
1 Chapter 1

Exchanged traded markets: Chicago Board of Trade (CBOT), Chicago Mercentile

Exchange (CME), Chicago Board Options Exchange (CBOE), New York Mercentile

Exchange, the commodity exchange (COMEX).

OTC market : Central counter party (CCP), regulated after 2008. OTC deriva-

tives must be traded on a swap execution facilities (SEFs), CCP used for most trans-

actions, trades reported to central registry.

Market size: OTC much bigger than ETM : 632.6 trillions vs 52.6 trillions by

2012.

Forward contracts: popular on foreign exchange, traded in OTC market.

Futures contracts : largest exchanges are CBOT, CME (merged to become CME

group).

Options: largest exchange is CBOE.

Types of traders : hedgers, speculators, arbitrageurs. Hedge fund employs all

types.

Hedge funds: relatively free of regulations. Investment strategy often involves

speculative or arbitrage position. Some examples : long / short equities, convertible

arbitrage, distressed securities, emerging markets, global macro, merger arbitrage.

Stories : SocGen’s Big Loss in 2008 : Jerome Kerviel, arbitrageur. Similarly, Nick

Leeson in 1990s, Baring Banks, also arbitrageur (on Nikkei 225).

Hedge using forward contracts, hedge using options. Difference: forward contracts

are designed to fix price that the hedger will have to pay or receive for the underlying

asset. Option provide insurance.

Speculate using futures, speculate using options. Futures : potential loss / gain is

very large. Options: limited by the amount paid for the options. Difference between

speculate using futures and buying in the spot market: futures requires very small

up front investment (margin account).

2 Chapter 2

CME groups : CBOT, CME, NYME

Closing out futures contract: by taking the opposite position.

Price limits: limit up, limit down : trading ceases for the day once the contract is

limit up or down. Position limit : max number of contracts a speculator may hold.
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Margin account: Change in future price results in change in balance of margin

account. Interest rate is not taken into account ? Maintainence margin : to ensure

the balance in the margin account never becomes negative. Margin call : top up

the margin account to initial level by the end of next day. Extra funds deposited is

known as variation margin. Securities can be deposited at a discount of face value :

hair cut ( the percentage of discount). Treasury bills: 90 % face value, shares: 50 %

face value.

Clearing house: an intermediary in futures transactions. OTC markets: requires

CCPs. Bilateral clearing : requires collateral, similar to margin accounts. Collateral

can be risky when leverage is high : Long-Term Capital Management. Convergence

arbitrage : buy less liquid bond and short more liquid bond from the same company,

waiting for price convergence. Has to change collateral when interest rates move.

Usually the same since both bonds move in the same direction in price. When there’s

flight to quality, has to post collateral on both since the price of less liquid goes down

and the price more liquid (short) goes up.

Futures trades vs OTC trades : futures trades settle daily. So daily variation

margin does not earn interest (only initial margin when provided in cash earns interst).

OTC trades do not settle daily. So daily variation margin provided by member of a

CCP in OTC trades earns interest when in cash.

Settlement price : price used for calculating daily gains and losses and margin

requirements. Price at which the contract traded immediately before the end of day’s

trading session.

Trading volume: number of contracts traded in a day. Open interest : number of

contracts outstanding. Trading volume can be higher than beginning or end of day

open interst if there is a large amount of trading by day traders.

Normal market: future prices increase as function of maturity. Inverted market:

the opposite.

Delivery : Cash settlement - ex: stokc indices. Final settlement price is the spot

price of the underlying asset at either open or closed of trading of a predetermined

day. Ex: SP 500 predetermined day is third Friday of the delivery month and final

settlement is at the opening price.

Types of traders : scalpers - very short term trends, only a few minutes positions.

Day traders : less than a day positions. Positio traders : much longer. Hope to make

significant profits from major market movements.

Types of orders : Market order : carried out immediately at best price available.
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Limit order: executed only at a particular price or one more favorable. Stop order :

Order to sell at a particular price (stop loss). Market if touched (MIT) order: Order

to sell at a favorable price to gain profit (?) Discretionary order : execution may be

delayed at the broker’s discretion. Time of day order : specifies a particular period

of time during the day for execution. Open order or good till canceled order : in

effect until executed or until end of trading in a contract. Fill or kill order : executed

immediately or not at all.

Regulations: Futures markets in the US are regulated by the Commodity Futures

Trading Commission (CFTC).

Trading irregularities : Corner the market : investor takes huge long futures

position. Does not close out position, number of outstanding futures contracts may

exceed number of commodity available for delivery. Large rise in both futures and

spot prices.

Forward vs Futures contracts : Gain / loss in forward only realized at maturity.

Futures : day by day. FX quotes : futures where one currency is in US are always

quoted in US currency. Forwards are always quoted in the same ways as spot prices.

Ex : CAD. Futures pirce quote 0.95 USD per CAD corresponds to forward price

quote 1.0526 CAD per USD.

3 Chapter 3

Hedging using futures : Gain / loss from asset is offset by loss / gain from futures

position. Note : this appears as a locked price effect, price is not actually locked

(futures position is closed out before expiration, asset purchased / sold with usual

suppliers / customers ). Futures is usually bought with expiry (immediately) after

the delivery month since future price during the delivery month is quite erratic.

Hedging may lead to worse outcomes in case price moves in favorable directions

: hedging needs to be annouced to shareholders etc. No hedging leads to constant

profit margin !

Basis : Spot price of asset to be hedged - Futures price of contract used.

Basis equation : S2 +F1−F2 = F1 +b2 where Si is spot price and Fi is future price

at times i = 1, 2. This is the effective price obtained for a short futures position and

the effective price paid for a long futures position. In English : effective price equals

final spot price plus gain on futures or initial future price plus final basis. Therefore, a

basis increase (strengthening) is favorable for short and unfavorable for long position
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(and vice versa for basis decrease / weakening).

Basis risk : asset to be hedge is not exactly the same as futures underlying (jet

fuel vs heating oil) a.k.a cross hedging, delivery date uncertainty, futures closed out

before delivery month (liquidity issue in getting the right futures).

Optimal number of contracts in cross hedging : N∗ = h∗QA

QF
, where QA is the size of

position (units) being hedged (A for asset, QF size of one futures contract (units) and

N∗ is the optimal number of futures contracts for hedging. We also have h∗ = ρ σS
σF

where σS = sd(∆S), σF = sd(∆F ), ρ = cor(∆S,∆F ). Choosing N∗ this way will

minimize the variance of the position. Reason:

V ar(position) = V ar(QA∆S −QF∆F )

= V ar(QA∆S − h∗QA∆F ) = Q2
AV ar(∆S − h∗∆F ).

We are done if V ar(∆S−h∗∆F ) = E(∆S−h∗∆F )2 because this reduces to the least

squared solution of a linear regression. This is from the fact that ∆S = 0 usually

imples ∆F = 0 and vice versa ( that is the intercept of the linear regression line is 0

).

