Wave Functions in Thermal Equilibrium

GAP Measures and Canonical Typicality

Roderich Tumulka

Rutgers University

December 6, 2007

Joint work with

- Sheldon Goldstein (Rutgers)
- Joel L. Lebowitz (Rutgers)
- Christian Mastrodonato (Genoa)
- Nino Zanghì (Genoa)
Literature

- Canonical typicality:
 - E. Schrödinger (1952) *Statistical Thermodynamics*, second edition
GAP is the Average Distribution
GAP is the Typical Distribution
Canonical Typicality

Literature

GAP measure:
- R.T. et al. (2007)
 Typicality of the GAP Measure. In preparation
- R.T. et al. (2003-6)

Also:
- R.T. et al. (2004-5)
 Smoothness of Wave Functions in Thermal Equilibrium.
 J. Math. Phys. **46**, 112104
- R.T. et al. (2007)
The theme of this talk

Claim

A quantum system in thermal equilibrium at temperature $1/\beta$ is described by a random state vector ψ with distribution $GAP(\beta)$.

$GAP(\beta)$ is a novel measure on Hilbert space \mathcal{H}.
Classical Claim

A classical system in thermal equilibrium at temperature $1/\beta$ is described by a random phase point (q, p) with distribution $\frac{1}{Z} e^{-\beta H(q, p)}$, with $H(q, p)$ the Hamiltonian function.

Slogan

$GAP(\beta)$ is the canonical distribution of wave functions.
Applications

In many cases, we don’t know the wave function:

- Photons from the sun or a star
- Photons from a lamp
- Electrons boiled off a piece of metal

The wave function is random, but with which distribution?

When the particle comes from a system in thermal equilibrium, the answer is $GAP(\beta)$.
GAP Measures

Schrödinger's Cat
GAP is the Average Distribution
GAP is the Typical Distribution
Canonical Typicality
GAP Typicality

Measure and Density Matrix
Definition of GAP
Properties of GAP
Contrast with Another Measure
Support of GAP
Measure and Density Matrix

Hilbert space \mathcal{H}, unit sphere $S(\mathcal{H}) = \{ \psi \in \mathcal{H} : \|\psi\| = 1 \}$ with Borel σ-algebra

probability measure μ

associated density matrix (DM)

$$
\rho_\mu = \int_{S(\mathcal{H})} \mu(d\psi) |\psi\rangle \langle \psi|
$$

($= \text{covariance matrix of } \mu, \text{ since w.l.o.g. } \mathbb{E}_\mu \psi = 0.$)

Many-to-one: $\rho_\mu = \rho_{\mu'} \not\Rightarrow \mu = \mu'$
What the density matrix is good for

For any experiment on the system, the probability of the outcome associated with projection P is $\text{tr}(P \rho_\mu)$. Thus, if $\rho_\mu = \rho_{\mu'}$ then μ, μ' are empirically indistinguishable.

What measures are good for

- **Typicality statements** hold for most wave fcts (relative to μ),

 $$\mu\{\omega : p(\omega)\} > 1 - \varepsilon$$

 Ex [D. Page 1993] For most $\psi \in \mathcal{S}(\mathcal{H}_1 \otimes \mathcal{H}_2)$, $\rho_1 = \text{tr}_2 |\psi\rangle\langle\psi|$ has near-maximal $-\text{tr}(\rho_1 \log \rho_1)$, as $\dim \mathcal{H}_2 \to \infty$.

 Ex [L. Boltzmann] For most microstates (q, p) given the macrostate, the (Boltzmann) entropy increases.

- If we attribute wave functions to systems, their distribution is of interest.
\(\text{GAP}(\beta) = \text{GAP}(\rho_\beta) \)

For every DM \(\rho \) on \(\mathcal{H} \), there is a probability measure \(\text{GAP}(\rho) \) on \(\mathcal{S}(\mathcal{H}) \).

