Complexity of the Normalization of Algebras

Wolmer V. Vasconcelos

Rutgers University
Piscataway, NJ 08854-8019

Magic05, October 10, 2005
Abstract

Let R be a normal unmixed integral domain and let A be a semistandard graded R-algebra of integral closure \overline{A}. Estimating the number of steps that general algorithms must take to build \overline{A} can be viewed as an invariant of A. We show how the degree function $jdeg(\cdot)$ can be used to provide bounds that depend on \overline{A}. In two major cases, algebras that allow Noether normalizations (affine algebras over fields or \mathbb{Z}) and Rees algebras of ideals or modules, such estimates are related to invariants of A, in particular they can be said to be known \textit{ab initio}.
General Goals

- Numerical Indices for \overline{A}: e.g. Find r such that

$$\overline{A}_{n+r} = A_n \cdot \overline{A}_r, \quad n \geq 0.$$

- How many “steps” are there between A and \overline{A},

$$A = A_0 \subset A_1 \subset \cdots \subset A_{s-1} \subset A_s = \overline{A},$$

where the A_i are constructed by an effective process?

- Express r and s in terms of invariants of A.

- Generators of \overline{A}: Number and distribution of their degrees
General Goals

• Numerical Indices for \overline{A}: e.g. Find r such that
 \[\overline{A}_{n+r} = A_n \cdot \overline{A}_r, \quad n \geq 0. \]

• How many “steps” are there between A and \overline{A},
 \[A = A_0 \subset A_1 \subset \cdots \subset A_{s-1} \subset A_s = \overline{A}, \]
 where the A_i's are constructed by an effective process?

• Express r and s in terms of invariants of A.

• Generators of \overline{A}: Number and distribution of their degrees
General Goals

- Numerical Indices for \overline{A}: e.g. Find r such that
 \[\overline{A}_{n+r} = A_n \cdot \overline{A}_r, \quad n \geq 0. \]

- How many “steps” are there between A and \overline{A},
 \[A = A_0 \subset A_1 \subset \cdots \subset A_{s-1} \subset A_s = \overline{A}, \]
 where the A_i are constructed by an effective process?

- Express r and s in terms of invariants of A.

- Generators of \overline{A}: Number and distribution of their degrees
General Goals

• Numerical Indices for \overline{A}: e.g. Find r such that

$$\overline{A}_{n+r} = A_n \cdot \overline{A}_r, \quad n \geq 0.$$

• How many “steps” are there between A and \overline{A},

$$A = A_0 \subset A_1 \subset \cdots \subset A_{s-1} \subset A_s = \overline{A},$$

where the A_i are constructed by an effective process?

• Express r and s in terms of invariants of A.

• Generators of \overline{A}: Number and distribution of their degrees
A new degree: $j\text{deg}$ (Thuy Pham)

To construct and develop this notion of degree, one uses extensively the notion of j–multiplicity introduced and developed by Flenner, O’Carroll and Vogel.

Let R be a Noetherian ring and A be a finitely generated graded R-algebra where $A = R[A_1]$. For a finitely generated graded A-module M, and a prime ideal p of R, let

$$H = H^0_{pR_p}(M_p).$$

The j_p-multiplicity of M is the integer

$$j_p(M) := \begin{cases} \deg H & \text{if } \dim = \dim M_p \\ 0 & \text{otherwise} \end{cases}$$
Definition

Let R be a Noetherian ring and A be a finitely generated graded R-algebra where $A = R[A_1]$. For a finitely generated graded A-module M,

$$\text{jdeg}(M) := \sum_{p \in \text{Spec} R} j_p(M).$$

Note that this is a finite sum.
For example, if R is an integral domain and $R[lt]$ is the Rees algebra of an ideal,
\[\text{jdeg} (R[lt]) = 1, \]
while if R is an Artinian local ring and M is a finitely generated graded module over a standard graded R-algebra,
\[\text{jdeg} (M) = \text{deg}(M). \]