Practical issue : ∆S,∆F estimated from historical prices. Length of ∆ should be

similar to time to delivery (i.e. one month to delivery then we sample 15 monthly

change in spot and future prices from history). This applies for forward contracts.

For futures, one can also look at day to day percentage change and adjust the optimal

positions accordingly. In practice, this day to day change is usually small and ignored.

Hedging an equity portfolio : N∗ = β VA
VF
, where VA is the current value of portfolio,

VF is the current value of one futures contract. β (CAPM) is the slope of the best fit

line obtained from regressing the excess return of the portfolio over the excess return

of the index (both over the risk free rate). For example, a portfolio with a β of 2.0 is

twice as sensitive to index price movement. It is therefore necessaray to use twice as

many contracts to hedge the portfolio. In a perfect hedge (see Table 3.4) the return

on the portfolio is approximately the risk free rate.

Reasons for hedging : Short term protection in uncertain market, confidence in the

portfolio outperforming the market (locking in the benefits of stock picking), changing

the beta of a portfolio. To change the beta of a portfolio from β to β∗, a position

in (β − β∗)VA
VF

is required. It is a short position if beta > β∗ and a long position

otherwise. To lock in the benefits of stock picking, it is essentially similar to betting

that the beta estimate is not precise ( that is the movement is always beneficial to

the stock holder. If the stock falls, it won’t fall as much as predicted versus market
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index, if the stock rises, it will rise more than predicted versus market index. See

page 64 for more details).

Stacks and rolls : the act of entering a serires of short term futures to hedge a

long term delivery date. Liquidity of both the futures and cash flow must be taken

into account (Business Snapshot 3.2). Initial entering into a contract is referred as

“stacks”. After that the investor closes out the contracts and “roll” them into new

ones. When future prices are below spot prices, we cannot expect a perfect hedge for

price decline (see section 3.6). For example, roll 3 times, dollar gain per barrel of oil

from the short futures contracts is

(88.20− 87.40) + (87.00− 86.50) + (86.30− 85.90) = 1.70

Price decline is 89 to 86, which is 3 dollars. Partially we see the loss in the gap of

closing price and rolling in price (87.4, 87) also (86.50, 86.30). Also keeping in mind

that spot starts out at 89 and future was at 88.20.

4 Chapter 4

Basis point: 0.01 % per annum.

Types of rates: Treasury rate : rates earned from Treasury bills and Treasury

bonds. Risk free. Borrowing period ? LIBOR : an estimate of short term (1 year or

less) unsecured borrowing rate for a AA-rated financial institution. 15 borrowing

periods, including overnight rate. Effective Fed Funds Rate : (Only) Overnight rate

for interbank borrowing / lending. Overnight LIBOR is usually 6 % higher than

effective fed funds rate : reflection of the borrowing pools and time difference. Repo

(repurchase agreement) rates: secured borrowing rate by posting collaterals (usually

securities). Most common : overnight repo. Also have terms repo for longer terms.

Question: risk free rate?

Compounding : Interest rate is given as R percent per annum. If the rate is

compounded m times per annum, the terminal value of the investment after n years

is

Vn = A(1 +
R

m
)mn.

Continuous compounding :

Vn = AeRn.

Conversion formula between discrete and continuous compounding :

Rm = m(eRc/m − 1).
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These are two equivalent rates that give the same terminal value of the investment.

Zero rate : Rate earned from an investment of zero-coupon bond for n years.

Denote R(m,m + n) as the risk-free rate for an investment starting at year m and

ending after n years (n can be a fraction of a year, such as 0.5) . The structure of

R(0, n) as a function of n is referred to as the term structure. It is called upward

sloping if it is increasing and downward sloping if it is decreasing (as a function of

n). The shape of term structure changes. It may be upward sloping for some n

and downward sloping for some other n (see below for more discussion). R(0, n) is

deduced by current price of zero-coupon bond expiring in n years.

Pricing coupon paying bond : Most popular bond pays semiannually. Suppose we

have a 2 year Treasury bond with a principal of 100 with a semi annual coupon rate

of 6 %. Its coupon payment is 100× 0.06× 0.5 = 3 dollars. Its current price is

V0 = 3e−R(0,0.5)×0.5 + 3e−R(0,1)×1 + 3e−R(0,1.5)×1.5 + 103e−R(0,2)×2.

The bond yield y is the single value that we can plug into the above equation in

place of R(0,m) to yield the same V0 :

V0 = 3e−y×0.5 + 3e−y×1 + 3e−y×1.5 + 103e−y×2.

Bond yield does not have an explicit solution. Can be viewed as a “constant” (with

respect to the yield curve) rate earned for the duration of the bond.

The par yield c is the coupon rate that we can plug c
m

(m is the coupon frequency

per annum) into the above equation in place of the coupon rate 3 to yield the principal

value (which is 100) :

100 =
c

2
e−R(0,0.5)×0.5 +

c

2
e−R(0,1)×1 +

c

2
e−R(0,1.5)×1.5 + (100 +

c

2
)e−R(0,2)×2.

Par yield c satisfies

100 = A
c

m
+ 100d,

where d is the present value of 1 dollar receive at the maturity of the bond (so in

effect a discount factor, P (0, T ) where P is the zero coupon bond price). And

A = e−R(0,0.5)×0.5 + e−R(0,1)×1 + e−R(0,1.5)×1.5 + e−R(0,2)×2.

This equation shows that the par yield can be viewed as the “compensated income

stream” (subject to discount) so that 100 dollars at the future expiry is equivalent to

100 dollars today.
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Observation: Bond yield and par yield are close ? One can compare the actual

coupon rate with the par yield to determine the credit risk of the bond ? For example

the Treasury bill coupon rate in example 4.4 is less than the par yield. This reflects

the risk free nature of the Treasury bill ?

Determining treazury zero rates : Done straighforwardly if we know the price of

zero coupon bond for the same maturity. If we have a mixed zero coupon and non-

zero coupon bond: bootstrapping : use the earlier zero rates to calculate the present

value of the income stream as the above equation with the final rate R(0, n) as the

unknown to solve for. Interpolating between bond price data is sometimes called for

when exact maturity date is not available. Ex: 2.3 year bond with 6% coupon sells

for 98 and 2.7 year bond with 6.5 % coupon sells for 99. Then a 2.5 year bond with

6.25 % would sell for 98.5. A chart of zero rate as a function of matuirty is referred

to as the zero curve.

Forward interest rate :

RF =
R2T2 −R1T1

T2 − T1

.

This comes from eR1T1eRF (T2−T1) = eR2T2 . In the interest rate swap valuation,

the future LIBOR L(T1, T2) rate can be assumed to equal RF for the purpose of

calculating the present value of the floating leg cash flow. This is actually the present

value of the future LIBOR payment, which can be showed rigorously to be the same

as using RF as a payment.