For thermal equilibrium:

\[
\rho_\beta = \frac{1}{Z} e^{-\beta H}
\]

canonical density matrix

\(H = \) Hamiltonian operator, \(Z = \text{tr} e^{-\beta H} \) normalizing constant
GAP Measures: Definition in 3 Steps

AUSSIAN

DJUSTED

ROJECTED
GAP Measures: Definition in 3 Steps

AUSSIAN: Start with
\[G(\rho) = \text{Gaussian measure on } \mathcal{H} \text{ with covariance } \rho, \]
i.e., \[\mathbb{E}_{G(\rho)} \langle \phi | \psi \rangle \langle \psi | \chi \rangle = \langle \phi | \rho | \chi \rangle \quad \forall \phi, \chi \in \mathcal{H}. \]

Construction

If \(\rho = \sum_n p_n |n\rangle \langle n| \) spectral decomposition
then let \(\text{Re } Z_n, \text{Im } Z_n \) be independent Gaussian random variables with mean 0 and variance \(p_n/2 \); set \(\psi = \sum_n Z_n |n\rangle. \)

\[\text{Ex } \mathcal{H} = \mathbb{C}^k: \quad \frac{dG(\rho)}{d\lambda}(\psi) = \frac{1}{\pi^k \det \rho} e^{-\langle \psi | \rho^{-1} | \psi \rangle} \]
GAP Measures: Definition in 3 Steps

AUSSIAN: Start with
\[G(\rho) = \text{Gaussian measure on } \mathcal{H} \text{ with covariance } \rho \]

DJUSTED: To obtain the measure \(GA(\rho) \) on \(\mathcal{H} \), multiply by a density function \(\psi \mapsto \|\psi\|^2 \):
\[GA(\rho)(d\psi) = \|\psi\|^2 G(\rho)(d\psi) \]
GAP Measures: Definition in 3 Steps

AUSSIAN: Start with

\[G(\rho) = \text{Gaussian measure on } \mathcal{H} \text{ with covariance } \rho \]

DJUSTED: To obtain the measure \(GA(\rho) \) on \(\mathcal{H} \), multiply by a density function \(\psi \mapsto ||\psi||^2 \):

\[GA(\rho)(d\psi) = ||\psi||^2 G(\rho)(d\psi) \]

ROJECTED to the unit sphere \(S(\mathcal{H}) \):

\[\psi^{\text{GAP}} = \frac{\psi^{GA}}{||\psi^{GA}||} \]

or \(GAP(\rho)(B) = GA(\rho)(\mathbb{R}^+ B) \) for \(B \subseteq S(\mathcal{H}) \).

The adjustment factor compensates the change in covariance due to projection to \(S(\mathcal{H}) \), thus \(\rho_{\text{GAP}}(\rho) = \rho \).
GAP Measures: Properties

- the right density matrix

\[\rho_{GAP}(\rho) = \mathbb{E}_{GAP}(\rho) |\psi\rangle \langle \psi| = \mathbb{E}_{GA}(\rho) \frac{|\psi\rangle \langle \psi|}{||\psi||^2} = \mathbb{E}_G(\rho) |\psi\rangle \langle \psi| = \rho \]

- covariant

\[U^* \text{ GAP}(\rho) = \text{ GAP}(U\rho U^{-1}) \]

for every unitary \(U \) on \(\mathcal{H} \)

\[\Rightarrow \] stationary under every unitary evolution that preserves \(\rho \)

- hereditary

"If a system has temperature \(1/\beta \) then also every subsystem"

"GAP of a product density matrix has GAP marginal"

If \(\psi \in \mathbb{S}(\mathcal{H}_1 \otimes \mathcal{H}_2) \) has distribution \(\text{GAP}(\rho_1 \otimes \rho_2) \) then, for any ONB \(\{b_i\} \) of \(\mathcal{H}_2 \), the conditional wave fct \(\psi_1 \) has distribution \(\text{GAP}(\rho_1) \).
Contrast with Another Measure

\[EIG(\rho) : \text{another measure on } \mathbb{S}(\mathcal{H}) \text{ with density matrix } \rho. \] [von Neumann 1932]

Suppose \(\rho = \sum_n p_n |n\rangle\langle n| \) is non-degenerate.

Choose random \(N \) with distribution \(p_n \) and set

\[\psi = e^{i\Theta} |N\rangle \]

with uniform random phase \(\Theta \).

E. Schrödinger (1952)

“To ascribe to every system always one of its sharp energy values is an indefensible attitude.”

Unpleasant features of \(EIG(\rho) \):

- highly concentrated (on eigenvectors!)
- defines a rather eccentric sense of “typical wave fct”
- no continuous extension to degenerate \(\rho \) possible
- thus, \(EIG(\rho_\beta) \) is unstable against perturbations of \(H \).
What does a \textit{GAP}-distributed ψ look like?

