Outline

1. Goals
2. Cantor Set
3. Open Sets
4. Compact Sets
Our main aim is to study interesting functions of the kind

\[X \rightarrow f \rightarrow Y \]

where \(X \) and \(Y \) are subsets of \(\mathbb{R} \).

If \(f \) is a function and the sequence

\[a_1, a_2, a_3, \ldots, a_n, \ldots \]

lies in the domain of \(f \), then the sequence

\[f(a_1), f(a_2), f(a_3), \ldots, f(a_n), \ldots \]

is contained in \(Y \).
We want f to have the following property:
- If (a_n) is convergent then $(f(a_n))$ convergent.

This requires us to examine some sets of subsets of \mathbb{R}:
- Open Sets
- Closed Sets
- Compact Sets
- Connected Sets
- Strange Sets

These subsets have properties that will explain why continuous functions act as they do.
Cantor Set

Rule: From each subinterval of C_n remove the inner third, to obtain C_{n+1}

Cantor Set: $C = \bigcap C_{n \geq 0}$
Building the Cantor set in detail

1. $C_0 = [0, 1]$, $C_1 = C_0 \setminus (1/3, 2/3)$, that is C_1 is obtained by removing from the interval C_0 its mid third (leaving the endpoints):

 $$C_1 = [0, 1/3] \cup [2/3, 1]$$

2. Iterate by removing from each closed subinterval above its mid third (and so on)

 $$C_2 = ([0, 1/9] \cup [2/9, 1/3]) \cup ([2/3, 7/9] \cup [8/9, 1])$$

3. This leads to a nested sequence of sets

 $$C_0 \supset C_1 \supset C_2 \supset \cdots C_n \supset \cdots$$

4. $C = \bigcap_{n \geq 0} C_n$ is called the **Cantor** set.
Note that \(C \) is obtained from \([0, 1]\) by repeatedly carving out the heart. At least, the endpoints of the various subintervals belong to \(C \). What else?

We are going to argue \(C \) is very thin by adding the lengths of the intervals that were removed:

\[
\frac{1}{3} + 2\frac{1}{3^2} + 2^2\frac{1}{3^3} + \cdots,
\]

a geometric series whose first term is \(1/3\) and whose ratio is \(2/3\), so it has for sum

\[
\frac{1/3}{1 - 2/3} = 1!
\]

So from \([0, 1]\) we took away a subset of measure 1!
Exercise Given $\epsilon > 0$, argue that any countable set A is contained in a countable union $\bigcup_{n \geq 1} [a_n, b_n]$, such that

$$\sum_{n \geq 1} |b_n - a_n| < \epsilon.$$
Cardinality of C

If C only contained the endpoints [all rational points] of the subintervals of its construction, it would be countable. Let us show otherwise:

1. We are going to code the elements of C by infinite strings of $\{0, 1\}$ as follows: If $a \in C$, we set $a_1 = 0$ if a belongs to the leftmost subinterval of C_1, otherwise we set $a_1 = 1$.

2. Once a_1 is assigned, we consider the subinterval of C_2 that contains x, and apply the same rule. In this we get a unique address for x as the string (a_1, a_2, a_3, \ldots).

3. Conversely, given any such string we build a nested sequence of closed intervals $I_1 \supset I_2 \supset I_3 \supset \cdots$: By NIP there is a point in the intersection. Actually unique why?
We observed two contrasting things about C: (i) it is very thin, since $[0, 1] \setminus C$ has length 1. (ii) it is uncountable. Can one compare it in other ways to the unit interval $U = [0, 1]$?

Observe that if we expand $[0, 1]$ by multiplying each number in it by 3, we obtain the interval $[0, 3]$, that is we get 3 copies of U. However, if we do the same operation on C, we only get 2 copies of C! Care to visualize?
One way to define dimension of subset S of \mathbb{R}^n is to compare S with the set obtained by expanding all points in it by a scale, say 3.

For example, the dimension of $[0, 1]$ is 1, because we got $3U = [0, 3]$, while the dimension of a unit square is 2 [9 new squares], of the unit cube is 3 [27 new cubes].

In all of these examples, we say that the dimension is d if 3^d is the size relative of the new set obtained by scaling the set by 3: $3 = 3^1$ for the unit interval, $9 = 3^2$ for the unit square, and $27 = 3^3$ for the unit cube. So they have dimensions 1, 2, 3 respectively.
For the Cantor set C, if we scale the set by 3 we get the union of two Cantor sets.

This means that

$$2 = 3^d,$$

so

$$\dim C = \frac{\ln 2}{\ln 3}.$$
Outline

1. Goals
2. Cantor Set
3. Open Sets
4. Compact Sets
Neighborhoods

\[a - \epsilon \ < x < a + \epsilon \]

Definition

Given a real number \(a \in \mathbb{R} \) and a positive number \(\epsilon > 0 \), the set

\[V_\epsilon(a) = \{ x \in \mathbb{R} : |x - a| < \epsilon \} \]

is called the \(\epsilon \)-neighborhood of \(a \).