Pushing T2 toward T1 we have RF = R + T ∂R
∂T
, where R is the interst rate for

maturity T . RF in this case is known as the instantaneous (over night ?) forward

rate for a maturity of T (the rate is available at time T ).

Viewing R as a function of T (R = R(0, T )) and P (0, T ) = e−RT as the zero

coupon bond price, we also have

RF = − ∂

∂T
logP (0, T ).

Forward rate agreement (FRA) : OTC transaction to fix rate with the underlying

being LIBOR and compounding is discrete. If the agreed fixed rate is greater than

the actual LIBOR for the period, the borrower pays the lender the difference applied

to principle and vice versa. More than one FRA rolled over is called a interest rate

swap, see chapter 7.

Concretely, suppose two companies X, Y enter into a FRA in which X agrees to

lend money to Y at a fixed rate RK between T1 and T2. The cash flow to X at time
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T2 is

L(RK −RM)(T2 − T1),

where L is the principal. The cash flow of Y at time T2 is the negative of this amount.

Typically FRAs are settled at time T1 (since all rates are known at T1) and thus the

pay off for X at time T1 is

L(RK −RM)(T2 − T1)

1 +RM(T2 − T1)
,

where RM is the LIBOR rate available at time T1 for borrowing during the period

T1T2. The pay off for Y is the negative of this amount.

Forward LIBOR rate : The current value of a FRA is usually non-zero. The

forward LIBOR rate RF is the FRA fix rate such that the current value of a FRA

is zero (the same idea as the forward price). Forward LIBOR rate can be used to

calculate the MTM (marked to market) value (a fancy way to refer to market value of

a derivative at a particular time) of a FRA. The idea is to use present value evaluation

:

V0 = Ẽ
(
e−R2T2L(RK −RM)(T2 − T1))

)
= e−R2T2Ẽ

(
L(RK −RF )(T2 − T1)) + L(RF −RM)(T2 − T1))

)
= e−R2T2L(RK −RF )(T2 − T1),

where we have used the fact that RK , RF are known at time 0 and by definition

0 = Ẽ
(
e−R2T2L(RF −RM)(T2 − T1))

)
.

From Hull : this calculation has the assumption that the forward rates are realized

(that is RM = RF ) ?

Duration : The duration of a bond is a weighted average of the times when the

payments are made, with the weight at time ti equal to the ratio of the discounted

(using the bond yield) cash flow at time ti and the bond’s total present value. In

formula:

D =
n∑
i=1

ti

[cie−yti
B

]
=
−1

B

dB

dy
.

The duration has the property that

∆B

B
= −D∆y.
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Thus it is the first derivative of the percentage bond price change with respect to the

yield. If we want just price change, the concept is dollar duration :

∆B = −D$∆y.

Most common is DV 01 which is the price change from a 1 basis point increase in all

rates. Gamma is the change in DV01 from a 1 basis point increase in all rates.

The above formula for continuous compounding. For discrete compounding, we

have a modified duration : D∗ = D
1+ y

m
and

∆B

B
= −D∗∆y.

Duration of a bond portfolio : Weighted average of the duration of individual

bonds, weights proportional to bond price. Assumption : parallel shift in zero yield

curve (yields of all bonds change by approsimately the same amount). So a zero

net duration portfolio is immune to small parallel shift in the yield curve. It is not

immune to large or non parallel shift.

Convexity : Second order approximation of percentage bond price change. In

formula:

C =

∑n
i=1 t

2
i cie

−yti

B
=

1

B

d2B

dy2
.

From Taylor series approximation

∆B =
dB

dy
∆y +

1

2

d2B

dy2
(∆y)2.

Thus

∆B

B
= −D∆y +

1

2
C(∆y)2.

For a portfolio with a particular duration, the convexity is largest when it provides

payments evenly over a long period, smallest when payments are concentrated around

one particular period (this comes from the concept of duration as the average time

to receive payments and thus convexity is the change in this average time). See also

Figure 4.2, two portfolios having the same duration (since its slope at 0 are the same).

Also note that it goes through quadrant II and IV (simply from relation of ∆B
B

and

∆y.

Shape of term structure : liquidity preference theory. Investor likes to deposit for

short periods of time (more flexibility, shorter fund tie up period). Borrower likes to
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fix borrowing rate for a long period of time (less risk of rate fluctuation). Thus we

usually see a higher deposit rate of long term deposit and higher borrowing rate for

long term borrowing as a simple result of supply / demand. In the example of Table

4.7 : the bank uses the deposit to finance the mortgage loan. Thus it pays the deposit

rate and receives the mortgage rate. If most people deposit for short term rate and

borrow at long term rate, the bank loses money if short rate rises in the future (since

it has to pay out more for deposit and receives the same payment for its mortgage

loan). Thus the upward slope term structure (provided by the bank of course) also

reflects the bank “hedging” this risk. Note that if short rate falls then the bank gains

money so it doesn’t have to worry about this scenario.

5 Chapter 5:

Assumptions and notations (see 5.2, 5.3)

Forward price on investment asset that provides no income (stock, zero coupon

bond) : F0 = S0e
rT . Derived via no arbitrage argument. The higher forward price

can be viewed as the cost of financing the purchase of the asset during the life of

the forward contract (for the short seller?). The no arbitrage argument works even if

short selling the investment asset is not possible, since one can short sell or long the

forward contract instead. This may be the advantage of futures : one can short or

long futures more easily than the asset itself.

Forward price on investment asset that provides income (coupon bond) : F0 =

(S0 − I)erT , where I is the present value of the income stream during the life of the

forward contract. The income stream is subtracted from S0 since the long position

does not receive the income stream (the asset is delivered at time T ) and the short

position receives the income stream. Again can be derived via no arbitrage argument.

S0− I is the amount borrowed from the bank to finance the short position consisting

of a delivery of S at time T and and a long position to provide an income stream

worth I at present value at the specified times (thus the total net value is 0 at the

beginnign). The income stream closes out at during the life time of the contract. At

time T receive F0 = (S0 − I)erT to close out the position with the bank.

Forward price on investment asset that provides known yield (for example stock

indices, section 5.9) : The yield is paid as a percentage of the asset price at the time

it is paid. If the rate is q and it is compounded m times during the contract life time

then each time the payment is Sti
q
m
. This is assumed to be re-invested into the asset.
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Thus, we see that Sti+ = Sti(1 + q
m

). Under continuous compounding, 1 share of S

at time 0 will grow to have value of eqTST at time T. (Thus it can also be viewed as

dividend by share percentage). Thus we have F0 = S0e
(r−q)T . The arbitrage argument

runs as followed: Borrow S0e
−qT from the bank to buy e−qT share of the asset. This

e−qT share will grow to ST at time T , which can be used to purchase 1 share of ST

for delivery and close out the position. Practical issue in stock indices futures: the

underlying index may not be the value of an investment asset. Ex : Nikkei 225 Index

has a dollar value of 5S, where S is in yen. This is an example of a quanto, where the

underlying is measured in one currency and payoff is in another.