Most fcts in $L^2(Q)$, $Q \subseteq \mathbb{R}^n$, are not differentiable, and $GAP(\rho)$ is very spread-out \Rightarrow might expect that $GAP(\rho)$-typical wave fcts are not differentiable.
But that’s not true: Instead, for relevant H, $GAP(\rho_\beta)(C^\infty(Q)) = 1$
even analytic: $GAP(\rho_\beta)(C^\omega(Q)) = 1$

Example

$H = -\Delta$ on $Q = $ a box. For every measure μ on $S(\mathcal{H})$ with $\rho_\mu = \rho_\beta$, the Fourier coefficients of ψ almost surely decay exponentially $\Rightarrow \psi$ analytic.
Smoothness Theorem 1 [RT, N. Zanghì 2005]

If ρ has C^∞ eigenfunctions φ_n with eigenvalues p_n and

$$\sum_n \left\| \nabla^\ell \varphi_n \right\|_\infty \sqrt{p_n} < \infty$$

then $GAP(\rho)(C^\infty) = 1$.

Proof: Show that $\psi(q) = \sum_n \langle \varphi_n | \psi \rangle \varphi_n(q)$ converges uniformly, and so do the derivatives. \(\square\)

Smoothness Theorem 2 [RT, NZ 2005]

Let $tr \exp(-\beta_0 H) < \infty$ and $\beta > \beta_0$. For every measure μ on $S(\mathcal{H})$ with $\rho_\mu = \rho_\beta$ and all $\ell = 1, 2, 3, \ldots$,

$$\mu(\text{domain}(H^\ell)) = 1.$$

Ex: \exists Bohmian trajectories for GAP-typical ψ.
Schrödinger's Cat
Schrodinger's Cat

1. Radioactive material has a 50:50 chance of triggering a Geiger counter.
2. If the Geiger counter is triggered, the hammer falls.
3. The hammer breaks the poison bottle.
4. If the poison bottle breaks, the cat dies.
5. If the Geiger counter does not trigger, the hammer does not fall and the cat lives.

Roderich Tumulka
Wave Functions in Thermal Equilibrium
A variant of Schrödinger’s cat: measurement problem

Consider a quantum measurement of the observable $A = \sum_n \alpha_n |n\rangle \langle n|$.

$$|n\rangle \otimes \phi_0 \xrightarrow{t} |n\rangle \otimes \phi_n$$

($\phi_0 = \text{ready state of apparatus}, \phi_n = \text{state displaying result } \alpha_n$)

$$\Rightarrow \sum_n c_n |n\rangle \otimes \phi_0 \xrightarrow{t} \sum_n c_n |n\rangle \otimes \phi_n$$

But one would believe that a measurement has an actual, random outcome n_0, so that one can ascribe the “collapsed state” $|n_0\rangle$ to the system and, more importantly, the state ϕ_{n_0} to the apparatus.
More abstractly: Consider system 1 entangled with system 2. Then $1 + 2$ has a wave function $\psi \in \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, but system 1 alone does not. System 1 has a reduced density matrix

$$\rho_1 = \text{tr}_2 |\psi\rangle\langle\psi|$$

However, at least in some cases one would believe that system 1 has an actual, random wave function ψ_1.

Precise solutions of the measurement problem

- Bohmian mechanics [Bohm 1952]
- Spontaneous collapse [GRW = Ghirardi, Rimini, Weber 1986]
- many worlds [Everett 1957]
- ...
Bohmian mechanics

A version of QM with particle trajectories

state at time \(t = (Q(t), \psi(t)) = (\text{configuration, wave fct}) \)

Probability distribution of \(Q(t) \) is \(|\psi(t)|^2 \). Here, \(Q(t) = (Q_1(t), Q_2(t)) \).

Def conditional wave function [Dürr, Goldstein, Zanghì 1992]

\[
\psi_1(q_1, t) = \frac{1}{N} \psi(q_1, Q_2(t), t)
\]

Many worlds

In each “world” the system possesses a (conditional) wave function.
General definition of conditional wave function

Define *conditional wave function* [RT et al. 2006]

Let $\psi \in \mathcal{H}_1 \otimes \mathcal{H}_2$ with $\|\psi\| = 1$, choose orthonormal basis $\{b_j\}$ of \mathcal{H}_2.

$$\psi_1 = \frac{1}{\mathcal{N}} \langle b_J | \psi \rangle_2 \in \mathcal{H}_1$$

$b_J = \text{random basis vector with } \mathbb{P}(J = j) = \| \langle b_j | \psi \rangle_2 \|^2$
We attribute \(\psi_1 \) to system 1.

