Math 311: Advanced Calculus

Wolmer V. Vasconcelos

Set 6

Spring 2010
Main Goal

Understand

Study of Sequences and Series of Functions
Consider the function of last hourly

\[G(x) = \int_0^x e^{t^2} \, dt. \]

Question: How to evaluate \(G(1) \)?

We are going to make use of something we know already

\[e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots \]

and do lots of reckless arithmetic:
\[G(1) = \int_0^1 \left(\sum_{n=0}^{\infty} \frac{(t^2)^n}{n!} \right) dt \]

\[= \sum_{n=0}^{\infty} \int_0^1 \frac{t^{2n}}{n!} dt \]

\[= \sum_{n=0}^{\infty} \frac{1}{n!(2n+1)} \]

\[= \]
Outline

1. Main Goal
2. **Properties of Infinite Series**
3. Workshop #10
4. Uniform Convergence and Differentiability
5. Series of Functions
6. Power Series
7. Taylor Series
8. Workshop #11
9. Old Finals

Wolmer Vasconcelos
Advanced Calculus
Convergence of Series

Given the series

\[\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots \]

there are two sequences associated to it

- The sequence of terms, \((a_n)\) and
- The sequence of partial sums, \((s_n)\),

\[s_n = a_0 + a_1 + \cdots + a_n \]

We say the series converges to \(A \in \mathbb{R}\) if \(\lim s_n = A\). We write this as

\[\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots = A \]
A cautionary tale

We pick the alternating harmonic series—which we know to be convergent—and carry out arithmetic operations: See what happens

\[
S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots
\]

\[
\frac{1}{2}S = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} - \cdots
\]

\[
S + \frac{1}{2}S = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} - \frac{1}{4} + \cdots
\]

Thus \(S + \frac{1}{2}S = \frac{3}{2}S\) is just a rearrangement of \(S\)! The arithmetic is saying instead that

\[
\frac{3}{2}S = S!
\]
Algebraic Limit Theorem for Series

Theorem

If \(\sum_{k=1}^{\infty} a_k = A \) and \(\sum_{k=1}^{\infty} b_k = B \), then:

1. \(\sum_{k=1}^{\infty} ca_k = cA \) for all \(c \in \mathbb{R} \) and
2. \(\sum_{k=1}^{\infty} (a_k + b_k) = A + B \).

Proof. (i) To show \(\sum_{k=1}^{\infty} ca_k = cA \), we consider the sequence of partial sums

\[
t_n = ca_1 + ca_2 + \cdots + ca_n.
\]

Since \(\sum_{k=1}^{\infty} a_k = A \), its sequence of partial sums

\[
s_n = a_1 + a_2 + \cdots + a_n
\]

converges to \(A \). By the Algebraic Limit Theorem for Sequences, \(\lim t_n = c \lim s_n = cA \).
(ii) To show that \(\sum_{k=1}^{\infty} (a_k + b_k) = A + B \), let \(r_n = a_1 + \cdots + a_n \), \(s_n = b_1 + \cdots + b_n \) be the partial sum terms of the series. The partial sum term of the addition of the two series is

\[
t_n = (a_1 + b_1) + \cdots + (a_n + b_n) = (a_1 + \cdots + a_n) + (b_1 + \cdots + b_n) = r_n + s_n.
\]

By the Algebraic Limit Theorem for Sequences,

\[
\lim t_n = \lim r_n + \lim s_n = A + B.
\]
Other operations are harder:

Question: Given two series, \(a_0 + a_1 + a_2 + \cdots + a_n + \cdots \) and \(b_0 + b_1 + b_2 + \cdots + b_n + \cdots \), what is

\[
(a_0 + a_1 + a_2 + \cdots + a_n + \cdots)(b_0 + b_1 + b_2 + \cdots + b_n + \cdots) = ?
\]

Part of the issue arises from the **distributive rule**. We will offer a partial fix later.
Cauchy Criterion for Series

Definition

A sequence \((a_n)\) is called a **Cauchy sequence** if, for every \(\epsilon > 0\), there is an \(N \in \mathbb{N}\) such that whenever \(m, n \geq N\) it follows that \(|a_n - a_m| < \epsilon\).

Recall:

Theorem

A sequence converges if and only if it is a Cauchy sequence.

We apply this criterion to the sequence \((s_n)\) of partial sums of a series \(\sum_{k=1}^{\infty} a_k\). Note that

\[
|s_m - s_n| = |a_{m+1} + \cdots + a_n|
\]
Cauchy Test for Series

Theorem

The series \(\sum_{k=1}^{\infty} a_k \) converges if and only if given \(\epsilon > 0 \), there exists an \(N \in \mathbb{N} \) such that whenever \(n > m \geq N \) it follows that

\[
|a_{m+1} + a_{m+2} + \cdots + a_n| < \epsilon.
\]

Proof. Just observe

\[
|s_n - s_m| = |a_{m+1} + a_{m+2} + \cdots + a_n| < \epsilon,
\]

and apply the Cauchy’s Criterion for sequences.

Corollary

If the series \(\sum_{k=1}^{\infty} a_k \) converges, then \((a_k) \to 0 \).
Example

Consider the geometric series \((1 > q \geq 0)\)

\[1 + q + q^2 + \cdots + q^n + \cdots\]

The difference of partial sums \(s_n - s_m\) is

\[s_n - s_m = q^{m+1} + \cdots + q^n\]

\[= q^{m+1}(1 + q + \cdots + q^{n-m})\]

\[= q^{m+1} \frac{1 - q^{n-m+1}}{1 - q}\]

\[\leq q^{m+1} \frac{1}{1 - q} \leq q^N \frac{1}{1 - q}, \quad n, m \geq N\]
Converse?

Question: Is a series whose sequence of terms a_n converges to 0 convergent? This one is easy:

Answer: No. The (harmonic) series

$$1 + 1/2 + 1/3 + \cdots + 1/n + \cdots$$

has $1/n \to 0$ but it is divergent.
Comparisons

Given two series $\sum_{k \geq 1} a_k$ and $\sum_{k \geq 1} b_k$ that loosely connected we seek to link their convergence/divergence:

Theorem (Comparison Test)

Assume $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ are series satisfying $0 \leq a_k \leq b_k$ for all $k \in \mathbb{N}$.

1. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
2. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.
Proof. Both follow from Cauchy’s Criterion applied to the partial sums

\[|a_{m+1} + a_{m+2} + \cdots + a_n| \leq |b_{m+1} + a_{m+2} + \cdots + b_n| \]

If, for instance, given \(\epsilon > 0 \) we can find \(N \) so that for \(n, m > N \)
\[|b_{m+1} + a_{m+2} + \cdots + b_n| < \epsilon, \] then the same condition will apply to the \(a_n \).
We know that the **harmonic series**, \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges. It is clear that the same happens if we form the series \(\sum_{n=N}^{\infty} \frac{1}{n} \) where \(N \) is some fixed number \(N \geq 1 \).

If \(a \) and \(b \) are positive numbers, consider the series [called generalized harmonic series] whose terms are given by the rule:

\[
\frac{1}{a'}, \frac{1}{a+b'}, \frac{1}{a+2b'}, \ldots, \frac{1}{a+nb'}, \ldots
\]

We claim that this series is also divergent: We compare the terms to a multiple of the harmonic series

\[
\frac{1}{a+bn} \geq \frac{1}{n+bn} = \frac{1}{b+1} \cdot \frac{1}{n}, \quad n \geq a
\]
Absolute Convergence Test

If $\sum_{n=1}^{\infty} a_n$ is a series of non-negative terms, its partial sums

$$s_n = a_1 + a_2 + \cdots + a_n, \quad s_{n+1} = s_n + a_n$$

is a monotone sequence. Therefore, by the criterion, the series converges exactly when the sequence (s_n) is bounded.