Price of forward contract: V0 = (F0 − K)e−rT . For asset that does not have

income : V0 = S0−Ke−rT . For asset with income stream with present value I : V0 =

S0−I−Ke−rT . For asset that pays share dividend with rate q : V0 = S0e
−qt−Ke−rT .

Forward price compared with futures price: Equal when short rate is consant.

Futures is subject to daily settlement with the margin account. Suppose S is posi-

tively correlated with the short rate. If S increases, the investor gains since the gain

from margin is invested with higher interest (compared with the initial rate r). If

S decreases, the investor does not lose as much since the loss from margin can be

financed with a lower rate. Thus forward price for S is lower than futures price in

this case. The reverse is true ifS is negatively correlated with short rate. Liquidity is

also another factor (futures is more liquid than forward - the market places a value

on liquidity thus price of futures is higher than forward in this case?). In most cases,

it is reasonable to assume that they are the same.

Futures on currencies (Forward exchange rate): F0 = S0e
r−rfT, where S0 is the

current spot price in US dollars of a unit of foreign currency and F0 is the futures

price in US dollars of a unit of foreign currency at time T. The arbitrage argument

is because of the equation erfTF0 = S0e
rT , where the LHS is invested in the foreign

market and exchanged at time T, and the RHS is exchanged at time 0 and invested in

the US market. Practical observatino: If r > rf futures price increase with maturities

and vice versa. See Table 5.4.

Futures on commodities with cost for storage : F0 = (S0 + U)erT , where U is the

present value of all the storage costs, net of income, during the life of the contract.

The arbitrage argument for the short side is to borrow S0 +U from the bank to buy a

share of S and to buy a “bond” with income stream equals to the times of storage cost

payments. If storage cost is incurred as proportional to the price of the commodity,

it can be treateed as negative yield and thus F0 = S0e
(r+u)T , where u denotes the
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storage costs per annum as a proportion of the spot sprice net of any yield earned on

asset.

Convenience yield: F0e
yT = (S0+U)erT . In this case F0 < (S0+U)erT . Investment

asset has y = 0. This reflects the advantage of the ownership of the asset being able

to keep a production runnign and perhaps profit from temporary shortages. IT also

reflects the market’s expectations concerning the future availability of the commodity.

The greater the possibility of shortage, the higher the yield. Also where appropriate

F0e
yT = S0e

(r+u)T or F0 = S0e
(r+u−y)T If futures price decreases as a function of

maturity, it indicates that r + u < y (Table 2.2).

Cost of carry: measures the storage cost plus interest paid to finance the asset

less income earned on the asset. F0 = S0e
(c−y)T . Thus for non dividend paying stock,

c = r, y = 0. For stock index, c = r − q, y = 0. For a currency, c = r − rf , y = 0.

For a commodity that provides income at rate q and requires storage costs at rate u,

c = r − q + u.

Futures price and expected spot price : Question is F0 <=> E(ST )? (E is not

risk neutral here). Consider a speculator who longs a future contracts. He finance

the (future cost of F0) by borrowing with risk free rate. The cost today is F0e
−rT .

The income in the future is ST . The present value of this investment is −F0e
−rT +

E(ST )e−kT where k is the investor’s required return on the investment, which reflects

the systemic risk of the asset. All investment is priced so that the net present value

is 0 : F0 = E(ST )e(r−k)T . If the asset return is uncorrelated with the market, r = k

and thus F0 = E(ST ). If the asset return is positively correlated, k > r and thus

F0 < E(ST ). This is known as normal backwardation. If the asset return is

negatively correlated, K < r and thus F0 > E(ST ). This is known as contango.

(The terms sometimes is used to compare futures price with current spot price, not

expected future spot price).

An example of asset with positive systemic risk is a stock index : the expected

return of an investor on the index is generally more than r. If stock provides dividend

q, the expected return is more than r − q. Thus F0 = S0e
(r−q)T is consistent with

the prediction that futures price understates the expected future stock returns for an

index.
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6 Chapter 6: Interest rate futures

Remark: For bond futures, there is flexibility to choose the delivery asset ( cheapest

bond to deliver ). Determining the present value of these assets is difficult without

knowing the exact term structure. The conversion factor seems to “balance” this

term structure effect with the discount rate of 6 % per annum. See also example 6.2.

There are also other technicalitites on coupon payments in between start and delivery

dates that need to be addressed. In practice the cheapest to deliver is probably hard

to know and the quoted price is decided by supply / demand ?

Problem (Ex 6.2) : Suppose that in a Treasury bond futures contract, it is known

that the cheapest to deliver bond will be a 12 % coupon bond (paid semiannually)

with a conversion factor of 1.6. The current quoted bond price is 115, The delivery

date will take place in 270 days. The last coupon date was 60 days ago, the next

coupon date is 122 days (before delivery, relevant for bond cash price) and the coupon

date after is 305 days (after delivery, relevant for accrued interest to futures seller to

determine futures cash price). Suppose the constant interest rate (i.e. flat term

structure) is 10 % per annum. What are the cash price ( the price actually paid by

the purchaser of the futures ) and the quoted price ( the price quoted, in the same

category as prior settlement price etc. ) of the futures?

Remark : Quoted price of futures is affected by the conversion factor, cash price

of futures is not. First, cash price of the bond ( see below ) is obtained by adding to

the quoted price the proportion of the next coupon payment accrued to the holder.

That is

S0 = 115 +
60

60 + 122
× 6 = 116.978.

The present value of the coupon of 6 received after 122 days is I = 6e−0.1×122/365 =

5.803. Thus the cash price of the futures is (S0−I)erT = (116.978−5.803)e0.1×270/365 =

119.711.

On the other hand, cash futures price = ( quoted futures price × conversion factor

) + accrued interest. The accrued interest (to the futures short seller, different from

the accrued interest above - error in example 6.1) is 6 × 148
148+35

= 4.85. Thus the

quoted futures price is
119.711− 6× 148

148+35

1.6
= 71.79

Remark : Since traders will always choose cheapest bond to deliver ( theoretically

), any other quoted futures price will result in arbitrage.
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Accrued interest : Referred to coupon adjustment method in between period. Also

related to day count conventions. There are three day count conventions : Actual /

Actual, 30 / 360, Actual / 360. We use Actual / Actual in this discussion as it is used

by US treasury bonds. 30 / 360 is used by US corporate and municipal bonds. Note

: in 30 / 360 convention, there are 3 days between Feb 28 and March 1 !. Actual /

360 is used for US money market instruments.

We skip price quotations for US treasury Bills. For US treasury bonds, there are

quoted price (clean price) and cash price (dirty price, the price actually paid). The

relation is : Cash price = Quoted price + Accrued interest since last coupon date.

See problem above.