\(\psi_1 \) is random, even though \(\psi \) is not
(in BM, \(Q(t) \) is random,
in GRW \(\psi \) collapses stochastically to something like \(\psi_1 \otimes \psi_2 \),
in MW \(\psi_1 \) depends on the “world”)

\(\psi \) determines \(P^\psi_1 \), the distribution of \(\psi_1 \)

\(\rho_{P^\psi_1} = \rho_1 \)

“the density matrix of \(\psi_1 \) is the reduced density matrix”, i.e.,

\[
\begin{array}{ccc}
\psi & \longrightarrow & P^\psi_1 \\
\downarrow & & \downarrow \\
|\psi\rangle\langle\psi| & \overset{\text{tr}_2}{\longrightarrow} & \rho_1
\end{array}
\]

Among measures \(\mu_1 \) on \(S(\mathcal{H}_1) \) with \(\rho_{\mu_1} = \rho_1 \), not all are equally reasonable:

\[
\begin{array}{cccc}
50\% & |\text{dead}\rangle & \text{vs.} & 50\% \ 2^{-1/2}(|\text{dead}\rangle + |\text{alive}\rangle) \\
50\% & |\text{alive}\rangle & & 50\% \ 2^{-1/2}(|\text{dead}\rangle - |\text{alive}\rangle)
\end{array}
\]
GAP is the Average Distribution
System s, heat bath b (large), $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_b$

For every $\psi \in \mathcal{H}_s \otimes \mathcal{H}_b$, cond. wf $\psi_s = \psi_1$ is random. If ψ itself is random, then ψ_s is doubly random.

Microcanonical distribution: Pick energy interval $[E, E + \delta E]$ containing many energy eigenvalues, but so that δE is small on the macroscopic scale.

Let $\mathcal{H}_{E,\delta E}$ be the corresponding (spectral) subspace of $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_b$, microcanonical DM $\rho_{E,\delta E} = (\dim \mathcal{H}_{E,\delta E})^{-1} P_{E,\delta E}$, microcanonical distribution $u_{E,\delta E} = \text{uniform on } S(\mathcal{H}_{E,\delta E})$ (= normalized surface area) [Bloch, Schrödinger].

Claim

If ψ is random with distribution $u_{E,\delta E}$, then the (marginal) distribution of ψ_s is

$$\mathbb{P}(\psi_s \in \cdot) = \int u_{E,\delta E}(d\psi) \mathbb{P}_1^\psi \approx \text{GAP}(\rho_\beta).$$

“If ψ is microcanonical then ψ_s is canonical.”
Outline of argument:

by equivalence of ensembles,

$$\rho_{E,\delta E} \approx \rho^{s+b}_\beta$$ on $\mathcal{H}_s \otimes \mathcal{H}_b$ for suitable β

by continuity of $\rho \mapsto GAP(\rho)$,

$$u_{E,\delta E} = GAP(\rho_{E,\delta E}) \approx GAP(\rho^{s+b}_\beta)$$ on $\mathcal{H}_s \otimes \mathcal{H}_b$

neglecting interaction,

$$\rho^{s+b}_\beta = \rho^s_\beta \otimes \rho^b_\beta$$

by hereditarity,

$$distr(\psi) = GAP(\rho^s_\beta \otimes \rho^b_\beta) \Rightarrow distr(\psi_s) = GAP(\rho^s_\beta)$$

Thus,

$$distr(\psi) = u_{E,\delta E} \Rightarrow distr(\psi_s) \approx GAP(\rho^s_\beta)$$
Role of Interaction

Paradox? First we consider a system coupled to a heat bath, then neglect the interaction.

Interaction is relevant...