We make use of this:

Theorem (Absolute Convergence Test)

If the series $\sum_{k=1}^{\infty} |a_k|$ converges, then $\sum_{k=1}^{\infty} a_k$ converges as well.
Proof of the Absolute Convergence Test

1. We make use of Cauchy criterion for series: Let $\epsilon > 0$. Since the series $\sum_{k=1}^{\infty} |a_k|$ converges, there exists N so that

$$|a_{n+1}| + |a_{n+1}| + \cdots + |a_m| < \epsilon \quad m \geq n > N$$

2. By the triangle inequality (one that say $|a + b| \leq |a| + |b|$), we get

$$|a_{n+1} + a_{n+1} + \cdots + a_m| < \epsilon \quad m \geq n > N$$

3. Therefore the series $\sum_{k=1}^{\infty} a_k$ satisfies the Cauchy condition and therefore converges.
Converse?

The series

\[1 - \frac{1}{2} + \frac{1}{3} - \cdots (-1)^{n-1} \frac{1}{n} + \cdots\]

is convergent (alternating harmonic series) (the one that won a Grammy’s Award), but the series of the absolute values is

\[1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots,\]

is divergent.
Alternating Series

An alternating series is one with consecutive terms have opposite signs. One group of them is easy to study:

Theorem (Alternating Series Test)

Let \((a_n)\) be a sequence satisfying

1. \(a_1 \geq a_2 \geq \cdots \geq a_n \geq a_{n+1} \geq \cdots\), and
2. \((a_n) \to 0\).

Then the alternating series \(\sum_{n=1}^{\infty} (-1)^{n+1} a_n\) converges.

In other words: If \((a_n)\) is a decreasing sequence of positive terms then

\[
\sum_{n=1}^{\infty} (-1)^{n+1} a_n \text{ converges if and only if } \lim_{n \to \infty} a_n = 0
\]
Proof. Observe the odd and even sequences of partial sums

\[s_1 = a_1 \geq s_3 = a_1 - (a_2 - a_3) \geq s_5 = s_3 - (a_4 - a_5), \ldots \]

\[s_2 = a_1 - a_2 \leq s_4 = s_2 + (a_3 - a_4) \leq s_5 = s_3 + (a_5 - a_6), \ldots \]

They are monotone and bounded: Since \((a_n) \to 0\), there exists \(a_n \leq K\), \(s_{2n} = s_{2n-1} + a_{2n} \leq s_{2n-1} + K \leq a_1 + K\), therefore the even sequence is increasing and bounded. Thus it has a limit \(\ell_1\). Similarly, the other sequence is decreasing and with a lower bound, so it has a limit \(\ell_2\). Since \(\pm a_n = s_n - s_{n-1}\) converges to 0, \(\ell_1 = \ell_2\).
Rearrangements

Definition

Let $\sum_{k \geq 1} a_k$ be a series. A series $\sum_{k \geq 1} b_k$ is said to be a rearrangement of $\sum_{k \geq 1} a_k$ if there exists a 1–1, onto function $f : \mathbb{N} \rightarrow \mathbb{N}$ such that $b_{f(k)} = a_k$ for all $k \in \mathbb{N}$.

Consider the geometric series of ratio q

$$1 + q + q^2 + q^3 + \cdots + q^n + \cdots$$

Now we shuffle the terms

$$q + 1 + q^3 + q^2 + q^5 + q^4 + \cdots$$

This is not a geometric series, but we should expect its fate linked to the first series. The next result says this.
Series of Positive Terms

Theorem (Dirichlet)

The sum of a series of positive terms [convergence/divergence] is the same in whatever order [rearrangement] the terms are taken.

Proof. Let \(a_0 + a_1 + a_2 + \cdots + a_n + \cdots \) be a series of positive terms of sum \(s \). Then any partial sum of rearrangement \(b_0 + b_1 + b_2 + \cdots + b_n + \cdots \) is bounded by \(s \). Thus the second is convergent and its sum \(t \) is bound by \(s \). We reverse the roles to obtain \(s \leq t \).
Product of Series

Question: Given two series, \(a_0 + a_1 + a_2 + \cdots + a_n + \cdots\) and \(b_0 + b_1 + b_2 + \cdots + b_n + \cdots\), what is

\[(a_0 + a_1 + a_2 + \cdots + a_n + \cdots)(b_0 + b_1 + b_2 + \cdots + b_n + \cdots) = ?\]
The issue is: we have all the products $a_m b_n$ that can be organized into many different series, and then grouped. For instance, if we list the $a_m b_n$ as the double array, we
We could try the following: **Define** the product as the series

\[a_0 b_0 + (a_0 b_1 + a_1 b_0) + (a_0 b_2 + a_1 b_1 + a_2 b_0) + \cdots \]

Makes sense? [Discuss] Will see another rearrangement soon.

\[
\begin{array}{cccccc}
 a_0 b_0 & a_1 b_0 & a_2 b_0 & a_3 b_0 & \ldots \\
 a_0 b_1 & a_1 b_1 & a_2 b_1 & a_3 b_1 & \ldots \\
 a_0 b_2 & a_1 b_2 & a_2 b_2 & a_3 b_2 & \ldots \\
 a_0 b_3 & a_1 b_3 & a_2 b_3 & a_3 b_3 & \ldots \\
 \ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]
The partial sums remind us how polynomials are multiplied

\[(a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n)(b_0 + b_1 x + b_2 x^2 + \cdots + b_m x^m)\]

\[= \sum_{k=0}^{m+n} \left(\sum_{0 \leq i \leq k} a_i b_{k-i} \right) x^k\]

\[a_0 b_0, \ a_0 b_1 + a_1 b_0, \ a_0 b_2 + a_1 b_1 + a_2 b_2, \ldots\]

Another aspect of this definition is:

Theorem

If \(\sum_{n \geq 0} a_n\) and \(\sum_{n \geq 0} b_n\) are two convergent series of positive terms, and \(s\) and \(t\) are their respective sums, then the third series is convergent and has the sum \(st\).
Out of all products $a_m b_n$, the ‘product’ above is given in terms of the diagonals

\[
\begin{align*}
a_0 b_0 & \quad a_1 b_0 & \quad a_2 b_0 & \quad a_3 b_0 & \quad \cdots \\
a_0 b_1 & \quad a_1 b_1 & \quad a_2 b_1 & \quad a_3 b_1 & \quad \cdots \\
a_0 b_2 & \quad a_1 b_2 & \quad a_2 b_2 & \quad a_3 b_2 & \quad \cdots \\
a_0 b_3 & \quad a_1 b_3 & \quad a_2 b_3 & \quad a_3 b_3 & \quad \cdots \\
\cdots & \quad \cdots & \quad \cdots & \quad \cdots & \quad \cdots
\end{align*}
\]

$a_0 b_0, a_0 b_1 + a_1 b_0, a_0 b_2 + a_1 b_1 + a_2 b_2, \ldots$ whose partial sums don’t write conveniently:

\[
p_n = (a_0 b_0) + (a_1 b_0 + a_1 b_0) + (a_2 b_0 + a_1 b_1 + a_0 b_2) + \cdots
\]
We want to re-write the terms of the product series differently:

\[
\begin{align*}
 &a_0b_0 \quad a_1b_0 \quad a_2b_0 \quad a_3b_0 \quad \ldots \\
 &a_0b_1 \quad a_1b_1 \quad a_2b_1 \quad a_3b_1 \quad \ldots \\
 &a_0b_2 \quad a_1b_2 \quad a_2b_2 \quad a_3b_2 \quad \ldots \\
 &a_0b_3 \quad a_1b_3 \quad a_2b_3 \quad a_3b_3 \quad \ldots \\
 &\ldots \quad \ldots \quad \ldots \quad \ldots
\end{align*}
\]

\[a_0b_0, (a_0 + a_1)(a_0 + a_1) - a_0b_0,\]
\[(a_0 + a_1 + a_2)(b_0 + b_1 + b_2) - (a_0 + a_1)(b_0 + b_1), \ldots\]
whose \(n\)th partial sum is

\[(a_0 + a_1 + \cdots + a_n)(b_0 + b_1 + \cdots + b_n),\]

a sequence that converges to \(st\) by the Algebraic Limit Theorem.
Observe that

\[p_n = (a_0 b_0) + (a_1 b_0 + a_0 b_1) + \cdots + (a_0 b_n + \cdots + a_n b_0) \leq \]

\[(a_0 + a_1 + \cdots + a_n)(b_0 + b_1 + \cdots + b_n)\]

on one hand and

\[p_n \geq (a_0 + a_1 + \cdots + a_{n/2})(b_0 + b_1 + \cdots + b_{n/2}) \]

Since the terms at the ends converge to \(st \), \((p_n) \rightarrow st\) as well.
Theorem

If $\sum_{k=1}^{\infty} a_k$ converges absolutely, then any rearrangement of this series converges to the same limit.