Conversion factor : Equal to the ratio of the quoted price of the bond (over the

principal) would have on the first day of the delivery month using semiannual discrete

compounding of % 6 interest rate. Example : 8 % coupon bond (semiannual) with

18 years and 4 months to maturity. We assume 18 years and 3 months to maturity.

First discount back to 3 months from today gives

4 +
36∑
i=1

4

1.03i
+

100

1.0336
= 125.83.

where .03 comes from semiannual compounding. Next discounting back to today for

the 3 months is (NOT) : 125.83/(1 + .015). The book calculates interest rate of 3

months as
√

1.03 − 1 = .014889, which comes from compounding 3 months twice is

6 months ? This is correct because interest is accrued. That is (1 + r)2 = 1.03 is the

equation to solve. Thus the present bond value is 125.83/1.014889 = 123.99. There

is an accrued interest of 2 dollars from the first 3 month period (4 × 3 / 6 ) . Thus

subtracting the accrued interest this becomes 121.99. The conversion factor is 1.2199.

(See the last sentence on page 136 for explaination).

Cheapest to deliver bond : At any given time during the delivery bond, there

are many bonds that can be delivered. The Treasury bond future allows the short

position to choose to deliver any bond that has maturity between 15 and 25 years. The

party with short position receives (Most recent futures settlement price × Conversion

factor ) + Accrued interest and paid for the cost of purchasing a bond at (Quoted

bond price + Accrued interest ). So they try to minimize (Quoted bond price +

Accrued interest ) - (Most recent futures settlement price × Conversion factor ) +

Accrued interest. These quantities clearly depend on the underlying bond (even the

calculation of the most recent futures price !) so the conversion factor must be taken

into account. Several other factors to choose cheapest to deliver is listed on page 138.
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The 6% per annum rate in the conversion factor also affects the choice of cheapest to

deliver.

Eurodollar futures: futures to lock in a LIBOR rate for a 3 month period at a

delivery date (typically March, June, Sept and Dec). (Note: LIBOR rate is still given

as rate per annum, but it is calculated as compounded quarterly). Quoted as 100 -

R, where R is the prevailing LIBOR rate. 1 contract is 1 million dollars. Designed

so that 1 basis point movement (0.01 % or 0.01 change in future price) is equivalent

to 25 dollars change in a contract.

The contract price is defined as

10, 000× [100− 0.25× (100−Q)]

where Q is the quoted futures price. For example, the contract price at futures price

99.725 is 999,312.5 and at 99.615 is 999,037.5. This corresponds to a change of 11

basis point (99.615 - 99.725 = -0.11) and 275 change in contract price.

Eurodollar locks in interest rate: Suppose current futures quote is 96.5 or 3.5

% per annum. Suppose at delivery the actual rate is 2.6 % per annum. Lock in

the rate of 3.5 % by buying 1 futures contract. The gain from the futures contract

is 25 × (97.40 − 96.50) × 100 = 2250. The interest earned in a 3 month period is

106×0.25×0.026 = 6500. The total is 8750, which is the same as a 3.5 % rate earned

in a 3 month period on 1 million dollars.

Note : Futures payment is made that time T1, the beginning of the borrowing

period (in contrast to FRA, whose payment is made at time T2. Even if it is made at

time T1, it is done via discount from T2 to T1). On the other hand, interest earned is at

time T2. So there can be an adjustment on the number of contract needed by assuming

the prevailing 3 month rate is 3.5 % and buy only 1/(1+0.035×0.25 = 0.9913 contract

(so that the payment from the futures can earn interest during the 3 month period

to match the locked in rate at time T2).

Forward vs Futures interest rates: Rates from FRA tends to be lower than the

rates from futures contract, for longer dated contracts. The first (main) reason is

the daily settlement of the futures, which leads to the forward rate beling lower than

the futures rate, using the same reasoning as the forward price being lower than the

futures price. The second (less important) is the payment on the FRA is made at

time T2 instead at time T1 as the futures contract. Suppose a FRA has a payoff

of RM − RF at time T2. If RM is high which leads to a positive payoff, the cost of

receiving this payment at time T2 rather than at time T1 is high (sice rate is high).
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If RM is low which leads to a negative payoff, the saving of receiving this payment at

time T2 rather than at time T1 is small. So overall the desire is for the payment to

be made at time T1 not T2.

Convexity adjustment: Forward rate = Futures rate - 1
2
σ2T1T2, where σ is the

standard deviation of the change in the short term interest rate in 1 year, both rates

expressed in continuous compounding.

Ex: Suppose the current futures rate is 6 % per annum. This corresponds to 1.5

% per 90 days and an annual rate of e
90
365

R = 1.015 under continuous compounding.

From here we can use the convexity adjustment to figure the forward rate.

Extending LIBOR zero curve using Eurodollar futures: Usually we can only ob-

serve LIBOR rate 12 months out (Hull section 7.6). To extend LIBOR zero curve

out to 2 years (sometimes as far as 5 years), we do the following (Further extension is

done by swap rates). From the convexity adjustment, we can figure out the forward

rates for the period Ti, Ti+1. Suppose that Fi is the forward rate calculated from the

ith Euro dollar futures contract (for the period Ti, Ti+1 and Ri is the zero rate for a

maturity Ti. We showed

Fi =
Ri+1Ti+1 −RiTi

Ti+1 − Ti
.

Or

Ri+1 =
Fi(Ti+1 − Ti) +RiTi

Ti+1

.

Duartion based hedging using futures: Suppose a portofolio is interest rate depen-

dent (of bonds, money market security etc.) Let VF : contract price for one interst

rate futures contract, DF : Duration of the asset underlying the futures contract (at

the maturity of the of the contract?), P : Forward value of the portfolio at the ma-

turity of the hedge (usually same as present value) DP : Duration of the portfolio at

the maturity of the hedge. Also assume that ∆y change in yield is the same for all

maturities. Then it is approximately true that

∆P = −PDP∆y

∆VF = −VFDF∆y.

The number of contracts required to hedge against an uncertain ∆y is N∗ = PDP

VFDF
.

Factors to consider: if Treasury bond futures then need to consider which bond is

cheapest to deliver. Since futures price and interest rate move in opposite direction
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(verify this for the bond futures above), if a company loses money when interest rate

drops they should hedge by taking a long future position and conversely. Choose

futures contract so that duration of the underlying asset is as close as possible to

the duration of the asset being hedge. Ex: Eurodollar futures for short term, ultra

T-bond, Treasury bond, Treasury note futures for longer term hedge. (Is the duration

of Eurodollar i.e. LIBOR 1?)

7 Chapter 7 : Swaps

Interest rate swap: A contract where one party pays the floating (LIBOR) rate and

the other party pays an agreed upon fixed rate. An interest rate swap can be viewed

as an exchange of a floating rate bond for a fixed rate bond. It is usually structured

so that the initial value of the swap is 0. Thus the value of the fixed rate bond is

equal the value of the floating rate bond at the beginning of the swap.