- for creating typical wave functions: it helps evolve atypical wave functions into typical ones.
- to the system’s canonical density matrix

$$\rho_{\text{can}} := \text{tr}_b \rho_{E,\delta E}$$

...but can be neglected

- once $s + b$ has a μ-typical wave function, interaction is irrelevant to the distribution of the conditional wave function.
- In the limit of negligible interaction,

$$\rho_{\text{can}} = \frac{1}{Z} e^{-\beta H}$$
GAP is the Typical Distribution
What does “typical” mean?

\[f(\omega) \approx y \text{ is typical for } \omega \in \Omega \]
\[\iff y \text{ is the typical value of } f \text{ on } \Omega \]
\[\iff f(\omega) \approx y \text{ for most } \omega \in \Omega \]
\[\iff \mu\{\omega \in \Omega : |f(\omega) - y| > \delta\} < \varepsilon \]
\[\iff f \text{ is nearly constant on } \Omega \text{ (in fact, } y \approx \mathbb{E}f) \]
\[\iff f \text{ has small variance } \mathbb{E}(f - \mathbb{E}f)^2 \]
\[\iff \text{more precisely, consider} \]
\[\text{sequence } (\Omega_n, \mu_n)_{n \in \mathbb{N}} \text{ of probability spaces, } f_n : \Omega_n \to Y \]
\[\forall \delta > 0 : \mu_n\{\omega \in \Omega_n : |f_n(\omega) - y| < \delta\} \to 1 \]

Slightly different: convergence in probability
(here, \(\Omega_n = \Omega, \mu_n = \mu \), only \(f_n \) varies, convergence to \(f_\infty \) rather than constant \(y \); otherwise the same)

Ex: In classical statistical mechanics, thermodynamic functions are often nearly constant on the energy surface.
GAP is typical

Claim
For most ψ from the microcanonical ensemble of $s + b$, $P_{\psi}^{1} \approx \text{GAP}(\rho_\beta)$.

This claim corresponds to “$f(\omega) \approx y$ is typical” with
$\omega = \psi \in \mathcal{H}_s \otimes \mathcal{H}_b$ from the microcanonical ensemble,
$f(\omega) = P_{\psi}^{1}$ is the probability distribution of ψ_1,
y = GAP(\rho_\beta)
“The distribution of ψ_1 is nearly constant”

Classically, randomness in yields randomness out. In quantum mechanics, we can have randomness out, without randomness in.

Classically: fixed phase point $((q_s, q_b), (p_s, p_b))$ yields fixed (q_s, p_s)
Quantum: fixed $\psi \in \mathcal{H}_s \otimes \mathcal{H}_b$, random ψ_s
General typicality of GAP

Consider \mathcal{H}_1 fixed, and fixed DM ρ_1 on \mathcal{H}_1, but $\mathcal{H}_2 = \mathcal{H}_2^{(n)}$, $n \in \mathbb{N}$, $\dim \mathcal{H}_2^{(n)} \to \infty$ as $n \to \infty$; let $\mathcal{R}_n = \{\psi \in \mathcal{S}(\mathcal{H}_1 \otimes \mathcal{H}_2^{(n)}): \text{tr}_2 |\psi\rangle\langle\psi| = \rho_1\}$, let u_n be the uniform probability distribution on \mathcal{R}_n; for any orthonormal basis $B = \{b_1, \ldots, b_{d(n)}\}$ of $\mathcal{H}_2^{(n)}$, consider $P^{(n,\psi,B)}_1 = \text{distribution of } \psi_1$, given $\psi \in \mathcal{H}_2^{(n)}$ and B.

General Typicality Theorem [RT et al., 2007]

For every $\delta > 0$ and every bounded continuous test fct $\varphi : \mathcal{S}(\mathcal{H}_1) \to \mathbb{R}$,

$$u_n \left\{ \psi \in \mathcal{R}_n : \left| P^{(n,\psi,B)}_1 (\varphi) - \text{GAP}(\rho_1)(\varphi) \right| < \delta \right\} \to 1$$

as $n \to \infty$, uniformly in B, using notation $\mathbb{P}(\varphi) = \int \mathbb{P}(d\psi) \varphi(\psi) = \mathbb{E}_\mathbb{P}\varphi$.
In other words:

For typical ψ with $\text{tr}_2 |\psi\rangle\langle\psi| = \rho_1$, ψ_1 has distribution $\approx \text{GAP}(\rho_1)$.