Proof. Assume $\sum_{k\geq 1} a_k$ converges absolutely to A, and let $\sum_{k\geq 1} b_k$ be an rearrangement of $\sum_{k\geq 1} a_k$. Let

$$s_n = \sum_{k=1}^{n} a_k = a_1 + a_2 + \cdots + a_n$$

and

$$t_n = \sum_{k=1}^{n} b_k = b_1 + b_2 + \cdots + b_n$$

be the corresponding partial sums.

Let $\epsilon > 0$. Since $(s_n) \to A$, choose N_1 such that

$$|s_n - A| < \epsilon/2$$
Because the convergence is absolute, we can choose N_2 so that

$$\sum_{k=m+1}^{n} |b_k| < \frac{\epsilon}{2}$$

for all $n > m \geq N_2$. Take $N = \max\{N_1, N_2\}$. We know that the terms $\{a_1, a_2, \ldots, a_N\}$ must all appear in the rearranged series, and we move far out enough in the series $\sum_{k \geq 1} b_k$ that these terms are all included. Thus, choose $M = \max\{f(k) | 1 \leq k \leq N\}$.

It is clear that if $m \geq M$, then $(t_m - s_N)$ consists of a finite number of terms, the absolute values of which appear in the tail of $\sum_{k=N+1}^{\infty} |a_k|$. The earlier choice of N_2 guarantees $|t_m - s_N| < \frac{\epsilon}{2}$, and so

$$|t_m - A| = |t_m - s_N + s_N - A|$$

$$\leq |t_m - s_N| + |s_N - A| \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
Theorem (Integral Test)

Let \(\sum_{n \geq 0} a_n \) be a series of positive terms. If there is a decreasing function \(f(x) \) such that \(a_n \leq f(n) \) for large \(n \) and

\[
\int_{x=1}^{\infty} f(x) \, dx < \infty,
\]

then \(\sum_{n \geq 0} a_n \) converges.

Proof. If \(a_n \leq f(n) \) for \(n \geq n_0 \), since \(f(x) \) is decreasing, \(a_n \leq \int_{n-1}^{n} f(x) \, dx, \quad n > n_0 \). From this, and the assumption that \(\int_{1}^{\infty} f(x) \, dx < \infty \), we get that the partial sums of the series \(\sum_{n \geq 0} a_n \) are bounded, and therefore converge by the theorem on bounded monotone sequences. \(\square \)
The series
\[1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots + \frac{1}{n^p} + \cdots, \]
for \(p > 1 \) will always converge. Its sum is denoted by \(\zeta(p) \).

For example, \(\zeta(2) = \frac{\pi^2}{6} \).
This function is actually defined for all complex numbers \(p \)
whose real part is \(> 1 \). It is known as Riemann zeta function. It
is probably the most famous function of Mathematics.
Let us show that

$$1 + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots + \frac{1}{n^p} + \cdots,$$

for $p > 1$ will always converge.

We are going to bound each term $1/n^p$ by the terms of another series, and then argue the new series converges.
Consider the function \(f(x) = \frac{1}{x^p}, \ x \geq 2 \). This is a decreasing function (draw the graph).

Observe

\[
\frac{1}{n^p} \leq \int_{x=n-1}^{n} \frac{1}{x^p} \, dx
\]

Therefore its partial sums are bounded by

\[
s_n \leq 1 + \int_{x=1}^{n} \frac{dx}{x^p} = 1 + \frac{1}{p-1} \left[1 - \frac{1}{n^{p-1}} \right] < 1 + \frac{1}{p-1}
\]
Examples

The series in earlier Workshop satisfies

\[\sum_{n \geq 1} \frac{1}{n(n + 1)} \leq \sum_{n \geq 1} \frac{1}{n^2}, \]

which is convergent.

In the same manner, if

\[\sum_{n \geq 1} \frac{p(n)}{q(n)}, \]

where \(p(n) \) and \(q(n) \) are positive polynomial expressions with \(\deg q \geq 2 + \deg p \), then the series converges by the same reason. Do it!
Exam Type Exercises

1. Show that
\[\sum_{n \geq 0} (-1)^n \frac{2n + 3}{(n + 1)(n + 2)} = 1. \]

2. Determine the values of \(q \) for which the series
\[q + 2q^2 + 3q^3 + \cdots + nq^n + \cdots \]
is convergent.

3. Show that \(\sum_{n \geq 2} \frac{1}{n(\ln n)^p} \) converges if \(p > 1 \), and diverges if \(p \leq 1 \).
Ratio Tests

There are very useful tests involving the ratio a_{n+1}/a_n of two successive terms of a series. Sometimes we compare the ratio a_{n+1}/a_n to another b_{n+1}/b_n. In these we suppose that a_n and b_n are strictly positive.

Suppose $a_n, b_n > 0$ and that $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$ for sufficiently large n, that is for $n \geq n_0$.

Then

$$a_n = \frac{a_{n_0+1}}{a_{n_0}} \cdot \frac{a_{n_0+2}}{a_{n_0+1}} \cdot \ldots \cdot \frac{a_n}{a_{n-1}} a_{n_0} \leq \frac{b_{n_0+1}}{b_{n_0}} \cdot \frac{b_{n_0+2}}{b_{n_0+1}} \cdot \ldots \cdot \frac{b_n}{b_{n-1}} a_{n_0} = \frac{a_{n_0}}{b_{n_0}} b_n = Cb_n, \quad C = \frac{a_{n_0}}{b_{n_0}}.$$
Here are some applications:

Theorem

Let \(\sum a_n \) and \(\sum b_n \) be series of positive terms.

1. If for \(n \geq n_0 \)
 \[
 \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n},
 \]
 and the series \(\sum b_n \) converges, then \(\sum a_n \) converges also.

2. If for \(n \geq n_0 \)
 \[
 \frac{a_{n+1}}{a_n} \geq \frac{b_{n+1}}{b_n},
 \]
 and the series \(\sum a_n \) diverges, then \(\sum b_n \) diverges also.
Theorem (d’Alambert Test)

The series $\sum a_n$ is convergent if $a_{n+1}/a_n \leq r$, where $r < 1$, for all sufficiently large n.
Theorem

Given a series \(\sum_{n \geq 1} a_n \) with \(a_n \neq 0 \), if \((a_n) \) satisfies

\[
\lim \left| \frac{a_{n+1}}{a_n} \right| = r < 1,
\]

then the series converges absolutely.

Proof.

1. Let \(r' \) satisfy \(r < r' < 1 \). For \(\epsilon = r' - r \), there is \(N \) such that for \(n \geq N \) \(\left| \frac{a_{n+1}}{a_n} - r \right| < \epsilon \), and therefore

\[
\left| \frac{a_{n+1}}{a_n} \right| - r \leq \left| \frac{a_{n+1}}{a_n} - r \right| < \epsilon = r' - r,
\]

giving \(\left| a_{n+1} \right| \leq r' \left| a_n \right| \) for \(n \geq N \).