Use: Interest rate swap is used to transform a fixed (floating) rate loan (asset)

into a floating (Fixed) rate loan.

Why swap : Comparative advantage argument. If the difference in the spreads

in the fixed and floating rate market of the two institutions is not zero, a swap

can be structured so that each institution gains an advantage of approximately half

of this difference (after the cut from the financial intermediary). This is of course

based on the assumption that each institution has the desire to lend / borrow in a

compatible market with the other. Criticism of the comparative advantage argument

: the difference in spread is due to serveral factors. First the term of borrowing

may be different (6 month in float versus 5 years in fixed). Second, this difference

reflects the credit risk difference of the two companies. The reason one (lower rated)

company may have a comparative advantage in the floating market is because the

term is shorter. So by swapping the rate, the higher rated company may bear the

risk of the lower rated company defaulting in the long run (5 years).

Financial intermediary, market makers: Usually the two parties deal with a fi-

nancial institution to structure the swap. Typically the institution earns 3 or 4 basis

points (0.03 % or 0.04 %) on “vanilla” LIBOR-for-fixed swaps. This spread is partly

to compensate the institution for the risk of default of either the companies on the

swap payments. Market makers can enter the swap without having an offsetting swap

with a counter party. They post their bid ask fixed rates (ex: bid = 6.03, offer =

6.06) and the swap rate is the average of these two.
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Swap rate: not risk-free, but reasonably close to risk-free in normal market con-

ditions. Recall: LIBOR is approximately the rate for AA institutions. A financial

institution can earn the 5-year swap rate by : a) lend the principal for the first 6

months to a AA borrowers (at LIBOR), then roll over to another 6 months to other

borrowers and b) enter into a swap (which has less chance to default, see below)

to exchange LIBOR income for the 5 year rate. This is better than lending a AA

institution at a fixed rate for 5 years. Indeed, a 5 year swap rates is less than 5 year

AA borrowing rate. The reason is the longer the term, the more likely an institution

might default. By rolling over every 6 months to AA borrower whose probability of

default in 6 month period is low, this risk is reduced.

LIBOR zero curve: The zero rate curve for continuous compounding discount

inferred from the LIBOR rate. This is also referred as the LIBOR / swap zero rate

since the swap rate is used to extend the zero rate. In section 4.5 the zero rate

determined from Treasury bond prices is referred to as the Treasury zero curve.

Meaning of swap rate : The value of a newly issued floating-rate bond that pays

6-month LIBOR is always equal to its principal value when LIBOR zero rate is used

for discounting. (This bond pays semi annual coupon at the LIBOR rate). Since

value of fixed rate bond equals value of floating rate bond at the beginning of the

swap, this means a fixed rate bond who fixed rate is the swap rate also sells at par.

Using swap rate to extend LIBOR zero curve by bootstrapping : By knowing that

the value of the fixed rate bond paying the swap rate is at par, we can bootstrap to

get the last zero rate in the bond payment schedule. Ex:

2.5e−0.04×0.5 + 2.5e−0.045×1.0 + 2.5e−0.048×1.5 + 2.5e−R×2 = 100,

where 4 %, 4.5 %, 4.8 % are known zero rates. R is the extended zero rate to be

found. 2.5 is from the 5% 2 year swap rate (for payments made semi-annually). 100

is the bond value at par.

Interest rate swap pricing: The basic formula is Vswap = Bfix −Bfl (or vice versa

depending on the position). Bfix can be figured out using the usual method. TO

determine Bfl, we use the principle that its value is equal to the notional principal L

immediately after a (any) coupon payment. We only need to figure out this value at

the next immediate coupon payment time t∗ after the present time at 0. The coupon

payment is k∗ which is based on a rate that is known at the present time (actually

even known at the previous payment time). Thus its value immediately before the

next payment is L + k∗ and its present value is (L + k∗)e−r
∗t∗ where r∗ is from the

zero LIBOR/swap rate.
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Ex: A swap to receive 6 month LIBOR and pay 3 % per annum with semi annual

compounding has a remaining life of 1.25 years. 6 month LIBOR at the last payment

date was 2.9 %. Suppose L = 100. Then k∗ = 0.5× 0.029× 100 = 1.45. t∗ = 0.25 and

r∗ is given as 3.4 %. Then the floating leg is worth 101.45 × e−0.034×1.25 = 100.7423.

Here Vswap = Bfl −Bfix.

A slightly different way to look at this is to compute the floating leg payment, by

assuming that the future LIBOR rate is equal to the forward rate (which is true from

the present point of view). Then we can find the present value of the future floating

cash flow and subtract the present value of the fixed cash flow from it.

Currency swap : Involve the exchange of principals in two different denominations

at the beginning and the end of the swap (in contrast with interest rate swap where

principals aren’t exchanged since they’re the same). Can be of three types : fixed for

fixed, fixed for float and float for float. Each party receives the rate available to the

currency that they exchanged to the other party. Ex: At the beginning, IBM pays

15 million USD and receive 10 million pounds. If fixed for fixed, during the life of

the swap, IBM receives 6 % of 15 million USD and pays 5 % of 10 million pound

annually. At the end, IBM pays 10 million pounds to receive 15 million USD.

Valuation : S0BF − BD where BF is the current price of the foreign bond corre-

sponding to the foreign rate structure and BD is the current price of the domestic

bond corresponding to the domestic rate structure. Can also be valued via the fu-

ture income streams on both sides and translated into one currency by the future

(forward) exchange rate. See Table 7.9.

Comparative advantage : The explanation is similar to the comparative advantage

in interest rate swap. One important difference: foreign exchange risk. This is usually

taken on by the financial intermediary (who earn the bid ask spread) and structured

so that the two counterparties do not bear any exchange rate risk (See Figure 7.11,

7.12, 7.13). The exchanged rate risk of the finanical intermeidary can be hedged by

purchasing the foreign currency in the forward market. Note that the bid ask spread

here is between two different currencies, so exchange rate should be taken into account

(which is reflected in the two different principals denomination).

Credit risk: At any point in time, the value of the swap is positive for the financial

institution wrt to one counterparty and negative wrt to one other counterparty. The

counterparty with positive value may default. The one with negative value usually

does not (even if they default they can sell their position to a third party.) Even if

one party defaults the financial institution still has to honor the contract with the
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other party. Some swap position tends to hav positive value at the beginning and

negative values later on due to term structure effect. These positions are less likely

to default.

Potential losses : Swap potential losses are much less than the potential losses on

a loan with the same principal. This is because the value of the swap is usually a

much less than the value of the loan. On the other hand, potential losses on currency

swap is higher than interest rate swap. The reason is the exchange of the principal

at the end of the swap ( exposed to exchange rate risk).

