Formula Sheet for Math 357

Discrete Fourier Transform

1. The $N \times N$ Fourier matrix F_{N} has i, j entry $w^{-(i-1)(j-1)}$, where $w=\mathrm{e}^{2 \pi \mathrm{i} / N}$. It satisfies $F_{N} \bar{F}_{N}=N I$, where I is the $N \times N$ identity matrix and the bar denotes complex conjugation.
Special cases: $\quad F_{2}=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right], \quad F_{4}=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -\mathrm{i} & -1 & \mathrm{i} \\ 1 & -1 & 1 & -1 \\ 1 & \mathrm{i} & -1 & -\mathrm{i}\end{array}\right]$.
2. The discrete Fourier transform of a column vector $\mathbf{x} \in \mathbf{C}^{N}$ is the column vector $\mathbf{X}=F_{N} \mathbf{x}$.

Discrete Wavelet Transform

1. A column vector $\mathbf{x} \in \mathbf{C}^{N}$ corresponds to an N-periodic function with values $\mathbf{x}[k]$ for $k \in \mathbf{Z}$, Here $\mathbf{x}[0]$ is the first component of $\mathbf{x}, \mathbf{x}[N-1]$ the N th component of \mathbf{x}, and $\mathbf{x}[N+k]=\mathbf{x}[k]$ (wrap-around) for all integers k. The shift operator S acts on column vectors by shifting down with wrap-around. It acts on N-periodic functions by $(S \mathbf{x})[k]=\mathbf{x}[k-1]$.
2. Let N be even. The symbol split means the $N \times N$ permutation matrix that acts by

$$
\text { split }\left[\begin{array}{c}
\mathrm{x}[0] \\
\mathbf{x}[1] \\
\vdots \\
\mathbf{x}[N-1]
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{\text {even }} \\
\mathbf{x}_{\text {odd }}
\end{array}\right], \text { where } \mathbf{x}_{\text {even }}=\left[\begin{array}{c}
\mathbf{x}[0] \\
\mathbf{x}[2] \\
\vdots \\
\mathbf{x}[N-2]
\end{array}\right] \text { and } \mathbf{x}_{\text {odd }}=\left[\begin{array}{c}
\mathbf{x}[1] \\
\mathbf{x}[3] \\
\vdots \\
\mathbf{x}[N-1]
\end{array}\right] .
$$

The inverse matrix split $^{-1}=$ split $^{\mathrm{T}}$ is denoted by merge.
3. Let $N=2^{k}$ and let I be the $2^{k-1} \times 2^{k-1}$ identity matrix. The $N \times N$ one-scale Haar analysis and synthesis matrices are $\mathbf{T}_{\mathbf{a}}^{(k)}=\frac{1}{2}\left[\begin{array}{cc}I & I \\ I & -I\end{array}\right]$ split \quad and $\quad \mathbf{T}_{\mathbf{s}}^{(k)}=$ merge $\left[\begin{array}{cc}I & I \\ I & -I\end{array}\right]$. For $\mathbf{x} \in \mathbf{R}^{N}$ write $\mathbf{T}_{\mathbf{a}}^{(k)} \mathbf{x}=\left[\begin{array}{c}\mathbf{s}^{(k-1)} \\ \mathbf{d}^{(k-1)}\end{array}\right]$, where $\mathbf{s}^{(k-1)}$ (trend) and $\mathbf{d}^{(k-1)}$ (detail) are in $\mathbf{R}^{N / 2}$. Special case $N=4$ (with split and merge already included in the matrices):

$$
\mathbf{T}_{\mathbf{a}}^{(2)}=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{array}\right], \quad \mathbf{T}_{\mathbf{s}}^{(2)}=\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & -1
\end{array}\right] .
$$