2. The above shows that the series \(\sum_{n=N}^{\infty} \left| a_n \right| \) satisfies

\[
\left| a_n \right| \leq \left| a_N \right| (r')^{n-N},
\]

a geometric series of ratio \(r' < 1 \), which converges.
A quick application of the ratio test:
We claim that the series

\[1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \]

converges for all values of \(x \).

For the ratio of consecutive terms

\[\frac{a_{n+1}}{a_n} = \frac{x^{n+1}/(n+1)!}{x^n/n!} = \frac{x}{n+1} \]

so that for any \(x \), \(\lim a_{n+1}/a_n = 0 \).

This is a well used technique for power series.
Examples

1. For the series $\sum_{n \geq 1} \frac{n}{2^n}$ we invoke the ratio test:

$$\frac{a_{n+1}}{a_n} = \frac{n + 1}{2^{n+1}} \cdot \frac{\frac{n}{2^n}}{1} = \frac{n + 1}{n} \cdot \frac{1}{2}$$

which has limit $1/2 < 1$. So the series converges.

2. Decide [with justification] whether the series

$$\sum_{n \geq 1} \frac{n!}{n^n},$$

is convergent or divergent?
Exercises

1. Show that if \(a_n > 0 \) and \(\lim n a_n = L \), with \(L \neq 0 \), then the series \(\sum a_n \) diverges.

2. Show that if \(a_n > 0 \) and \(\lim n^2 a_n = L \), with \(L \neq 0 \), then the series \(\sum a_n \) converges.

3. Find examples of two series \(\sum a_n \) and \(\sum b_n \) both of which diverge but for which \(\sum \min\{a_n, b_n\} \) converges. To make it more difficult, choose examples where \((a_n) \) and \((b_n) \) are positive and decreasing.
Let $\sum_{n \geq 1} a_n$ be a series of positive terms. We are going to examine how the limit
\[\lim_{n \to \infty} \sqrt[n]{a_n} \]
is used to decide convergence. We recall one special calculation of these limits: If $x > 0$
\[\lim_{n \to \infty} \sqrt[n]{x} = 1 \]
Recall another limit: $\lim_{n \to \infty} \sqrt[n]{n} = 1$.
Root Test

Theorem

If $\sum_{n \geq 1} a_n$ is a series of positive terms and $\lim_{n \to \infty} \sqrt[n]{a_n} = r < 1$, then the series converges.

Proof. Let $r < r' < 1$ and pick $\epsilon = r' - r$. This is the same subtle point we used above.

1. There is N so that for $n > N$

 $$\left| \sqrt[n]{a_n} - r \right| < \epsilon$$

2. This implies that $\sqrt[n]{a_n} < r + \epsilon = r' < 1$ for $n > N$. As a consequence

 $$a_n < (r')^n$$
Example

Consider the series (for \(q > 0 \))

\[
1 + q + 2q^2 + \cdots + nq^n + \cdots
\]

We invoke the root test

\[
\lim_{n \to \infty} \sqrt[n]{nq^n} = q \quad \lim_{n \to \infty} \sqrt[n]{n} = q
\]

Therefore it converges if \(q < 1 \)
Let us calculate the sum of the series. For that we must have an inkling on how the series arose from the geometric series. At these times we replace \(q \) by \(x \) and recall:
Nice calculation

1. Differentiate the ‘equality’
\[
\frac{1}{1-x} = 1 + x + x^2 + \cdots + x^n + \cdots
\]

2. To get almost our series
\[
\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + \cdots + nx^{n-1} + \cdots
\]

3. Now multiply by \(x\) and add 1
\[
1 + \frac{x}{(1-x)^2} = 1 + x + 2x^2 + \cdots + nx^n + \cdots
\]

4. Thus for \(0 < q < 1\) the series sums to \(1 + \frac{q}{(1-q)^2}\).
Outline

1. Main Goal
2. Properties of Infinite Series
3. Workshop #10
4. Uniform Convergence and Differentiability
5. Series of Functions
6. Power Series
7. Taylor Series
8. Workshop #11
9. Old Finals
1. If a is a positive integer, prove that the series

$$\sum_{n \geq 1} \frac{1}{n(a + n)}$$

converges. Find its sum.

2. If $b > a > 0$, do the same for the series

$$\sum_{n \geq 1} \frac{1}{n(a + n)(b + n)}.$$
3: Argue by induction that for any sequence of integers
0 < a_1 < a_2 < \ldots < a_r, the series
\[
\sum_{n \geq 1} \frac{1}{n(a_1 + n)(a_2 + n) \cdots (a_r + n)}
\]
converges and its sum can be effectively computed.

4: Given the series
\[
\sum_{n \geq 0} \frac{1}{n^2 + 1}
\]
- Prove by comparison and by a direct application of the integral test that it converges.
- Try to find its sum somehow/somewhere.
- Google it.
Outline

1. Main Goal
2. Properties of Infinite Series
3. Workshop #10
4. **Uniform Convergence and Differentiability**
5. Series of Functions
6. Power Series
7. Taylor Series
8. Workshop #11
9. Old Finals
Sequences of Functions

Let $f_n : A \to \mathbb{R}$, $n \in \mathbb{N}$, be a set of functions. For each $x \in A$ they define a numerical sequence $(f_n(x))$. If $f_n(x) \to L$, we say that (f_n) converges at x. We are greatly interested in case it converges to all $x \in A$, as the limit

$$f_n(x) \to f(x)$$

will define a function $f : A \to \mathbb{R}$.

1. If the f_n are continuous, when is f continuous?
2. If the f_n are differentiable, when is f differentiable?
Example

Let $f_n(x) = x^n$, $n \in \mathbb{N}$, be the sequence of powers of x as functions on $[0, 1]$. For any x in this interval, we have

$$
\lim_{n \to \infty} f_n(x) = 0, \quad 0 \leq x < 1
$$

$$
\lim_{n \to \infty} f_n(x) = 1, \quad x = 1
$$

Thus $\lim_{n \to \infty} f_n$ exists for all $x \in [0, 1]$, but it is not a continuous function on the interval.

We need a rule that guarantees that $\lim_{n \to \infty} f_n$ is continuous.
Pointwise and Uniform Convergence

Definition

The sequence of functions \((f_n(x))\) converges **pointwise** to \(f(x)\) if for every \(x\) \(f_n(x)\) converges to \(f(x)\). For a given \(x\), this means that given \(\epsilon > 0\) there is \(N = N(x) \in \mathbb{N}\) such that for \(n \geq N\),

\[|f_n(x) - f(x)| < \epsilon.\]

Another definition of convergence is much more restrictive:

Definition

The sequence of functions \((f_n(x))\) converges uniformly to \(f(x)\) if for every \(\epsilon > 0\) there exists \(N \in \mathbb{N}\) such that for \(n \geq N\),

\[|f_n(x) - f(x)| < \epsilon.\]
Example: Let $f_n(x) = \frac{1}{n(1 + x^2)}$. Then $f(x) = \lim_{n \to \infty} f_n(x) = 0$. Given $\epsilon > 0$

$$|f_n(x) - f(x)| < \frac{1}{n}$$

Thus if $N \geq \frac{1}{\epsilon}$,

$$|f_n(x) - f(x)| < \epsilon$$

for $n \geq N$.
Cauchy Criterion for Uniform Convergence

Theorem

A sequence of functions \((f_n(x))\) defined on a set \(A \subset \mathbb{R}\) converges uniformly on \(A\) if and only if for every \(\epsilon > 0\) there exists \(N \in \mathbb{N}\) such that \(|f_n(x) - f_m(x)| < \epsilon\) for all \(n, m \geq N\) and all \(x \in A\).

