FORMULA SHEET FOR MATH 357

Discrete Fourier Transform

1. The $N \times N$ Fourier matrix F_N has i, j entry $w^{-(i-1)(j-1)}$, where $w = e^{2\pi i N}$. It satisfies $F_N \overline{F}_N = N I$, where I is the $N \times N$ identity matrix and the bar denotes complex conjugation.

Special cases:
$$F_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
, $F_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$.

2. The discrete Fourier transform of a column vector $\mathbf{x} \in \mathbf{C}^N$ is the column vector $\mathbf{X} = F_N \mathbf{x}$.

Discrete Wavelet Transform

- 1. A column vector $\mathbf{x} \in \mathbf{C}^N$ corresponds to an *N*-periodic function with values $\mathbf{x}[k]$ for $k \in \mathbf{Z}$, Here $\mathbf{x}[0]$ is the first component of \mathbf{x} , $\mathbf{x}[N-1]$ the *N*th component of \mathbf{x} , and $\mathbf{x}[N+k] = \mathbf{x}[k]$ (wrap-around) for all integers k. The shift operator S acts on column vectors by shifting down with wrap-around. It acts on *N*-periodic functions by $(S\mathbf{x})[k] = \mathbf{x}[k-1]$.
- 2. Let N be even. The symbol split means the $N \times N$ permutation matrix that acts by

$$\begin{bmatrix} \mathbf{x}[0] \\ \mathbf{x}[1] \\ \vdots \\ \mathbf{x}[N-1] \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{even} \\ \mathbf{x}_{odd} \end{bmatrix}, \text{ where } \mathbf{x}_{even} = \begin{bmatrix} \mathbf{x}[0] \\ \mathbf{x}[2] \\ \vdots \\ \mathbf{x}[N-2] \end{bmatrix} \text{ and } \mathbf{x}_{odd} = \begin{bmatrix} \mathbf{x}[1] \\ \mathbf{x}[3] \\ \vdots \\ \mathbf{x}[N-1] \end{bmatrix}.$$

The inverse matrix $[\text{split}]^{-1} = [\text{split}]^T$ is denoted by [merge].

3. Let $N = 2^k$ and let I be the $2^{k-1} \times 2^{k-1}$ identity matrix. The $N \times N$ one-scale Haar analysis and synthesis matrices are $\mathbf{T}_{\mathbf{a}}^{(k)} = \frac{1}{2} \begin{bmatrix} I & I \\ I & -I \end{bmatrix}$ split and $\mathbf{T}_{\mathbf{s}}^{(k)} = \underline{\mathsf{merge}} \begin{bmatrix} I & I \\ I & -I \end{bmatrix}$. For $\mathbf{x} \in \mathbf{R}^N$ write $\mathbf{T}_{\mathbf{a}}^{(k)} \mathbf{x} = \begin{bmatrix} \mathbf{s}^{(k-1)} \\ \mathbf{d}^{(k-1)} \end{bmatrix}$, where $\mathbf{s}^{(k-1)}$ (trend) and $\mathbf{d}^{(k-1)}$ (detail) are in $\mathbf{R}^{N/2}$. Special case N = 4 (with split and merge already included in the matrices):

$$\mathbf{T}_{\mathbf{a}}^{(2)} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \qquad \mathbf{T}_{\mathbf{s}}^{(2)} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \end{bmatrix}.$$

Signals

- 1. A FIR signal or filter is a real linear combination $\mathbf{x} = \sum_{n \in \mathbf{Z}} \mathbf{x}[n] \delta_n$ of a finite number of unit impulses δ_n (so $\mathbf{x}[n] = 0$ when |n| is sufficiently large).
- 2. The inner product of signals \mathbf{x} and \mathbf{y} is $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{n \in \mathbf{Z}} \mathbf{x}[n] \mathbf{y}[n]$.
- 3. The nonperiodic right shift transformation S acts on signal values by $S\mathbf{x}[n] = \mathbf{x}[n-1]$. On unit impulses the action is $S\delta_n = \delta_{n+1}$.