\text{jdeg} does not seem to carry much new information! We will argue that this degree is useful in tracking certain processes [especially normalization but also the Nullstellensatz and reductions].
Some Properties

Theorem (Invariance)

Let \(R \) be a (bit less than Cohen-Macaulay) ring and let \(I \) be an ideal of \(R \). Let \(B \) be a graded algebra with \(A = R[lt] \subseteq B \subseteq \bar{A} \) and assume that \(B \) satisfies the condition \(S_2 \) of Serre. Then

\[
\text{jdeg} \left(\text{gr} \left(A \right) \right) = \text{jdeg} \left(\text{gr} \left(B \right) \right).
\]
Theorem (Pham-V)

Let R be a Noetherian domain and A a semistandard graded R-algebra with finite integral closure \overline{A}. Consider a sequence of distinct integral graded extensions

$$A = A_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \ldots \rightarrow A_s = \overline{A},$$

where the A_i satisfy the S_2 condition of Serre. Then

$$s \leq j\text{deg} (\overline{A}/A).$$
The issue is to express bounds for $\jdeg(A/A)$ in terms of invariants of A. There are at least two classes of algebras when this is possible: Rees algebras of ideals/modules and algebras finite over polynomial subrings:

$$R[x_1, \ldots, x_p] \subset A \subset R[t_1, \ldots, t_q]$$

The rings of polynomials serve as referential for various constructions. One knows already quite a lot about these issues. In these situations, one connects $\jdeg(A/A)$ to some invariant of A.

Wolmer Vasconcelos

Complexity of the Normalization of Algebras
Hilbert functions and \(\text{jdeg} \)

Let \((R, \mathfrak{m})\) be a Noetherian local ring of dimension \(d > 0 \) and let \(I \) be an \(\mathfrak{m} \)-primary ideal. Let \(B = \bigoplus_{n \geq 0} B_n t^n \) be a graded \(R \)-subalgebra of \(R[t] \) with \(R[lt] \subset B \subset R[t] \) and assume that \(B \) is a finite \(R[lt] \)-module. For any such algebra we consider the Hilbert–Samuel function \(\lambda(R/B_n) \). For \(n \gg 0 \) this function is given by the Hilbert–Samuel polynomial

\[
e_0(B) \binom{n + d - 1}{d} - e_1(B) \binom{n + d - 2}{d - 1} + \text{lower terms}.
\]

Notice that the \(e_i(R[lt]) \) coincide with the usual *Hilbert coefficients* \(e_i(I) \) of \(I \). Furthermore \(e_0(B) = e_0(I) \). By \(R[lt] \) we will always denote the integral closure of \(R[lt] \) in \(R[t] \).
We write $\overline{e}_i(I)$ for the normalized Hilbert coefficients $e_i(R[lt])$ of I in case $R[lt]$ is a finite $R[lt]$–module.

Proposition

In this case,

$$jdeg \left(\overline{R[lt]} / R[lt] \right) = \overline{e}_1(I) - e_1(I).$$
Briançon-Skoda numbers

Definition

If \(I \) is an ideal of a Noetherian ring \(R \), the Briançon-Skoda number \(c(I) \) of \(I \) is the smallest integer \(c \) such that \(I^{n+c} \subseteq J^n \) for every \(n \) and every reduction \(J \) of \(I \).