Proof. \(\Rightarrow:\) For each \(x \in A\), the numerical Cauchy sequence \((f_n(x))\) converges: Call the limit \(f(x)\). Now we argue that \(f_n\) converges to \(f\) uniformly. Let \(\epsilon > 0\) and let \(N\) be such that \(|f_n(x) - f_m(x)| < \epsilon\) for \(n, m \geq N\). Now we use the argument used in the numerical case.
Let $\epsilon > 0$. Because the sequence f_n is Cauchy, there exists N such that for all $n, m \geq N$ and all $x \in A$,

$$|f_n(x) - f_m(x)| < \epsilon/2.$$

On the other hand, for each $x \in A$ the sequence $f_n(x) \to f(x)$, so there is N_K

$$|f_{N_K}(x) - f(x)| < \epsilon/2.$$

Thus for all $x \in A$ and all $n \geq N_K$

$$|f_n(x) - f(x)| = |f_n(x) - f_{N_K}(x) + f_{N_K}(x) - f(x)|$$

$$\leq |f_n(x) - f_{N_K}(x)| + |f_{N_K}(x) - f(x)| < \epsilon/2 + \epsilon/2 = \epsilon$$
Theorem

If the sequence of continuous functions \((f_n(x))\) converges uniformly to \(f(x)\), then \(f(x)\) is continuous (on the same domain).

Proof. Let \(x = c\) be a point in the domain. Given \(\varepsilon > 0\), we must show that there exists \(\delta > 0\) such that if \(0 < |x - c| < \delta\), then \(|f(x) - f(c)| < \varepsilon\). The idea is to write

\[
 f(x) - f(c) = (f(x) - f_n(x)) + (f_n(x) - f_n(c)) + (f_n(c) - f(c))
\]

and use uniform convergence on the first and third terms and continuity on the second.
\[|f(x) - f(c)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)| \]

\[|f(x) - f_n(x)| < \frac{\epsilon}{3}, \quad n \geq N \]
\[|f_n(x) - f_n(c)| < \frac{\epsilon}{3}, \quad 0 < |x - c| < \delta \]
\[|f(c) - f_n(c)| < \frac{\epsilon}{3}, \quad n \geq N \]

Thus, for \(0 < |x - c| < \delta \),

\[|f(x) - f(c)| < \epsilon. \]
Theorem

Let $f_n \to f$ pointwise on interval $[a, b]$ and assume each f_n is differentiable. If (f'_n) converges uniformly on $[a, b]$ to a function g, then f is differentiable and $f' = g$.

Proof. Let $\epsilon > 0$ and fix $c \in [a, b]$. We will argue that $f'(c)$ exists and it is equal to $g(c)$. We begin with

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

and claim we can find $\delta > 0$ so that for $0 < |x - c| < \delta$

$$\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| < \epsilon.$$
\[
\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| \leq \left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| \\
+ \left| \frac{f_n(x) - f_n(c)}{x - c} - f'(c) \right| + \left| f'(c) - g(c) \right|
\]

We will argue that we can find \(\delta \) so that each of the three terms \(< \epsilon/3. \)
Apply the MVT to $f_n - f_m$ on $[c, x]$: there exists $\alpha \in (c, x)$ such that

$$f'_n(\alpha) - f'_m(\alpha) = \frac{(f_n(x) - f_m(x)) - (f_n(c) - f_m(c))}{x - c}. $$

By Cauchy Criterion for Uniform Convergence, there exists $N \in \mathbb{N}$ such that for $n, m \geq N_1$,

$$|f'_n(\alpha) - f'_m(\alpha)| < \frac{\epsilon}{3}$$

Together we have

$$\left| \frac{f_n(x) - f_m(x)}{x - c} - \frac{f_n(c) - f_m(c)}{x - c} \right| < \frac{\epsilon}{3}$$

for all $m, n \geq N_1$, and all $x \in [a, b]$. If we take the limit $f_m \to f$ (making use of the Order Limit Theorem)
\[
\left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} \right| \leq \frac{\epsilon}{3}
\]

Finally, choose \(N_2 \) large enough so that

\[
|f'_m(c) - g(c)| < \frac{\epsilon}{3}
\]

for all \(m \geq N_2 \), and let \(N = \max\{N_1, N_2\} \) Use that \(f_N \) is differentiable to produce \(\delta > 0 \) for which

\[
\left| \frac{f_N(x) - f_N(c)}{x - c} - f'_N(c) \right| < \frac{\epsilon}{3}
\]

whenever \(0 < |x - c| < \delta \). Substituting in the original expression,

\[
\left| \frac{f(x) - f(c)}{x - c} - g(c) \right| < \epsilon
\]
Theorem

Let \((f_n)\) be a sequence of differentiable functions defined on the interval \([a, b]\) and assume that \((f'_n)\) converges uniformly on \([a, b]\) to a function \(g\). If there exists a point \(x_0 \in [a, b]\) where \((f_n(x_0))\) is convergent, then \((f_n)\) converges uniformly on \([a, b]\).

Proof. For any \(x \in [a, b]\), we have

\[
|f_n(x) - f_m(x)| \leq |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|
\]

One reduces to the previous proof by applying the MVT to \(f_n - f_m\) on \([x_0, x]\): there exists \(\alpha \in (x_0, x)\) such that

\[
f'_n(\alpha) - f'_m(\alpha) = \frac{(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))}{x - x_0}.
\]
Combining the two theorems we get

Theorem

Let \((f_n)\) be a sequence of differentiable functions defined on the interval \([a, b]\) and assume that \((f'_n)\) converges uniformly on \([a, b]\) to a function \(g\). If there exists a point \(x_0 \in [a, b]\) where \((f_n(x_0))\) is convergent, then \((f_n)\) converges uniformly on \([a, b]\). Moreover, the limit function \(f = \lim f_n\) is differentiable and satisfies \(f' = g\).
Let $f_n \to f$ pointwise on interval $[a, b]$ and assume each f_n is differentiable. If (f'_n) converges uniformly on $[a, b]$ to a function g, then f is differentiable and $f' = g$.

Let (f_n) be a sequence of differentiable functions defined on the interval $[a, b]$ and assume that (f'_n) converges uniformly on $[a, b]$ to a function g. If there exists a point $x_0 \in [a, b]$ where $(f_n(x_0))$ is convergent, then (f_n) converges uniformly on $[a, b]$.

Let (f_n) be a sequence of differentiable functions defined on the interval $[a, b]$ and assume that (f'_n) converges uniformly on $[a, b]$ to a function g. If there exists a point $x_0 \in [a, b]$ where $(f_n(x_0))$ is convergent, then (f_n) converges uniformly on $[a, b]$. Moreover, the limit function $f = \lim f_n$ is differentiable and satisfies $f' = g$.