Market risk versus credit risk : Market risks are risks due to interest rate and

exchange rate change. Can be hedged be entering into offsetting contracts. Credit

risks are due to possible defaults of the counterparties. Harder to hedge. Can be

hedged by credit default swap (CDS).

8 Chapter 8 : Securitization

Securitization and ABS: The process of re-organizing a portfolio of income producing

assets into cash-flow generating tranches (securities). The product is referred to

as asset backed security (ABS). If the asset is mortgage loans, it is referred to as

MBS (mortgage backed security). MBS is special because it is guarantted against

defaults by borrower by Ginnie Mae. Other ABS does not necessarily have this kind

of guarantee against defaults. The process of securitization of loans frees the bank

up to make more loans because they don’t keep the securitized loans on their balance

sheets.

Tranches of ABS: Typical example includes Senior, Mezzanine and Equity tranches

with proportion ( 80 %, 15 %, 5 %) respectively in principal. The return on each

tranche is LIBOR plus a spread, with spread increasing as one goes down the tranche

levels. The cashflow goes from top tranche down. In terms of recovery of principals,

if there is any loss, the loss absorption starts from the lowest tranche up. The Senior

tranche typically has AAA rating, Mezzanine BBB, equity is unrated.

ABS CDOs: The ABS of of Mezzanine tranches of ABS. The assorption of the

ABS CDOs is different than the original losses on the underlying assets (see Table

8.1).

CDOs: An ABS where the underlying assets are bonds.
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9 Chapter 9: OIS discounting

Treasury rate, even though risk free, is artificially low for 3 reasons: a) Treasury

Bills and Bonds must be purchased to fulfill certain obligations, this drives demand

and price up, hence rate down b) The capital required to support an investment in

Treasury bonds and bills is substantially lower than other low risk instruments c)

Favorable tax treatment (not taxed at state level) compared with other fixed income

instrument.

OIS rate: the swap rate for exchanging a fixed rate with the geometric average

of the overnight rate over a 3 month period (or multiples of 3 month period). An

investor borrowing at over night rate and roll over is equivalent to borrowing at the

geometric average over the 3 month period. At the end of each 3 month period, the

fixed rate payment is exchanged with the geometric average payment. The OIS term

structure results in the OIS zero curve.

OIS-LIBOR spread: OIS rate is lower than LIBOR rate. A bank can : a) borrow

100 from an over night market for 3 months, roll over each night b) lend 100 for 3

months at LIBOR 3 month rate c) Use OIS to swap the over night rate for LIBOR rate.

In doing this, the bank undertakes the risk of 3 month LIBOR loan defaulting. The

connterparty to bank A stands less risk because the overnight loan can be reviewed

every day. The difference between LIBOR-OIS rate is the spread, used as a measure

of stress in the market. In normal condition, is about 10 basis points. In Oct 2008,

364 basis points : banks do not want to lend to each other.

OIS as proxy for risk free rate: good proxy, since the risk of overnight default is low

and the risk of OIS swap defaulting is also low (as the swap is usually collateralized).

OIS zero curve : 1 month OIS rate defines 1 month zero rate, 3 month OIS rate

defines 3 month zero rate and so on. When there are periodic settlements in the OIS

contract, the OIS rate defines a par yield bond. Ex: 5 year OIS rate is 3.5 % with

quarterly settlement. Then a 5 ear bond paying a quarterly coupon rate of 3.5 % is

sold at par.

OIS discounting is different from LIBOR discounting : Suppose 1 year LIBOR

rate is 5 % and 2 year LIBOR for fixed swap with annual payment is 6 %. If R is the

2 year LIBOR / swap zero rate (just a discount rate figured out from the swap, NOT

the swap rate), we can calculate R in 2 ways: using the bond sells at par concept

.06

1.05
+

1.06

(1 +R)2
= 1.
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Using the swap value is zero with forward LIBOR F equals (1+R)2

1.05
− 1 (since

1.05× (1 + F ) = (1 +R)2) :

.06− .05

1.05
+

0.06− F
(1 +R)2

= 0.

Either way gives R = 6.030% which gives F = 7.0707% On the other hand, if 1 year

OIS zero rate is 4.5 % and 2 year OIS zero rate is 5.5 % (so that OIS zero rates

is about 50 basis points lower than LIBOR zero rates) then the forward LIBOR F

satisfies

.06− .05

1.045
+

0.06− F
(1 + .055)2

= 0.

From this F = 7.0651%.

This calculation is referred to as calculation of a forward LIBOR curve when OIS

rates are used as risk-free discounting. When a swap is valued using OIS discounting,

the forward rartes corresponding to the cash flows are obtained from the appropriate

LIBOR curve. Cash flows are then calculated assuming these forward rates will realize

and discouned using the appropriate OIS zero rates.

OIS vs LIBOR: the industry practice is to use OIS discounting for collateralized

derivatives and LIBOR for non collateralized derivatives. The justification is the

different costs of funding (in non collateralized derivatives the cost of funding is higher.

Collateralized derivatives are funded by the collaterals.) However, finance principle

states that the method of funding is irrelevant in valuation of an investment. It is

the risk and the expected cash flow of the investment that is important. Hull : OIS

rate is as close to risk free as we can get. Thus it should be used in BOTH cases.

Value adjustments : Different ways to adjust the present value of a current po-

sition based on factors such as future default events, funding methods (collaterals,

funding costs). There are : DVA : debit (debt) value adjustment, CVA : credit value

adjustment, CRA : collateral rate ajustment, FVA: funding value adjustment.

CVA : Calculated based on the event the counterparty (from the bank’s point of

view) default and the present expected loss of the portfolio at the default. CV A =∑N
i=1 qivi, where qi is the probability of counterparty default during the time interval

i and vi is the present value of the loss (may not be simple to calculate).

DVA: Calculated based on the event of the bank default and the expected gain of

the bank from its own default. DV A =
∑N

i=1 q
∗
i v
∗
i , where q∗i is the proability of the

bank default during the time interval i and v∗i is the present value of the gain.
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Thus if Vnd is the present no default value of the portfolio, the adjusted value is

Vnd−CV A+DV A. If collateral is posted, interest rate paid on the collateral may be

different from the risk free rate. Denoted as CRA (can be + or -), this needs to be

taken into account by being added to Vnd: Vnd −CV A+DV A−CRA. Lastly, some

banks take into account their different funding cost from the risk free rate and this

becomes the FVA (See funding cost below).

Funding cost : (This is related to the OIS discussion above) A bank may have an

average funding cost different from the risk free rate (probably depending on their

credit rating). This is the interest rate they can borrow fund from the money market

etc. Some banks use their funding cost rate as the discounting factor for present

value valuation. Hull argues that this is not appropriate. If a project is risk free,

its present value should be evaluated via risk free discounting. Hull gave an example

of a risk free project giving return of 6 % while the risk free rate is 5 % and bank

funding cost at 7 %. He argues that this project should be undertaken. Questions

not answered : how can the bank fund such project? Why if the project is risk free

its return is 6 % while risk free rate is 5 %? On the other hand, Hull made the

relevant point that the correct way to account for risk is via CVA and DVA. Maybe

it is about separating between the bank’s way of generating funding (such as a short

position) versus the project’s own value (which is a long position). In evaluating the

long position it should be risk free discounting. The bank’s funding cost should be in

the short position and the net value is how the bank should make decision upon.