The motivation for this definition is a result of Briançon-Skoda asserting that for the rings of convergent power series over \(\mathbb{C}^n \) (later extended to regular local rings by Lipman- Sathaye) \(c(I) < \text{dim } R \).
Theorem (PUV)

Let \((R, \mathfrak{m})\) be an analytically unramified Cohen–Macaulay local ring and let \(I\) be an \(\mathfrak{m}\)–primary ideal of Briançon-Skoda number \(c(I)\). Let \(A\) and \(B\) be distinct graded algebras with

\[
R[lt] \subset A \subsetneq B \subset R[lt]
\]

and assume that \(A\) satisfies the condition \(S_2\) of Serre. Then

\[
c(I)e_0(I) \geq e_1(I) \geq e_1(B) > e_1(A) \geq e_1(I) \geq 0.
\]

In particular, any chain of subalgebras that satisfy the condition \(S_2\) of Serre has length at most \(e_1(I)\).
One does not really need such a strict statement as in Briançon-Skoda’s. Through the techniques of [L-S, H-H] one has:

Proposition

Let k be a perfect field, let R be a reduced Cohen–Macaulay k-algebra essentially of finite type. Then for any ideal I with a reduction J generated by ℓ elements, and every integer n,

$$\text{Jac}_k(R)[I^{n+\ell(l)-1}] \subset D_n$$

where D is the S_2-ification of $R[Jt]$. In particular,

$$\text{Jac}_k(R)[I^{\ell-1}] \subset \text{ann}(R[It]/D).$$
A calculation for an isolated singularity, will give for the bound of distinct subalgebras between $\mathbb{R}[lt]$ and $\mathbb{R}[lt]$, instead of
\[c(l)e_0(l), \]
where $c(l)$ is imprecise (but probably can be made precise), and can be replaced by
\[(\lambda(R/J) + \ell(l) - 1)e_0(l). \]
In fact, Briançon-Skoda’s with coefficient ideals seem to lead to even more specific bounds.
Let (R, m) be a local Cohen-Macaulay algebra of type t essentially of finite type over a perfect field k.
Theorem (PUV)

Let I be an m–primary ideal.

- If $\delta \in \text{Jac}_k(R)$ is a non zerodivisor, then
 \[
 \overline{e}_1(I) \leq \frac{t}{t+1} \left((d-1)e_0(I) + e_0(I + \delta R/\delta R) \right).
 \]

- If the assumptions above hold, then
 \[
 \overline{e}_1(I) \leq (d-1)(e_0(I) - \lambda(R/I)) + e_0(I + \delta R/\delta R).
 \]

- If R/m is infinite, then
 \[
 \overline{e}_1(I) \leq c(I) \min \left\{ \frac{t}{t+1} e_0(I), e_0(I) - \lambda(R/I) \right\}.
 \]
Theorem (PUV)

Let I be an m–primary ideal.

- If $\delta \in \text{Jac}_k(R)$ is a non zerodivisor, then
 $$\overline{e}_1(I) \leq \frac{t}{t + 1} \left((d - 1)e_0(I) + e_0(I + \delta R/\delta R) \right).$$

- If the assumptions above hold, then
 $$\overline{e}_1(I) \leq (d - 1)(e_0(I) - \lambda(R/I)) + e_0(I + \delta R/\delta R).$$

- If R/m is infinite, then
 $$\overline{e}_1(I) \leq c(I) \min \left\{ \frac{t}{t + 1} e_0(I), e_0(I) - \lambda(R/I) \right\}.$$
Theorem (PUV)

Let I be an m–primary ideal.

- If $\delta \in \text{Jac}_k(R)$ is a non zerodivisor, then
 \[
 \overline{e}_1(I) \leq \frac{t}{t+1} ((d-1)e_0(I) + e_0(I + \delta R/\delta R)).
 \]

- If the assumptions above hold, then
 \[
 \overline{e}_1(I) \leq (d-1)(e_0(I) - \lambda(R/I)) + e_0(I + \delta R/\delta R).
 \]

- If R/m is infinite, then
 \[
 \overline{e}_1(I) \leq c(I) \min \left\{ \frac{t}{t+1} e_0(I), e_0(I) - \lambda(R/I) \right\}.
 \]
Corollary

If R is a regular local ring of dimension d, $\bar{e}_1(I) \leq \frac{1}{2}(d - 1)e_0(I)$.
The following refines a result of [Polini-Ulrich-V] for equimultiple ideals:

Theorem

Let R be a Cohen-Macaulay reduced quasi-unmixed ring and let I be an ideal of Briançon-Skoda number $c(I)$ (or the modified value mentioned above in the case of isolated singularities). Then

$$jdeg \left(\frac{R[lt]}{I[lt]} \right) \leq c(I) \cdot jdeg \left(\text{gr}_I(R) \right).$$
Let R be a Noetherian ring, let E be a finitely generated torsionfree R–module having a rank, and choose an embedding $\varphi : E \hookrightarrow R^r$. The Rees algebra $R[lt](E)$ of E is the subalgebra of the polynomial ring $R[t_1, \ldots, t_r]$ generated by all linear forms $a_1 t_1 + \cdots + a_r t_r$, where (a_1, \ldots, a_r) is the image of an element of E in R^r under the embedding φ. The Rees algebra $R[lt](E)$ is a standard graded algebra whose nth component is denoted by E^n and is independent of the embedding φ since E is torsionfree and has a rank.

The algebra $R[lt](E)$ is a subring of the polynomial ring $S = R[t_1, \ldots, t_r]$. We consider the ideal (E) of S generated by the forms in E. Denote by G the associated graded ring $\text{gr}_E(S)$. Let us list some of its basic properties. This portion of our exposition is dependent on [Hong-Ulrich-V].
Example

Let $R = k[x, y]$, E the submodule of $R^2 = Re_1 + Re_2$ generated by x^2e_1 and y^2e_2. E is a free module, so $c(E) = 0$. A computation with Normaliz shows that $S[(E)t] = S[Et, xy e_1 e_2 t]$. Note $c((E)) = 1$.

Proposition

Let (R, m) be a Noetherian integral domain of dimension d and let E be a torsionfree R–module of rank r with a fixed embedding $E \hookrightarrow R^r$. Then

- The components of $G = \bigoplus_{n \geq 0} E^n S / E^{n+1}$ have a natural grading

\[G_n = E^n + E^n S_1 / E^{n+1} + E^n S_2 / E^{n+1} S_1 + \cdots. \]

- There is a decomposition $G = R[\text{lt}](E) + H$, where $R[\text{lt}](E)$ is the Rees algebra of E and H is the R-torsion submodule of G.

- If $E \subset mR^r$ and $\lambda(R^r / E) < \infty$, $H = H^0_m(G)$ has dimension $d + r$ and multiplicity equal to the Buchsbaum-Rim multiplicity of E.

Wolmer Vasconcelos Complexity of the Normalization of Algebras
Proposition

Let (R, m) be a Noetherian integral domain of dimension d and let E be a torsionfree R–module of rank r with a fixed embedding $E \hookrightarrow R^r$. Then

1. **The components of** $G = \bigoplus_{n \geq 0} E^n S/E^{n+1}$ **have a natural grading**

 $$G_n = E^n + E^n S_1/E^{n+1} + E^n S_2/E^{n+1} S_1 + \cdots.$$

2. **There is a decomposition** $G = R[\text{lt}](E) + H$, where $R[\text{lt}](E)$ is the Rees algebra of E and H is the R-torsion submodule of G.

3. **If** $E \subseteq m R^r$ **and** $\lambda(R^r/E) < \infty$, **$H = H^0_m(G)$ has dimension** $d + r$ **and multiplicity equal to the Buchsbaum-Rim multiplicity of E.**
Proposition

Let \((R, m)\) be a Noetherian integral domain of dimension \(d\) and let \(E\) be a torsionfree \(R\)-module of rank \(r\) with a fixed embedding \(E \hookrightarrow R^r\). Then

- The components of \(G = \bigoplus_{n \geq 0} E^n S / E^{n+1} \) have a natural grading
 \[G_n = E^n + E^n S_1 / E^{n+1} + E^n S_2 / E^{n+1} S_1 + \cdots. \]

- There is a decomposition \(G = R[\text{lt}](E) + H\), where \(R[\text{lt}](E)\) is the Rees algebra of \(E\) and \(H\) is the \(R\)-torsion submodule of \(G\).