Wolmer Vasconcelos
Advanced Calculus
Outline

1. Main Goal
2. Properties of Infinite Series
3. Workshop #10
4. Uniform Convergence and Differentiability
5. Series of Functions
6. Power Series
7. Taylor Series
8. Workshop #11
9. Old Finals
Series of Functions

Question: What do we see in the Infinite Series

\[\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \cdots = ? \]

Answer: At least two things

- The sequence of terms, \((a_n)\) and
- The sequence of partial sums, \((s_n)\),

\[s_n = a_0 + a_1 + \cdots + a_n \]

- We say the **series converges** to \(S \in \mathbb{R}\) if \(\lim s_n = S\). By abuse of notation, we then replace the \(?\) by \(S\).
Question: What do we see in the Infinite Series of Functions \(f_n : A \rightarrow \mathbb{R} \)

\[
\sum_{n=0}^{\infty} f_n = f_0 + f_1 + f_2 + f_3 + \cdots = ?
\]

Answer: At least three things

- The sequence of terms, \((f_n)\)
- The sequence of partial sums, \((s_n)\),

\[
s_n = f_0 + f_1 + \cdots + f_n
\]

- We say the series **converges** to \(f(x) \in \mathbb{R}\) if \(\lim f_n(x) = f(x)\).
- Main question: Properties of \(f\)? continuous? differentiable
Reasons Why

Two quick reasons why series of functions are widely (and wildly) used:

1. There are equations for which we do not have explicit (short) formulas of their solutions, e.g.

\[x^5 + 5x + 6 = 0, \]

yet we are still able to write the solutions as the limits of numerical series

\[x = \sum_{n \geq 0} a_n. \]

2. Series gives the means to break down some functions into basic blocks:

\[\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots \]
Noteworthy Examples

1 Geometric series

\[1 + x + x^2 + \cdots + x^n + \cdots\]

2 Exponential series

\[e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!} + \cdots\]

3 Arctangent series

\[x - \frac{x^3}{3} + \frac{x^5}{5} + \cdots\]

It is legitimate to evaluate the last series for \(x = 1\) in order to get

\[\pi/4 = 1 - \frac{1}{3} + \frac{1}{5} + \cdots\]
Continuity of Series of Functions

The guiding theorems:

Theorem

Let \(f_n \) be continuous functions on a set \(A \subset \mathbb{R} \), and assume

\[
\sum_{n=1}^{\infty} f_n \text{ converges uniformly to a function } f.
\]

Then, \(f \) is continuous on \(A \).

We need the means to test when the sequence of partial sums

\[
s_n(x) = f_0(x) + f_1(x) + \cdots + f_n(x)
\]

converges uniformly.
Cauchy Criterion

Theorem

A series \(\sum_{n=1}^{\infty} f_n \) converges uniformly on \(A \subseteq \mathbb{R} \) if for every \(\epsilon > 0 \) there is an \(N \in \mathbb{N} \) such that for all \(n > m \geq M \),

\[
|f_{m+1}(x) + f_{m+2}(x) + \cdots + f_n(x)| < \epsilon
\]

for all \(x \in A \).
Weierstrass M-Test

Theorem

For each \(n \in \mathbb{N} \), let \(f_n \) be a function defined on a set \(A \subset \mathbb{R} \), and let \(M_n \) be a real number satisfying

\[
|f_n(x)| \leq M_n
\]

for all \(x \in A \). If \(\sum_{n=1}^{\infty} M_n \) converges, then \(\sum_{n=1}^{\infty} f_n(x) \) converges uniformly on \(A \).

This reduces to Cauchy’s Criterion since

\[
|f_{m+1}(x) + f_{m+2}(x) + \cdots + f_n(x)| \leq M_{m+1} + \cdots + M_n,
\]

for all \(x \in A \). Now we use the Cauchy Criterion for numerical series.
Example

Let

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2},$$

whose terms are bounded by the terms of the convergent series

$$\sum_{n=1}^{\infty} \frac{1}{n^2}.$$

It converges uniformly to a continuous function $f(x)$.

The series of derivatives

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n},$$

diverges at $x = 0$ (becomes the harmonic series).
Derivative of a Series

The following gives us a criterion of when we can differentiate a series:

Theorem

Let \(f_n \) be differentiable functions defined on the interval \([a, b]\), and assume that \(\sum_{n=1}^{\infty} f'_n \) converges uniformly on \([a, b]\) to a function \(g \) on \([a, b]\). If there exists a point \(x_0 \in [a, b] \) where \(\sum_{n=1}^{\infty} f_n(x_0) \) is convergent, then the series \(\sum_{n=1}^{\infty} f_n \) converges uniformly to a differentiable function \(f(x) \) satisfying \(f' = g \) on \([a, b]\). In other words,

\[
\begin{align*}
 f(x) &= \sum_{n=1}^{\infty} f_n(x), \\
 f'(x) &= \sum_{n=1}^{\infty} f'_n(x)
\end{align*}
\]
Outline

1. Main Goal
2. Properties of Infinite Series
3. Workshop #10
4. Uniform Convergence and Differentiability
5. Series of Functions
6. **Power Series**
7. Taylor Series
8. Workshop #11
9. Old Finals

Wolmer Vasconcelos
Advanced Calculus
A power series is a series of the form

\[\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots \]

Sometimes instead of \(x^n \) on has \((x - a)^n \).

These series have, unlike more general series, amenable properties: It will be much simpler to study their convergence, continuity and differentiability.
Basic Theorem

Part of the simplicity is grounded on the following:

Theorem

If a power series $\sum_{n=0}^{\infty} a_n x^n$ *converges at some point* $x_0 \in \mathbb{R}$, *then it converges absolutely for any* x *satisfying* $|x| < |x_0|$.

Proof. If $\sum_{n=0}^{\infty} a_n x_0^n$ converges, then the sequence $a_n x_0^n$ is bounded (in fact, by Cauchy’s, converges to 0). Let $M > 0$ satisfy $|a_n x_0^n| \leq M$ for all $n \in \mathbb{N}$. If $|x| < |x_0|$, then

$$|a_n x^n| = |a_n x_0^n| \left|\frac{x}{x_0}\right|^n \leq M \left|\frac{x}{x_0}\right|^n$$
The geometric series

\[\sum_{n=0}^{\infty} M \left| \frac{x}{x_0} \right|^n \]

converges since its ratio is \(< 1\), so by the Comparison Test, the series \(\sum_{n=0}^{\infty} a_n x^n \) converges absolutely. \(\square \)
Radius of Convergence

Here is a surprising property of power series: If we have a power series

$$\sum_{n=0}^{\infty} a_n x^n,$$

what is like the set of all x (besides $x = 0$) where it converges? Here is part of the answer:

Corollary

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series. The possible sets of points where it converges are: 0 only; all of \mathbb{R}; or an interval $(-R, R)$, possibly with one or both of its boundary points.
R: radius of convergence: the largest nonnegative number such that $\sum_{n=0}^{\infty} a_n x^n$ converges for all $|x| < R$.

Theorem

The radius of convergence of the series $\sum a_n x^n$ is given by

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,$$

provided the limit exists or is $+\infty$.

Proof. We make use of the Ratio Test: The series converges if the limit

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = L |x| < 1$$

and diverges if $L |x| > 1$.

Wolmer Vasconcelos
Advanced Calculus
Set 6
From this we conclude: $R = 1/L$ if $L \neq 0$. Also, $R = \infty$ if $L = 0$, and $R = 0$ if $L = \infty$.

1. For the exponential series $\sum \frac{x^n}{n!}$, $R = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \infty$
2. For the geometric series $\sum x^n$, $R = 1$
3. For $\sum n!x^n$, $R = 0$
Radius of Convergence and Differentiation/Integration

Let $f(x) = \sum a_n x^n$, $\sum_{n \geq 1} n a_n x^{n-1}$, and $\sum_{n \geq 1} \frac{1}{n+1} x^{n+1}$

Theorem

The three series have the same radii of convergence.

Proof. Suppose R and R' are the radii of convergence of the first two series. Suppose $|x| < R$, and choose $|x| < |x_0| < R$. Then the first series is convergent with $x = x_0$, and consequently $|a_n x_0^n| \leq A$ for all n.