Formula Sheet for Math 357 Final Exam

- 4. The downsampling operator acts on unit impulses by $\boxed{2\downarrow}\delta_n = \begin{cases} \delta_m & \text{if } n = 2m \text{ is even,} \\ 0 & \text{if } n = 2m+1 \text{ is odd.} \end{cases}$ The upsampling operator acts on unit impulses by $\boxed{2\uparrow}\delta_m = \delta_{2m}$.
- 5. The nonperiodic convolution $\mathbf{u} = \mathbf{x} * \mathbf{y}$ of \mathbf{x} and \mathbf{y} has values $\mathbf{u}[k] = \sum_{n \in \mathbf{Z}} \mathbf{x}[k-n]\mathbf{y}[n]$. When $\mathbf{x} = \delta_n$ and $\mathbf{y} = \delta_k$ are unit impulses, then $\mathbf{u} = \delta_{n+k}$. The convolution satisfies $\mathbf{x} * \mathbf{y} = \mathbf{y} * \mathbf{x}$ for all signals \mathbf{x} and \mathbf{y} .
- 6. The z-transform of \mathbf{x} is $X(z) = \sum_{n \in \mathbf{Z}} \mathbf{x}[n] z^{-n}$, where z is a nonzero complex number. When $z = e^{i\omega}$ with real frequency variable ω , then $X(e^{i\omega}) = \sum_{n \in \mathbf{Z}} \mathbf{x}[n] e^{-in\omega}$ is a trigonometric polynomial.
- 7. The z-transform of $\mathbf{x} * \mathbf{y}$ is X(z)Y(z).

Filter Banks

- 1. A two-channel filter bank has FIR analysis filters \mathbf{h}_0 and \mathbf{h}_1 with z-transforms $H_0(z)$ and $H_1(z)$, and analysis modulation matrix $\mathbf{H}_m(z) = \begin{bmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{bmatrix} = \mathbf{H}_p(z^2) \begin{bmatrix} 1 & 1 \\ z & -z \end{bmatrix}$, where $\mathbf{H}_p(z) = \begin{bmatrix} H_{00}(z) & H_{01}(z) \\ H_{10}(z) & H_{11}(z) \end{bmatrix}$ is the analysis polyphase matrix.
- 2. The FIR synthesis filters are \mathbf{g}_0 and \mathbf{g}_1 with z-transforms $G_0(z)$ and $G_1(z)$, and synthesis modulation matrix $\mathbf{G}_m(z) = \begin{bmatrix} G_0(z) & G_1(z) \\ G_0(-z) & G_1(-z) \end{bmatrix}$.
- 3. The filter bank has perfect reconstruction (PR) when $\mathbf{G}_m(z)\mathbf{H}_m(z) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.
- 4. The *trend/detail* decomposition of a signal is

$$\mathbf{x} = \mathbf{x}_{\mathbf{s}} + \mathbf{x}_{\mathbf{d}} = \sum_{m \in \mathbf{Z}} \langle S^{2m} \overset{\vee}{\mathbf{h}}_{0}, \, \mathbf{x} \rangle S^{2m} \mathbf{g}_{0} + \sum_{n \in \mathbf{Z}} \langle S^{2n} \overset{\vee}{\mathbf{h}}_{1}, \, \mathbf{x} \rangle S^{2n} \mathbf{g}_{1} \,,$$

where $\stackrel{\vee}{\mathbf{h}}[n] = \mathbf{h}[-n]$ (time-reversed filter) and S is the shift operator.

5. The filter bank is *orthogonal* if $\mathbf{g}_0 = \overset{\vee}{\mathbf{h}}_0$ and $\mathbf{g}_1 = \overset{\vee}{\mathbf{h}}_1$.

Bezout Polynomials

1. The polynomial $B_n(y)$ of degree n-1 satisfies the Bezout equation

$$(1-y)^n B_n(y) + y^n B_n(1-y) = 1$$
.

- 2. The explicit formula is $B_n(y) = 1 + ny + \frac{n(n+1)}{1 \cdot 2}y^2 + \dots + \frac{n(n+1)\cdots(2n-2)}{1 \cdot 2\cdots(n-1)}y^{n-1}$.
- 3. The Bezout polynomial has the additional property $B_n(y) \ge 1$ for $y \ge 0$.