Signals

1. A FIR signal or filter is a real linear combination $\mathbf{x}=\sum_{n \in \mathbf{Z}} \mathbf{x}[n] \delta_{n}$ of a finite number of unit impulses δ_{n} (so $\mathbf{x}[n]=0$ when $|n|$ is sufficiently large).
2. The inner product of signals \mathbf{x} and \mathbf{y} is $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{n \in \mathbf{Z}} \mathbf{x}[n] \mathbf{y}[n]$.
3. The nonperiodic right shift transformation S acts on signal values by $S \mathbf{x}[n]=\mathbf{x}[n-1]$. On unit impulses the action is $S \delta_{n}=\delta_{n+1}$.
4. The downsampling operator acts on unit impulses by $2 \downarrow \delta_{n}=\left\{\begin{array}{cl}\delta_{m} & \text { if } n=2 m \text { is even, } \\ 0 & \text { if } n=2 m+1 \text { is odd. }\end{array}\right.$ The upsampling operator acts on unit impulses by $2 \uparrow \delta_{m}=\delta_{2 m}$.
5. The nonperiodic convolution $\mathbf{u}=\mathbf{x} * \mathbf{y}$ of \mathbf{x} and \mathbf{y} has values $\mathbf{u}[k]=\sum_{n \in \mathbf{Z}} \mathbf{x}[k-n] \mathbf{y}[n]$. When $\mathbf{x}=\delta_{n}$ and $\mathbf{y}=\delta_{k}$ are unit impulses, then $\mathbf{u}=\delta_{n+k}$. The convolution satisfies $\mathbf{x} * \mathbf{y}=\mathbf{y} * \mathbf{x}$ for all signals \mathbf{x} and \mathbf{y}.
6. The z-transform of \mathbf{x} is $X(z)=\sum_{n \in \mathbf{Z}} \mathbf{x}[n] z^{-n}$, where z is a nonzero complex number. When $z=\mathrm{e}^{\mathrm{i} \omega}$ with real frequency variable ω, then $X\left(\mathrm{e}^{\mathrm{i} \omega}\right)=\sum_{n \in \mathbf{Z}} \mathbf{x}[n] \mathrm{e}^{-\mathrm{i} n \omega}$ is a trigonometric polynomial.
7. The z-transform of $\mathbf{x} * \mathbf{y}$ is $X(z) Y(z)$.

Filter Banks

1. A two-channel filter bank has FIR analysis filters \mathbf{h}_{0} and \mathbf{h}_{1} with z-transforms $H_{0}(z)$ and $H_{1}(z)$, and analysis modulation matrix $\mathbf{H}_{m}(z)=\left[\begin{array}{cc}H_{0}(z) & H_{0}(-z) \\ H_{1}(z) & H_{1}(-z)\end{array}\right]=\mathbf{H}_{p}\left(z^{2}\right)\left[\begin{array}{cc}1 & 1 \\ z & -z\end{array}\right]$, where $\mathbf{H}_{p}(z)=\left[\begin{array}{ll}H_{00}(z) & H_{01}(z) \\ H_{10}(z) & H_{11}(z)\end{array}\right]$ is the analysis polyphase matrix.
2. The FIR synthesis filters are \mathbf{g}_{0} and \mathbf{g}_{1} with z-transforms $G_{0}(z)$ and $G_{1}(z)$, and synthesis modulation matrix $\mathbf{G}_{m}(z)=\left[\begin{array}{ll}G_{0}(z) & G_{1}(z) \\ G_{0}(-z) & G_{1}(-z)\end{array}\right]$.
3. The filter bank has perfect reconstruction (PR) when $\mathbf{G}_{m}(z) \mathbf{H}_{m}(z)=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$.
4. The trend/detail decomposition of a signal is

$$
\mathbf{x}=\mathbf{x}_{\mathbf{s}}+\mathbf{x}_{\mathbf{d}}=\sum_{m \in \mathbf{Z}}\left\langle S^{2 m} \stackrel{\vee}{\mathbf{h}_{0}}, \mathbf{x}\right\rangle S^{2 m} \mathbf{g}_{0}+\sum_{n \in \mathbf{Z}}\left\langle S^{2 n} \stackrel{\vee}{\mathbf{h}_{1}}, \mathbf{x}\right\rangle S^{2 n} \mathbf{g}_{1}
$$

where $\stackrel{\vee}{\mathbf{h}}[n]=\mathbf{h}[-n]$ (time-reversed filter) and S is the shift operator.
5. The filter bank is orthogonal if $\mathbf{g}_{0}=\stackrel{\vee}{\mathbf{h}}$. and $\mathbf{g}_{1}=\stackrel{\vee}{\mathbf{h}}$.

Bezout Polynomials

1. The polynomial $B_{n}(y)$ of degree $n-1$ satisfies the Bezout equation

$$
(1-y)^{n} B_{n}(y)+y^{n} B_{n}(1-y)=1
$$

2. The explicit formula is $B_{n}(y)=1+n y+\frac{n(n+1)}{1 \cdot 2} y^{2}+\cdots+\frac{n(n+1) \cdots(2 n-2)}{1 \cdot 2 \cdots(n-1)} y^{n-1}$.
3. The Bezout polynomial has the additional property $B_{n}(y) \geq 1$ for $y \geq 0$.