Wolmer Vasconcelos Set 6

Advanced Calculus
Then

\[na_n x^{n-1} = \frac{n}{x_0} a_n x_0^n \left(\frac{x}{x_0} \right)^{n-1}, \]

\[|na_n x^{n-1}| \leq \frac{A}{|x_0|} nr^{n-1}, \]

where

\[r = \frac{|x|}{|x_0|} < 1. \]

The series

\[\frac{A}{|x_0|} nr^{n-1} \]

is convergent, for the limit of the ratio of the terms is

\[\lim_{n \to \infty} \frac{n + 1}{n} r < 1. \]

This proves that the series \(na_n x^{n-1} \) converges and therefore \(R < R' \).
Now we show that $R' > R$ is impossible. Otherwise, pick x so that $R < |x| < R'$. Then the series $\sum na_n x^{n-1}$ is absolutely convergent for this x and the first series is divergent. Now

$$|a_n x^n| = |na_n x^{n-1}| \left| \frac{x}{n} \right| < |na_n x^{n-1}|$$

as soon as $n > |x|$. This comparison shows that the series $\sum |a_n x^n|$ is convergent, a contradiction.
Root Formula

Exercise: Prove that the radius of convergence of the series

$$\sum_{n=0}^{\infty} a_n x^n$$

is given by

$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{a_n}.$$

Note: In some early Workshops we had several examples of

$$\lim_{n \to \infty} \sqrt[n]{\text{something}}: \sqrt[n]{n}, \sqrt[n]{a^n + b^n + c^n}$$

Note also the consequence: the series of indefinite integrals will have the same radius of convergence

$$\sum_{n=1}^{\infty} \frac{a_n}{n+1} x^{n+1}$$
Uniform Convergence

Theorem

If a power series \(\sum_{n=0}^{\infty} a_n x^n \) *converges absolutely at a point* \(|x_0| \), *then it converges uniformly on the closed interval* \([-c, c]\), *where* \(c = |x_0| \).

Proof. We use Cauchy Criterion for Uniform Convergence of Series.

By assumption, \(\sum_{n=0}^{\infty} |a_n x^n| < \infty \) so that in particular, for any \(\epsilon > 0 \) there exists \(N \in \mathbb{N} \) such that for \(n > m \geq N \)

\[
|am+1 c^{m+1}| + \cdots |an c^n| < \epsilon
\]

which implies that for all \(x \in [-c, c] \)

\[
|am+1 x^{m+1} + \cdots a_n x^n| \leq |am+1 c^{m+1}| + \cdots |an c^n| < \epsilon
\]
Abel’s Lemma

Lemma

Let b_n satisfy $b_1 \geq b_2 \geq b_3 \geq \cdots \geq 0$, and let $\sum_{n=1}^{\infty} a_n$ be a series for which the partial sums are bounded. In other words, assume there exists $A > 0$ such that

$$|a_1 + a_2 + \cdots + a_n| < A$$

for all $n \in \mathbb{N}$. Then, for all $n \in \mathbb{N}$

$$|a_1 b_1 + a_2 b_2 + \cdots + a_n b_n| \leq 2A.$$
The proof uses a technique called **summation by parts**. Let \((x_n)\) and \((y_n)\) be sequences and let \(s_n = x_1 + x_2 + \cdots + x_n\). Note that \(x_j = s_j - s_{j-1}\). Now we verify that

\[
\sum_{j=m+1}^{n} x_j y_j = s_n y_{n+1} - s_m y_{m+1} + \sum_{j=m+1}^{n} s_j (y_j - y_{j+1}).
\]

Note that the two sides as sums \(\sum a_{i,j} x_i y_j\), where \(a_{i,j}\) are integers. To verify this is an identity, it is enough to check that for each \(j\) in the range \(m + 1 \leq i, j \leq n + 1\), taking the partial derivative relative to \(x_i\) followed by that of \(y_j\) we get the same values:

\[
\frac{\partial^2}{\partial x_i \partial y_j} \sum a_{i,j} x_i y_j = a_{i,j}
\]
Abel’s Theorem

Theorem

Let \(g(x) = \sum_{n=1}^{\infty} a_n x^n \) be a power series that converges at the point \(x = R > 0 \). Then the series converges uniformly on the interval \([0, R]\). A similar result holds if the series converges at \(x = -R \).

Proof. We use Cauchy Criterion for Uniform Convergence of Series: Set

\[
g(x) = \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} a_n R^n \left(\frac{x}{R} \right)^n.
\]
We must show that for any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for $n > m \geq N$

$$|a_{m+1}R^{m+1} \left(\frac{x}{R} \right)^{m+1} + \cdots + a_nR^n \left(\frac{x}{R} \right)^n| < \epsilon$$

Because we are assuming that $\sum_{n=1}^{\infty} a_nR^n$ converges, by Cauchy Criterion for convergent numerical series there exists $N \in \mathbb{N}$ such that

$$|a_{m+1}R^{m+1} + \cdots + a_nR^n| < \epsilon/2$$

for all $n > m \geq N$. By Abel’s Lemma

$$|a_{m+1}R^{m+1}(x/R)^{m+1} + \cdots + a_nR^n(x/R)^n| < 2\epsilon/2 = \epsilon$$
Taylor Series

Let \(f(x) \) be a function defined on a neighborhood of \(x = a \), let us assume its derivatives of all orders exist at \(x = a \), \(f^{(n)}(a) \), \(n \geq 0 \). We can assemble these derivatives into several series, the most important being the **Taylor series** of \(f \) at \(x = a \):

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.
\]

1. For what values of \(x \), in addition to \(x = a \), does the series converge?
2. When will it converge to \(f(x) \)?
The partial sums of this series are the polynomials

\[s_n(x) = \sum_{i=0}^{n} \frac{f^{(i)}(a)}{i!} (x - a)^i. \]

To see whether \(s_n(x) \to f(x) \), we must examine the difference

\[f(x) - s_n(x) \]

This is called the remainder of the Taylor series.
Note that the series expresses a relationship between values of \(f \) at different points. We recall a basic result of this kind:

1. If \(f : [a, b] \to \mathbb{R} \) is continuous and \(f'(x) \) exists in \((a, b)\), the MVT says that

\[
f(b) = f(a) + (b - a)f'(c),
\]

for some \(c \in (a, b) \).

2. If we assume more: Suppose \(f'(x) \) is continuous on \([a, b]\) and \(f''(x) \) exists in \((a, b)\):

\[
f(b) = f(a) + (b - a)f'(a) + \frac{(b - a)^2}{2}f''(c),
\]

for some \(c \in (a, b) \).
To prove this, consider the function

\[g(x) = f(b) - f(x) - (b - x)f'(x) - \frac{(b - x)^2}{(b - a)^2}(f(b) - f(a) - (b - a)f'(a)). \]

Note that it vanishes for \(x = a \) and \(x = b \). Since it is differentiable, by Rolle’s Theorem

\[g'(c) = 0 \]

for some \(c \in (a, b) \). Since

\[g'(x) = -(b - x)f''(x) - \frac{2(b - x)}{(b - a)^2}(f(b) - f(a) - (b - a)f'(a)), \]

and we get: \(f(b) - f(a) - (b - a)f'(a) = \frac{f''(c)}{2!}(b - a)^2. \)
Taylor’s Theorem

This can be proved in all degrees:

Theorem

Suppose that \(f : [a, b] \to \mathbb{R} \) is \(n \)-times differentiable on \([a, b]\) and \(f^{(n)} \) is continuous on \([a, b]\) and differentiable on \((a, b)\). Assume \(x_0 \in [a, b] \). Then for each \(x \in [a, b] \) with \(x \neq x_0 \), there is \(c \) between \(x \) and \(x_0 \) such that

\[
f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.
\]
Proof of Taylor’s

Define the function

\[F(t) = f(t) + \sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!}(x - t)^k + M(x - t)^{n+1}, \]

where \(M \) is chosen so that \(F(x_0) = f(x) \). This is possible because \(x - x_0 \neq 0 \).