Proof: Based on

- Schmidt decomposition

 $\psi = \sum_i c_i |\chi_i\rangle_1 \otimes |\phi_i\rangle_2 = \sum_i \sqrt{p_i} |i\rangle_1 \otimes |\phi_i\rangle_2$, ONS \{\phi_i\}

- For a random unitary matrix $(U_{ij}) \in U(m)$ with uniform (Haar) distribution, the upper left $k \times k$ submatrix converges in distribution, after multiplying by a normalization factor \sqrt{m} and as $m \to \infty$, to a matrix of independent complex Gaussian random variables with mean 0 and variance 1 [Petz and Réffy 2004; RT and CM 2007]
Typical basis

We need
- either typical wf ψ, any basis B
- or any wf ψ, typical basis B

General Typicality Theorem 2 [RT et al., 2007]

For every $\delta > 0$ and every bounded continuous test fct $\varphi : \mathbb{S}(\mathcal{H}_1) \to \mathbb{R}$,

$$u_{ONB}^{(n)} \left\{ B \in ONB(\mathcal{H}_2^{(n)}) : \left| \mathbb{P}_1^{(n,\psi,B)}(\varphi) - GAP(\rho_1)(\varphi) \right| < \delta \right\} \to 1$$

as $n \to \infty$, uniformly in $\psi \in \mathcal{R}_n$.

(Notation $\mathbb{P}(\varphi) = \int \mathbb{P}(d\psi) \varphi(\psi) = \mathbb{E}_\mathbb{P}\varphi$)

$u_{ONB}^{(n)}$ = uniform on $ONB(\mathcal{H}_2^{(n)})$ (\leftrightarrow Haar measure)
Ingredients for typicality of $GAP(\rho_\beta)$ in the microcanonical ensemble:

- general typicality of $GAP(\rho)$ given ρ
- canonical typicality
What is Canonical Typicality?
GAP typicality ↔ canonical typicality
Derivation of canonical typicality
System s, heat bath b, coupling negligible:

$$H = H_s \otimes I_b + I_s \otimes H_b.$$

Known: ("average" statement)

$$\text{tr}_b \rho_{E, \delta E} \approx \rho_\beta$$

⇒ partial trace microcan. DM canonical DM

in the thermodynamic limit $N_b \to \infty$, $E/N_b \to e < \infty$

Novel: ("almost always" statement) **canonical typicality**

$$u_{E, \delta E} \left\{ \psi : \text{tr}_b |\psi\rangle\langle\psi| \approx \rho_\beta \right\} \to 1$$

⇒ microcanonical measure on $\mathbb{S}(\mathcal{H}_s \otimes \mathcal{H}_b)$

in the thermodynamic limit

For most ψ of $s + b$ from the microcanonical ensemble, the reduced density matrix of s is canonical.
To show that $\mathbb{P}_1^\psi \approx GAP(\rho_\beta)$, one needs to show canonical typicality first. But note that canonical typicality is also a consequence: by definition,

$$\rho_{\mathbb{P}_1^\psi} = \mathbb{E}|\psi_1\rangle\langle\psi_1| = \sum_j ||\langle b_j|\psi\rangle_2||^2 \frac{\langle b_j|\psi\rangle\langle\psi|b_j\rangle}{||\langle b_j|\psi\rangle_2||^2} = \text{tr}_b |\psi\rangle\langle\psi|;$$

as we know,

$$\rho_{GAP(\rho_\beta)} = \rho_\beta.$$

Thus,

$$\text{tr}_b |\psi\rangle\langle\psi| \approx \rho_\beta.$$
Derivation of canonical typicality

Known part:

\[H_s = \sum_n E_n |n\rangle_s \langle n| \]

\[\rho_{E,\delta E} = (\dim \mathcal{H}_{E,\delta E})^{-1} \sum_n P_{\mathcal{H}_{b,E-E_n,\delta E}} \otimes |n\rangle_s \langle n| \]

\[\text{tr}_b \rho_{E,\delta E} = (\dim \mathcal{H}_{E,\delta E})^{-1} \sum_n (\dim \mathcal{H}_{b,E-E_n,\delta E}) |n\rangle_s \langle n| \approx \rho_\beta \]

since \(\dim \mathcal{H}_{b,E-E_n,\delta E} \approx e^{S(E-E_n)} \propto \exp\left(-\frac{\partial S}{\partial E} E_n\right) = e^{-\beta E_n} \)
Novel part: \(u_{E, \delta E} \approx G(\rho_{E, \delta E}) \) ("All nonzero components are essentially i.i.d. Gaussian"). Let \(\Psi \sim G(\rho_{E, \delta E}) \). Then

\[
\Psi = \sum_n |n\rangle_s \otimes |\Phi_n\rangle_b \quad \text{with} \quad \Phi_n = \sum_{E - E_n \leq E_b, m \leq E + \delta E - E_n} X_{nm} |m\rangle_b
\]

