
The Cauchy equation

Definition: A function f : R → R is additive if it satisfies the Cauchy equation (pron.
Ko-’shee):

f(x+ y) = f(x) + f(y) for all x, y ∈ R.
In this note, linear function will mean a function of the form f(x) = cx (zero intercept).

Clearly, linear functions are additive. Are there any other additive functions? After experi-
menting for a while, you’ll be convinced that there are none. And in a sense there are none
(namely among well-behaving functions), but in a sense there are (the existence of some
erratically behaving non-linear additive functions follows from the Axiom of Choice).

Our first theorem is about “tame” additive functions:

Theorem 1. Let f : R → R be an additive function, and let I = [a, b] be an arbitrary
interval (with a < b).

If f is monotone on I then f is linear (that is, (∃c)(∀x)f(x) = cx).

If f is continuous on I then f is linear.

If f is bounded on I then f is linear.

The proof of Theorem 1 is based on the following lemma which says that all additive functions
are linear on Q (the set of rational numbers) as well as on all “copies” aQ of Q (but the
slope involved might be varying from a to a).

Lemma 2. Let f be an arbitrary additive function. Then, (∀x ∈ Q)f(x) = f(1)x. In
general, for any a ∈ R we have (∀x ∈ Q)f(ax) = f(a)x.

Proof steps for Lemma 2:

Fix a ∈ R. Use induction to show (∀n ∈ N)f(an) = nf(a).
Use induction to show (∀n ∈ N)f(a/n) = f(a)/n.
And finally, use induction to show (∀m,n ∈ N)f(a(m/n)) = f(a)(m/n).

And now the“wild” functions:

Theorem 3 (assuming the Axiom of Choice). There are additive functions that are not
linear.

Proof. We describe all additive functions at once (“most” are easily seen not be linear):

Recall that since both Q and R are fields and Q is a subfield of R, so R can be considered as
a vector space over Q; let B be a basis in this vector space (a so-called Hamel basis). [The
AC guarantees that every vector space has a basis! ]

Define f arbitrarily on B, and extend it to R in the obvious way: if x =
∑
qibi with some

qi ∈ Q and bi ∈ B then let f(x) :=
∑
qif(bi). Since such a representation of x is unique

(definition of linear basis!), f is well-defined, and it is easy to see that f is additive.



The following homework (6.6 in the LBB) shows that the adjective “wild” above is well-
deserved: Let f : R → R be an additive function. Show that if f is not linear, then the
graph of f is everywhere dense on the plane. (That means that every rectangle in the plane
- however small - contains at least one point of the graph of f .)

Subadditive sequences

The pathological behavior of certain additive functions resulted from the richness of the set
of real numbers. For sequences (that is, functions with domain N), no such erratic behavior
is possible as the following trivial fact shows (use induction on n):

Fact 4. Let (xn) be a sequence of real numbers satisfying the additivity condition

xm+n = xm + xn for all m,n ∈ N.

Then xn is linear; indeed, xn = nx1 for all n ∈ N.

The next theorem says that if we relax the condition of additivity to subadditivity, then the
sequence will still asymptotically behave as linear, in that limn xn/n exists (possibly −∞).

Theorem 5 (Subadditivity Lemma - Fekete 1923). If a sequence of real numbers (xn)
satisfies the subadditivity condition

xm+n ≤ xm + xn for all m,n ∈ N,

then
lim
n→∞

xn
n

= inf
m≥1

xm
m
.

Sketchy proof (for those who are familiar with lim and lim sup):
(1) Induction on k shows that (∀m ∈ N)(∀k ∈ N)xkm ≤ kxm.
(2) Writing Cm = max{xr : 1 ≤ r < m}, we get for all r ∈ [1, r − 1], all k ∈ N, and
n = km+ r: xn = xkm+r ≤ xkm + xr ≤ xkm + Cm ≤ kxm + Cm. Hence,

xn
n
≤ km

n
· xm
m

+
Cm
n
.

(3) Letting k →∞, we get

lim sup
n→∞

xn
n
≤ xm

m
for all m ∈ N, whence lim sup

n→∞

xn
n
≤ inf

m∈N

xm
m
.

(4) But since xn/n ≥ infm∈N xm/m for all n ∈ N, so limn→∞ xn/n = infm∈N xm/m.

Example (hereditary properties): Let Sn be the set of all strings of English letters of
length n which do not contain the substring hello. Then Sn is of exponential size, in that
|Sn|1/n exists. Indeed, since the required property is hereditary (to segments of a string),
so Sm+n ⊂ SmSn, where SmSn := {xy : x ∈ Sm, y ∈ Sn} (concatenated strings). Hence
|Sm+n| ≤ |Sm||Sn|, and the sequence xn := log |Sn| is subadditive. The claim easily follows.