Thus a neighborhood of a point \(a \in \mathbb{R} \) is just an open interval centered at \(a \).
Open Sets

Definition (Open Set)
A set O of \mathbb{R} is open if for all points $a \in O$ there exists an ϵ-neighborhood $V_\epsilon(a) \subset O$.

1. The entire \mathbb{R} is an open set. The definition also fits the empty subset \emptyset of \mathbb{R}.

2. Any interval

 $$(c, d) = \{ x \in \mathbb{R} \mid c < x < d \}$$

 is open. For any $a \in (c, d)$, if we pick $\epsilon = \min\{a - c, d - a\}$, then the interval $V_\epsilon(a) \subset (c, d)$.

3. The subsets $(c, d]$, $[c, d)$ or $[c, d]$ are NOT open: at least one of the endpoints do not pass the neighborhood test.
Theorem (Template for a Topology)

1. The union of an arbitrary collection of open sets is open.
2. The intersection of a finite collection of open sets is open.

Proof.

1. Let \(\{O_\lambda \mid \lambda \in \Lambda\} \) be a collection of open sets of \(\mathbb{R} \), and \(O \) its union. If \(a \in O \), \(a \in O_\lambda \) for some \(\lambda \). Since \(O_\lambda \) is open, there exists an \(\epsilon \)-neighborhood \(V_\epsilon(a) \subset O_\lambda \subset O \).

2. Let \(\{O_1, O_2, \ldots, O_n\} \) be a finite collection of open subsets of \(\mathbb{R} \). If \(a \in O = \bigcap O_i \), for every open set \(O_i \) pick an \(\epsilon_i \)-neighborhoods \(V_{\epsilon_i}(a) \subset O_i \). Choosing \(\epsilon = \min\{\epsilon_1, \ldots, \epsilon_n\} \), we get \(V_\epsilon(a) \subset O_i \) for each \(O_i \), and therefore \(V_\epsilon(a) \subset O \). \(\square \)
Limit Point of a Set

Definition

A point x is a **limit** point of a set A if every ϵ-neighborhood $V_{\epsilon}(x)$ of x intersects A in some point other than x.

Other terminology for **limit** point: **accumulation** point, or **cluster** point. It is important to note that a limit point of A does not have to be a point of A.

Theorem

A point x is a limit point of a set A iff $x = \lim a_n$ for some sequence (a_n) contained in A satisfying $a_n \neq x$ for all $n \in \mathbb{N}$.

Proof. By considering a values $\epsilon = 1/n$, to a limit point x of A, we select $a_n \in A \cap V_{1/n}(x)$, $a_n \neq x$. Note that $a_n \in V_{1/N}(x)$, for $n \geq N$. This means $(a_n) \rightarrow x$. The converse is clear. □
Isolated Point

Definition

A point $x \in A$ is an isolated point of A if it is not a limit point of A.

This essentially means that we have an ϵ-neighborhood $V_\epsilon(x)$ that contains no other point of A. For example, let

$$A = \{1/n \mid n \in \mathbb{N}\}$$

The sequence of points of A, $(1/n) \to 0$, so 0 is a limit point.

Any point of A is isolated: For example, if $x = 1/3$, the closest other point in A is $1/4$, so if we choose $\epsilon < 1/3 - 1/4 = 1/12$, $V_\epsilon(1/3) \cap A = \{1/3\}$.
Let $A = \{1/n \mid n \in \mathbb{N}\}$. Note that the closest point to $1/n$ is $1/(n+1)$: So if $\epsilon < 1/n - 1/(n+1)$

$$V_\epsilon(1/n) \cap A = \{1/n\}$$
A set $F \subset \mathbb{R}$ is **closed** if it contains (all) its limit points.

In other words, for any convergent sequence $(a_n) \to x$ of distinct points $a_n \in F$, $x \in F$ also.

Closed sets are ubiquitous.
Plenty of Closed Sets

Theorem

Let A be a subset of \mathbb{R}. The set L of limit points of A is closed.

Proof.

1. Let x be a limit point of L. To show that $x \in L$ we must show that x is a limit point of A.
2. Let $V_\epsilon(x)$ be a neighborhood of x. It contains some $y \in L$. Pick a (possibly) smaller neighborhood $V_\epsilon'(y) \subset V_\epsilon(x)$.
3. Since $y \in L$, $V_\epsilon'(y)$ contains some $z \in A$, as desired.
Examples

1. The interval $A = [c, d]$ is a closed set: If x is a limit point of A there is a sequence (x_n) of points of A with $(x_n) \to x$. Applying Order Theorem to

$$c \leq x_n \leq d,$$

we get $c \leq \lim x_n \leq d$, so $x \in A$.