Here, \(X_{nm} \) are i.i.d. complex Gaussian random variables with mean 0 and variance \(\mathbb{E}|X_{nm}|^2 = (\dim \mathcal{H}_{E, \delta E})^{-1} \). Then

\[
\text{tr}_b |\Psi\rangle\langle\Psi| = \sum_{n, n'} \langle \Phi_n | \Phi_{n'} \rangle_b |n\rangle_s \langle n'| \approx \sum_n p_n |n\rangle_s \langle n|
\]

with \(p_n = \sum_{E - E_n \leq E_b, m \leq E + \delta E - E_n} |X_{nm}|^2 \approx \frac{\dim \mathcal{H}_b, E - E_n, \delta E}{\dim \mathcal{H}_{E, \delta E}} \)

because \(\langle \Phi_n | \Phi_{n'} \rangle \approx 0 \) for \(n' \neq n \):

\[
\Phi_n = 00000000000000000000000000000000
\Phi_{n'} = 00000000000000000000000000000000
Theorem on Canonical Typicality [Popescu, Short, Winter 2005]

Let $\mathcal{H}_R \subseteq \mathcal{H}_s \otimes \mathcal{H}_b$ arbitrary subspace (e.g., $\mathcal{H}_R = \mathcal{H}_E, \delta E$ microcanonical), u_R the uniform distribution on $S(\mathcal{H}_R)$,

$$\rho_R = \frac{1}{\dim \mathcal{H}_R} P_{\mathcal{H}_R} \text{ and } \varepsilon > 0.$$

Then

$$u_R\left\{ \psi : \left\| \text{tr}_b |\psi\rangle\langle\psi| - \text{tr}_b \rho_R \right\|_1 \geq \eta \right\} \leq \eta'$$

where η, η' are small when $\dim \mathcal{H}_s \ll 1/\text{tr}(\text{tr}_s \rho_R)^2$ (system \ll bath) and $\varepsilon \ll 1 \ll \varepsilon^2 \dim \mathcal{H}_R$ (many states allowed).

$$\| M \|_1 = \text{tr} |M| = \text{tr} \sqrt{M^* M}$$
GAP Measures
Schrödinger’s Cat
GAP is the Average Distribution
GAP is the Typical Distribution
Canonical Typicality
GAP Typicality

GAP Typicality
Putting the facts together

\(\mathcal{H}_1 \) fixed, while \(\mathcal{H}_2 = \mathcal{H}_2^{(n)}, n \in \mathbb{N}, \dim \mathcal{H}_2^{(n)} \to \infty \) as \(n \to \infty \);
let \(\mathcal{H}_R^{(n)} \subseteq \mathcal{H}_1 \otimes \mathcal{H}_2^{(n)} \) subspace, \(\dim \mathcal{H}_R^{(n)} \to \infty \) as \(n \to \infty \)
(e.g., \(\mathcal{H}_R^{(n)} = \mathcal{H}_{E,\delta E} \) microcanonical). Let \(\rho_R^{(n)} = (\dim \mathcal{H}_R^{(n)})^{-1} P_{\mathcal{H}_R^{(n)}} \)
let \(u_R^{(n)} \) be the uniform probability distribution on \(S(\mathcal{H}_R^{(n)}) \)
let \(\rho_{can}^{(n)} = \text{tr}_2 \rho_R^{(n)} \)
let \(u_{ONB}^{(n)} \) be the uniform probability distribution on \(ONB(\mathcal{H}_2^{(n)}) \).

Theorem *in spe* [RT et al., 2007]

For every \(\delta > 0 \) and every bounded continuous test fct \(\varphi : S(\mathcal{H}_1) \to \mathbb{R}, \)
\[
u_R^{(n)} \otimes u_{ONB}^{(n)} \left\{ (\psi, B) : \left| P_1^{(n, \psi, B)}(\varphi) - GAP(\rho_{can}^{(n)})(\varphi) \right| < \delta \right\} \to 1
\]
as \(n \to \infty \).

(Notation \(\mathbb{P}(\varphi) = \int \mathbb{P}(d\psi) \varphi(\psi) = \mathbb{E}_\mathbb{P}\varphi. \))
Thank you for your attention