- If \(E \subset m R^r\) and \(\lambda(R^r / E) < \infty\), \(H = H^0_m(G)\) has dimension \(d + r\) and multiplicity equal to the Buchsbaum-Rim multiplicity of \(E\).
Theorem

Let $E \subset R^r$ be a module as above and let

$$(E) = ER[t_1, \ldots, t_r] \subset S.$$

If $G = \text{gr} (E)(S)$ then

$$\text{jdeg} (G) = \text{br}(E) + 1.$$
Theorem

Let R be a reduced quasi-unmixed ring and let E be a module of Briançon-Skoda number $c((E))$ (or as modified in the case of isolated singularities). Then

$$\text{jdeg}\left(\frac{S[[E]t]}{S[[E]t]}\right) \leq c((E)) \cdot \text{jdeg}\left(\text{gr}_{(E)}(S)\right).$$
The significance here comes when we compare the estimates for s which come from the Corollary together with previous Theorem gives:

$$s \leq c((E)) \cdot jdeg(G) = c((E)) \cdot (br(E) + 1)$$

for the number of subalgebras needed to find $S[(E)t]$. On the other hand, [Hong-Ulrich-V] give

$$s \leq \left(\frac{r + c(E) - 1}{r} \right) \cdot br(E),$$

for the length of chains of subalgebras satisfying the condition S_2 in order to find $R(E)$. Since in the case of regular local rings, both $c(E)$ and $c((E))$ are, in general, expected to be comparable to $d + r - 2$, the gain is appreciable. The downside side is that one must do calculations with a larger ring.
Let R be a normal domain and let A be a semistandard graded R-algebra of integral closure \overline{A}. By a Noether normalization of A we mean a graded polynomial algebra

$$S = R[y_1, \ldots, y_r] \subset A$$

over which A is finite. Unfortunately this does not happen often (e.g. fails for $\mathbb{C}[t]$), although Shimura established it for $R = \mathbb{Z}$, in one of his first papers.
Tracking number of a pair of algebras

In this setting one can define

$$\text{det}_S(A) \cong (\wedge^r A)^{**},$$

where r is the rank of A as an S-module. Given a pair of algebras $A \subset B$ of the same rank, one can attach a degree as follows. Fix $\text{det}(B)$ and the image of $\text{det}(A)$ in it, which we still denote by $\text{det}(A)$. Now set

$$I = \text{ann}(\text{det}(B)/\text{det}(A)).$$

This ideal is independent of the choices made. Let

$$I = (\bigcap p_i^{(r_i)}) \cap (\bigcap q_j^{(s_j)}),$$

is its primary decomposition, where we denote by p_i the primes that are extended from R, and q_j those that are not.
This means that $q_j \cap R = (0)$ and thus $q_j KS = (f_j)^1 KS$, $\deg(f_j) > 0$. We associate a degree to I by setting

$$\deg(I) = \sum_i r_i + \sum_j s_j \deg(f_j).$$

It depends only on the two algebras and of the embedding $A \subset B$. We will denote it by $tn(A, B)$. If R is a field, it is possible to define an invariant $tn(A)$ directly as the degree of $\det(A)$. It has many positivity properties ([Dalili-V]. One has $tn(B, A) = tn(A) - tn(B)$.

If $A = \mathbb{Z}[x, y, z]/(z^3 + xz^2 + x^2y)$, $S = \mathbb{Z}[x, y]$, then $tn(A, \overline{A}) = 1.$
Theorem

Let R be a normal domain and let A be a semistandard graded R-algebra that admits a Noether normalization. Then

$$jdeg \left(\overline{A}/A \right) = tn(A, \overline{A}).$$

This holds when R is an arbitrary field, in [Dalili-V] there are several specific bounds which one expects to extend to \mathbb{Z}.