2. Consider the rational numbers: $\mathbb{Q} \subset \mathbb{R}$. The set of limit points of \mathbb{Q} is \mathbb{R}: Given any element $y \in \mathbb{R}$, by the Density Theorem there exists a rational number $r \neq y$ in $V_{\epsilon}(y)$. This can be reformulated as:

Theorem (Density of \mathbb{Q} in \mathbb{R})

*Given any $y \in \mathbb{R}$, there is a sequence of rational numbers that converges to y.***
Definition

Given a set $A \subset \mathbb{R}$, let L be the set of all limit points of A. The closure of A is the set $\overline{A} = L \cup A$.

1. \overline{A} consists of A plus its accumulation points.
2. If $A = (0, 1)$, its closure \overline{A} is $[0, 1]$.
3. If $A = \{1/n \mid n \in \mathbb{N}\}$, its limit set is $L = \{0\}$, so

$$\overline{A} = A \cup \{0\}.$$

4. $\overline{\mathbb{Q}} = \mathbb{R}$
Theorem

For any $A \subset \mathbb{R}$, the closure \bar{A} is a closed set and is the smallest closed set containing A.

Proof.

1. Let x be a limit point of \bar{A}, which we assume does not lie in \bar{A}. Note that any neighborhood of x must contain an element $x \neq y \in \bar{A}$.

2. We will show that x is a limit point of L, and since we have already proved that L is closed this would imply $x \in L$.

3. Let $V_{\epsilon}(x)$ be a neighborhood of x. We want to argue that it contains some element of A. If not, it would have to contain an element $y \in L$.

4. Let $V_{\epsilon'}(y) \subset V_{\epsilon}(x)$. With $y \in L$, $V_{\epsilon'}(y)$ contains an element of A, as desired.

\[\square \]
A set O is open if and only if its complement O^c is closed. Likewise, a set F is closed if and only if F^c is open.

Proof. Let O be an open subset of \mathbb{R}. To show that O^c is closed, we must show that it contains all of its limit points. If x is a limit point of O^c, then every neighborhood of x contains some point of O^c. If $x \notin O^c$, $x \in O$ and since O is open there is a neighborhood of x contained in O. This contradiction shows that $x \in O^c$.
For the converse, assume O^c is closed and we argue that O is open. This means that for every point $x \in O$ there must be a neighborhood $V_\epsilon(x) \subset O$. If not, each such neighborhood would intersect O^c, which is closed. In this case, x would be a limit point of O^c, and thus $x \in O^c$, which is a contradiction.

For the second part, just note that for any subset $E \subset \mathbb{R}$, $(E^c)^c = E$. □
Theorem (Template for a Topology)

1. The intersection of an arbitrary collection of closed sets is closed.
2. The union of a finite collection of closed sets is closed.

Corollary

The Cantor set C is closed.
Outline

1. Goals
2. Cantor Set
3. Open Sets
4. Compact Sets
Definition

A set $K \subset \mathbb{R}$ is **compact** if every sequence in K has a subsequence that converges to a limit that is also in K.

Example: A closed interval $[a, b]$. The Bolzano-Weirstrass theorem guarantees that any sequence $(a_n) \subset [a, b]$ admits a convergent subsequence. Because $[a, b]$ is closed, the limit of this subsequence is also in $[a, b]$.
Heine-Borel Theorem

Definition

A set $K \subset \mathbb{R}$ is **bounded** if there exists $M > 0$ such that $|x| < M$ for all $x \in K$.

Theorem

A set $K \subset \mathbb{R}$ is compact if and only if it is closed and bounded.

Proof. Let K be compact. We first claim K is bounded. Otherwise, for each n there is $x_n \in K$ such that $|x_n| > n$. Since K is compact:

1. (x_n) has a convergent subsequence (x_{n_k}).
2. But convergent sequences are bounded, while $|x_{n_k}| > n_k$, a contradiction as $n_k \to \infty$.
Next we show that K is closed. Let $x = \lim x_n$ be a limit point of K, that is, $x_n \in K$. We must show $x \in K$. From the compactness assumption, (x_n) admits a convergent subsequence (x_{n_k}) converging to a point $y \in K$. Since (x_n) is convergent, all of its subsequences have the same limit, so $x = y$ as desired.

The converse is left as an exercise.
Theorem

If $K_1 \supseteq K_2 \supseteq K_3 \supseteq \cdots$ is a nested sequence of nonempty compact sets, then the intersection $\bigcap_{n=1}^{\infty} K_n$ is nonempty.

Proof. The strategy is simple: We pick an element $x_n \in K_n$ (K_n is nonempty) and consider the sequence (x_n). Since $x_n \in K_1$, and K_1 is compact, it admits a convergent subsequence $(x_{n_k}) \to x \in K_1$. We claim that $x \in K_n$ for every n. Given n_0, the terms in (x_n) are contained in K_{n_0} as long as $n \geq n_0$. This means that the terms of the subsequence (x_{n_k}) are also in K_{n_0} for almost all of them. This implies that its limit lies in K_{n_0}, as desired. □