x)$ are distinct.
Corollary

If G is a finite subgroup of $GL_n(\mathbb{C})$, then the order of every element $A \in G$ is at most n.
Homework #11

Do 5 Problems.

1. Prove that the kernel of the homomorphism $\varphi : \mathbb{C}[x, y] \to \mathbb{C}[t]$ defined by $x \mapsto t^2$, $y \mapsto t^3$ is the principal ideal generated by $x^3 - y^2$.

2. The nilradical N of a ring R is the set of nilpotent elements. Prove that N is an ideal. Find N when $R = \mathbb{Z}_{72}$.

3. Prove that $\mathbb{Z}[i]/(i + 2)$ is isomorphic to $\mathbb{Z}/(m)$ for some m. Determine m.

4. Determine the maximal ideals of $\mathbb{R}[x]/(x^2 - 3x + 2)$.

5. Prove that the ring $\mathbb{Z}_2[x]/(x^3 + x + 1)$ is a field but $\mathbb{Z}_3[x]/[x^3 + x + 1]$ is not.

6. Find an isomorphic direct product of cyclic groups for the group:
V is generated by the elements \(x, y, z \);

These elements satisfy the relations

\[
\begin{align*}
7x + 5y + 2z &= 0, \\
3x + 3y &= 0, \\
13x + 11y + 2z &= 0.
\end{align*}
\]