\(F \) is continuous on \([a, b]\) and differentiable on \((a, b)\), and

\[F(x) = f(x) = F(x_0). \]

By Rolle’s Theorem,

\[F'(c) = 0, \quad \text{for } c \text{ between } x \text{ and } x_0. \]
\[0 = F'(c) = \frac{f^{(n+1)}(c)}{n!} (x - c)^n - (n + 1)M(x - c)^n. \]

This gives

\[M = \frac{f^{(n+1)}(c)}{(n + 1)!} \]

and

\[f(x) = F(x_0) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n + 1)!} (x - x_0)^{n+1}. \]
\[
f(b) = f(a) + (b - a)f'(a) + \frac{(b - a)^2}{2}f''(a) + \cdots + \frac{(b - a)^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{(b - a)^n}{n!}f^{(n)}(c),
\]
for some \(c \in (a, b)\). To prove this, consider the function

\[
g(x) = F_n(x) - \left(\frac{b - x}{b - a}\right)^n F_n(a)
\]

where

\[
F_n(x) = f(b) - f(x) - (b - x)f'(x) - \cdots - \frac{(b - x)^{n-1}}{(n-1)!}f^{(n-1)}(x).
\]

The function \(g(x)\) vanishes at \(x = a\) and \(x = b\).
Its derivative is

\[
\frac{n(b - x)^{n-1}}{(b - a)^n} \left(F_n(a) - \frac{(b - a)^n}{n!} f^{(n)}(x) \right),
\]

which must vanish by Rolle’s Theorem for some \(a < c < b \).

This gives the formula

\[
f(x) = \sum_{i=0}^{n-1} \frac{f^{(i)}(a)}{i!} (x - a)^i + R_n(x)
\]

We must control the term (remainder)

\[
R_n(x) = \frac{(b - a)^n}{n!} f^{(n)}(c), \quad a < c < x
\]

to study Taylor’s.
Example

Problem: Compute the first 5 decimals of e.
The Taylor series of e^x around $x_0 = 0$ is

$$1 + x + \cdots + \frac{x^n}{n!} + \cdots$$

The remainder term is

$$\frac{f^{(n+1)}(c)}{(n+1)!}(x - c)^{n+1}, \quad c \in [0, x].$$

We want to find n so that the remainder (for $x = 1$) is $< 10^{-6}$. We know that the derivatives of e^x are e^x, so $e^c \leq e < 4$. As $(1 - c) \leq 1$, the remainder is smaller than

$$\frac{4}{(n+1)!}$$
We pick n so that

$$\frac{4}{(n+1)!} < 10^{-6}$$

That is,

$$(n + 1)! > 4 \times 10^6$$

$$7! = 5040$$
$$10! = 720 \times 5040$$
$$11! > 4 \times 10^6$$
Example

Let $f(x) = \log(1 + x)$, $a = 0$: Then

\[
\begin{align*}
 f'(x) &= \frac{1}{1 + x} \\
 f''(x) &= \frac{-1}{(1 + x)^2} \\
 &\vdots \\
 f^{(n)}(x) &= (-1)^{n-1} \frac{(n - 1)!}{(1 + x)^n}
\end{align*}
\]

Thus

\[
|R_n(x)| = \frac{1}{n} \left| \frac{1}{1 + x^n} \right| \leq \frac{1}{n}, \quad 0 \leq x
\]
Example

Let \(f(x) = \arctan x, \ a = 0: \) Then

\[
\begin{align*}
 f'(x) &= \frac{1}{1 + x^2} \\
 f''(x) &= \frac{-2x}{(1 + x^2)^2} \\
 \vdots \\
 f^{(n)}(x) &= ?
\end{align*}
\]

We will be tricky: Consider the geometric series

\[
\frac{1}{1 - x} = 1 + x + x^2 + \cdots + x^n + \cdots
\]
Exercises

1. Decide whether the series converges or diverges

\[\sum_{n \geq 1} \frac{\sqrt{n+1} - \sqrt{n}}{n} \]

2. Write the Taylor series of \(\ln x \) using powers of \(x - 1 \)

3. Prove that \(e^x \geq 1 + x \) for all \(x \).

4. Use induction to show that \(1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} \geq \sqrt{n} \). Which other way?

5. Chapter 6: 9, 19, 22, 24(a,b), 37, 41b, 42
Outline

1. Main Goal
2. Properties of Infinite Series
3. Workshop #10
4. Uniform Convergence and Differentiability
5. Series of Functions
6. Power Series
7. Taylor Series
8. Workshop #11
9. Old Finals
1. Observe that the series

\[f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots \]

converges for on \([0, 1)\) but not when \(x = 1\). For fixed \(x_0 \in (0, 1)\), use the M-test to prove that \(f\) is continuous at \(x_0\).

2. Let

\[f(x) = \sum_{n=1}^{\infty} \frac{1}{x^2 + n^2} \]

1: Show that \(f\) is a continuous function defined on all of \(\mathbb{R}\).
2: Is \(f\) differentiable? If so, is \(f'\) continuous?
Outline

1. Main Goal
2. Properties of Infinite Series
3. Workshop #10
4. Uniform Convergence and Differentiability
5. Series of Functions
6. Power Series
7. Taylor Series
8. Workshop #11
9. Old Finals
1. (10 pts) State carefully and prove the Mean Value Theorem.

2. (8 pts)
 1. What is a countable set? Show that the set of rational numbers is countable.
 2. Show that the set of irrational numbers is not countable.
3. (8 pts)

1. What is a monotone sequence of real numbers?

2. If \((a_n)\) is a bounded monotone sequence, prove that it converges.

4. (8 pts) Let \(x_1 = 1\) and \(x_{n+1} := 1 + \frac{1}{x_n}\). Show that \((x_n)\) is a convergent sequence and find its limit.
5. (8 pts) If \(f : \mathbb{R} \to \mathbb{R} \) is a nonzero function satisfying
\[
f(x + y) = f(x) + f(y) \quad \text{and} \quad f(xy) = f(x)f(y)
\]
for any \(x, y \in \mathbb{R} \), prove:

1. \(f(m/n) = m/n \) for every \(m/n \in \mathbb{Q} \).
2. For \(a \in \mathbb{R} \), if \(a > 0 \) then \(f(a) > 0 \). (Note that every positive number is a square.)
3. Use (2) to prove that if \(x > y \) then \(f(x) > f(y) \).
4. Use (1), (3), the Density of \(\mathbb{Q} \) and NIP, to prove that \(f(x) = x \) for every \(x \in \mathbb{R} \).

6. (8 pts) Let \(f : [a, b] \to \mathbb{R} \) be continuous and differentiable on \((a, b) \). If \(f(a) = f(b) = 0 \), show that for any \(k \in \mathbb{R} \) there is \(c \in (a, b) \) such that
\[
f'(c) = kf(c).
\]

\textit{Hint:} Consider \(f(x)e^{-kx} \)
7. (8 pts)

1. Describe the Cantor set C.
2. Show that C is uncountable.
3. Show that $1/4 \in C$.

8. (8 pts) [Topology]

1. What is an open set of \mathbb{R}?
2. If A and B are subsets of \mathbb{R}, $A + B = \{a + b \mid a \in A, \ b \in B\}$. If $A = (1, 3)$ and $B = (2, 5)$, what is $A + B$?
3. If A and B are open, prove that $A + B$ is also open.
4. Prove (3) assuming only that B is open.
9. (8 pts) Find the Taylor series of $\arctan x$ and determine where it converges.

10. (8 pts) What is the **radius of convergence** of a power series $\sum_{n \geq 1} a_n x^n$?

If $f(x) = x^2 + x + 1$, and $a_n = f(n)$ for $n \in \mathbb{N}$, find the radius of convergence of the corresponding series.
11. (8 pts) Let

\[f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^3}. \]

1. Show that \(f(x) \) is differentiable and that its derivative \(f'(x) \) is continuous.

2. Can we determine if \(f \) is twice differentiable? [Explain]

12. (10 pts) Explain [as in prove] why the Riemann integral, \(\int_{a}^{b} f \), of a continuous function \(f \) on the closed interval \([a, b]\) exists.