Reminder about groups

Definition 1. A group is a set G together with a binary operation $\cdot : G \times G \to G$ on G satisfying the following properties:

(i) (associativity) $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ for all $g, h, k \in G$;

(ii) (existence of an identity) there is an $e \in G$ such that $e \cdot g = g \cdot e = g$ for all $g \in G$ (it is easy to see that this e is unique);

(iii) (existence of inverses) for every $g \in G$ there is an $h \in G$ such that $g \cdot h = h \cdot g = e$.

If the group satisfies the additional property $g \cdot h = h \cdot g$ for all $g, h \in G$, then the group is commutative or Abelian.

We often (somewhat sloppily) say that G is a group rather than (G, \cdot) is a group. Note that we used the standard notation $g \cdot h$ (or simply gh) rather than $\cdot(g, h)$.

With the above multiplicative notation we often write 1 for the identity e, and g^{-1} for the inverse of g. With an additive notation $(G, +)$ (typically used for Abelian groups), we usually write 0 for the identity, and $-g$ for the inverse of g.

The most essential properties of groups: For any $a, b \in G$, the equations $ax = b$ and $xa = b$ have unique solutions. (The two solutions $x = a^{-1}b$ and $x = ba^{-1}$ may be different!)

Cancellation rules: $ac = bc$ implies $a = b$, and $ca = cb$ implies $a = b$.

Inverse of products: $(ab)^{-1} = b^{-1}a^{-1}$.

Some facts about finite groups

The number of elements in G is called the order of the group ($o(G) = |G|$). Given $g \in G$, the smallest $n \in \mathbb{N}$ such that $g^n = e$ is called the order of the element g (written as $o(g)$).

It is easy to see that if g has order n and $k \in \mathbb{N}$, then $o(g^k) = n/gcd(k, n)$.

Theorem 1 (Lagrange). For any $g \in G$, the order $o(g)$ divides $o(G)$. Hence $g^{o(G)} = e$.

In fact, $\{n \in \mathbb{Z} : g^n = e\} = o(g)\mathbb{Z} \subseteq \{o(g)k : k \in \mathbb{Z}\}$.

More generally, if H is a subgroup of G, then $o(H)|o(G)$ (divides).

Theorem 2 (Cauchy). If p is prime and $p|o(G)$, then G has an element of order p.

Theorem 3 (Sylow). If p is prime and $p^\alpha|o(G)$ ($\alpha \in \mathbb{N}$), then G has a subgroup of order p^α.

Definition 2. Let G_1, \ldots, G_k be subgroups of an Abelian group G. We say that G is the direct product of these subgroups if every element $g \in G$ can be written uniquely in the form $g = g_1g_2\cdots g_k$ with $g_i \in G_i$.

Definition 3. G is called cyclic if it is generated by one element, that is, if $G = \{g^n : n \in \mathbb{Z}\}$ for some $g \in G$.

Theorem 4 (The Fundamental Theorem of Finite Abelian Groups). Every finite (or finitely generated) Abelian group is a direct product of cyclic groups.
Definition 4. A field is a set F with two commutative binary operations $+$ and \cdot (addition and multiplication) such that

(i) F is a group under $+$

(ii) $F^* := F \setminus \{0\}$ is a group under \cdot.

(iii) \cdot distributes over $+$, that is, $a \cdot (b + c) = a \cdot b + a \cdot c$ for all $a, b, c \in F$.

(Recall properties A1-A4, M1-M4 and D in Math 311.)

Note: (ii) implies $|F| \geq 2$ since a group (by virtue of the existence of identity) is non-empty.

We usually write 0 and 1 for the additive and the multiplicative identities (as we did in the definition), $-a$ for the additive inverse of a, and a^{-1} for the multiplicative inverse of a.

Standard examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

Example of a finite field: $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z} = GF(p)$ where p is prime: “integers modulo p.”

(GF stands for Galois field after the creator of modern algebra, Evariste Galois 1811-32.)

Some facts about fields

The smallest subfield contained in a field F (“prime subfield of F”) is either \mathbb{Z}_p for some prime p (we say “F has characteristic p”) or \mathbb{Q} (“F has characteristic 0”).

The order (number of elements) of any finite field is a prime-power, and for each prime-power p^α there is a unique (up to isomorphism) field $GF(p^\alpha)$ of that order.

The multiplicative group F^* of a finite field F is cyclic. In fact, a finite multiplicative subgroup of any field is cyclic.

$GF(p^\alpha)$ has characteristic p, and all non-zero elements in $GF(p^\alpha)$ have additive order p. Hence $GF(p^\alpha)$ is a vector space over $GF(p)$. (See HW below.)

Recommended homework: If in a non-trivial additive Abelian group G all non-zero elements happen to have the same order p, then p is prime (try directly w/o Cauchy’s or Sylow’s theorem). Furthermore, G is a vector space over \mathbb{Z}_p with the natural scalar multiplication $kg = \underbrace{g + g + \ldots + g}_{k}$ for $k = 0, 1, \ldots, p - 1$.

(Non-trivial means $o(G) > 1$.)