Wilson’s theorem

Theorem 1. Let p be prime. Then $(p - 1)! \equiv -1 \pmod{p}$.

Remark. John Wilson found the theorem without proof. Lagrange proved it in 1771 (together with the trivial converse: if n divides $(n - 1)! + 1$ then n is prime).

Proof. The product of all elements in a finite Abelian group equals the product of all elements of order 2. (Why?) Now in \mathbb{Z}_p (p prime), the only element of order 2 is -1, that is, the only solutions to $x^2 - 1 = 0$ are 1 and -1. \square

The last sentence in the proof was easy to see, since $x^2 - 1 = 0$ in \mathbb{Z}_p means that p divides $x^2 - 1 = (x - 1)(x + 1)$, hence p must divide either $(x - 1)$ or $(x + 1)$. Alternatively, we could argue that 1 and -1 are obviously solutions to $x^2 - 1 = 0$, and a quadratic equation cannot have more than two solutions. Is this a valid argument in \mathbb{Z}_p? Would it be valid in \mathbb{Z}_m? The following theorem is from the handout *polynomials and field extensions*.

Theorem 2. In a field, an algebraic equation of degree $n \geq 1$ can have at most n solutions (a polynomial of degree n can have at most n roots even with multiplicity).

How about roots of polynomials in \mathbb{Z}_m for a composite m? (Note: \mathbb{Z}_m is *not* a field.)

Example: Let $a, b > 1$, and let $m = ab > 4$. Then the quadratic equation $x(x - a - b) = 0$ has at least three solutions in \mathbb{Z}_m: $x = 0, a + b, a, b$. (Why three? Isn’t this four?)

HW: Prove that in an Abelian group, the set of all elements of order ≤ 2 form a subgroup. (Can you generalize it?) [Hint: Use the standard (multiplicative) subgroup tests: 1. the set is closed under multiplication; 2. the set is closed under inverse.]

HW: In a **finite** group, the first subgroup test alone is enough, that is: If (G, \cdot) is a finite group and H is a non-empty subset of G closed under multiplication, then H is a subgroup.
Fermat’s “little theorem”

Theorem 3. Let p be prime and $\gcd(a, p) = 1$. Then $a^{p-1} \equiv 1 \pmod{p}$.

In general, let $m > 1$ and let $\varphi(m)$ denote the number of positive integers less than m which are coprime to m (Euler function). If $\gcd(a, m) = 1$, then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Remark. The first statement (for prime p) was found by Fermat but proved by Euler, who generalized it to arbitrary moduli m.

Proof. The theorem is a simple consequence of the following lemma, and the fact that \mathbb{Z}^*_m is an Abelian group, where \mathbb{Z}^*_m is \mathbb{Z}_m restricted to all its invertible elements.

Lemma 4. If G is an Abelian group of order n and identity e, then $a^n = e$ for all $a \in G$.

Proof. Let $a \in G$ be arbitrary. The map $f : G \to G : g \to ag$ is clearly a bijection, and hence,

$$ \prod_{g \in G} g = \prod_{g \in G} (ag) = a^{|G|} \prod_{g \in G} g $$

Remark. The conclusion of the Lemma is true for finite non-Abelian groups also (this is Lagrange’s theorem), as stated in the handout groups and fields, but for the proof of this general theorem one needs the notion of cosets.