10 Chapter 10 : Options markets mechanics

Option types : Put or Call, American, European.

Remark: If we want to upperbound the buy price, we long a call, lowerbound the

buy price, we short a put. If we want to lowerbound a sell price, we long a put. If we

want to upperbound a sell price, we short a put. (Sounds strange and is discussed in

range forwards contract, chapter 17.2 in currency options. The point is to make the

cost of insurance zero.)

Types of uderlying assets: Stock options, Foreign currency options, Index Options,

Futures Options.

Terminology: Option class: all options of the same type (calls or puts) on a stock

. Ex: IBM calls are on class, IBM puts are nother class. Option series : all options

of a given class with the same strike and expiry. Ex: IBM 200 Oct 2014 is an option
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series. In the money, At the money, Out of the money. Intrisic value is max(S−K, 0)

for call and max(K − S, 0) for put. For American option, there is also time value,

which is the difference between the option value (since it’s no less than the intrinsic

value) and its intrinsic value.

Dividends and stock splits: Early OTC options terms (strikes) are adjusted to

accomodate dividends and stock splits. The overall effect of dividend or split is to

make the stock price goes down a percentage amount. A 20 % dividend is essentially

the same as a 6 for 5 stock plit. Ex: A call option to buy 100 shares at 30 dollars

per share. The company makes a 2 for 1 stock split. The options then change to buy

200 shares at 15 dollars per share. Ex: A put option to sell 100 shares for 15 dollars

per share. The company declares a 25 % dividend. The optio is changed to sell 125

shares for 12 dollars. This is not true for options in general (?) since in the next

chapter Hull dicusses the effect of dividend on option price.

Limits: Position limit: max number of options that an investor can hold on one

side of the market. Exercise limit: max number of contracts that can be exercised by

an individual (group) in any period of 5 consecutive business days ( usually equals

position limit).

Market makers: Individual who provides liquidity to the option market by quoting

the bid / ask price on the option. Bid is always less than ask, difference is the spread.

Commissions : Money paid for executing an option trade or exercise (in this case

same as commission for stock trade). The commission schedule can encourage the

investors in a certain direction (i.e. selling the options rather than exercising them).

Margin requirements : Traders who write options are required to matain funds

in a margin account. The amount of margin depends on the trader’s position. If

a trader writes an option without entering an offsetting position in the underlying

stock, it is referred to as a naked option. There are specific margin requirements for

naked options.

Warrants : Options issued by a financial instittution or nonfinancial corporation.

Ex: (Common use of warrant) A corportion issues call warrants on its own stock and

attaches them to the bond issue to make it more attractive to the investors.

Employee stock options: Call options issued to employee, at the money of the

time of issue.

Convertible bonds: Bonds issued by a company that can be converted to equity

at certain times using a predetermined ratio. Essentially bonds with an embedded

call option on the company’s stock (see above).
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11 Chapter 11: Properties of stock options

Factors affecting option prices : See table 11.1 for general information. Some factors

to note: Time to expiration for Euro call and put, effect is uncertain. If dividend is

expected then the shorter expiry is more desirable than the longer expiry call. What

about Euro put? What would make the effect of expiry on Euro put uncertain since

dividend payout increases the value of a Euro put? Probably from Black Scholes

since if T is increased to infinity the present value of the strike is 0 while the stock

price present value is S0 which would lead to a negative or at least decrease in option

price. Effect of increasing volatility is positive for both put and call. It’s because with

volatility increase the option payout is protected in one direction and gains more from

the other direction (compared with holding a stock only then the effect of increase

in volatility will cancel out with both directions). Effect of interest rate is positive

for call and negative for put. The reason is as interest rate increases the expected

return for stock increases (think risk neutral model for S) while the present value of

the strike decreases. This makes the stock more likely to be in the money at expiry

while cheaper to purchase from the present value point of view. The exact reverse

argument applies to put. Note that this is only for increase in interset rate only while

keeping all other factors constant. In reality, it usually happens that an increase in r

brings a decrease in S0 so the overall effect may be uncertain. Dividend pays results

in a decrease in stock price so the effect is negative for call and positive for put.

Bounds on non-dividend paying stocks: Euro call : max(S0−Ke−rT , 0) ≤ c ≤ S0.

Euro put: max(Ke−rT −S0, 0) ≤ p ≤ Ke−rT . Some remarks: A call option can never

be worth more than the price of the stock (by definition), plus present value of ST

is S0 hence the upper bound. A put option is never worth more than K hence the

upper bound of Ke−rT . The lower bound can be obtained by risk neutral pricing or

no arbitrage argument when compared with a forward contract.

American call is worth the same as European call since its intrisic value is S0−K
and a European call value is always higher than this intrinsic value (due to r > 0).

Thus it is not optimal to exercise American call before expiry. Another argument can

be viewed by an American call option holder who wants to hold on to the stock until

after expiry. Then the option holder does not want to exercise early since the cost he

has to pay to buy the stock is more than what he has to pay at expiry (in terms of

time value). If the holder does not want to hold on to the stock then he should sell the

option rather than exercising because there would be others who would want to hold
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on to the stock (obviously here the option is deep in the money and thus there are

people wanting to hold on to the stock). This would make the option value higher than

the exercise or intrinsic value. Thus its bounds are max(S0 −Ke−rT , 0) ≤ C ≤ S0.

American put should be exercised early especially when deep in the money and

interest rate is high. It is because then the stock price is very low (and thus can

only go up) and the option holder would rather get the strike price earlier than later.

In general, the early exercise of a put option is more attractive if S0 decreases, r

increases and volatility decreases. Its bounds are max(K − S0, 0) ≤ P ≤ K. (Note

the difference here with American call compared to the Euro counterpart due to early

exercise possible for put).

Effect of dividends : Change the lower bound of call and put : max(S0−Ke−rT −
D, 0) ≤ c and max(Ke−rT − S0 + D, 0) ≤ p where D is the present value of the

dividend payments during the life of the option. Also now American call may be

optimal to exercise immediately before ex=dividend date. Put call parity becomes

c− p = S0 −Ke−rT −D.
Note : Compare with chapter 5: Does the index price go down after dividend

yield payment? This seems to be the case per the description at the bottom of page

115. In this case coupon payment (bond) is different from dividend payment exactly

where the price changes or not after payment. The argument in chapter 5 should be

modified to : Sti = Sti−(1 − q) and d = Sti−q. Thus πti− = πti while ∆ti = ∆ti−
1

1−q ,

where ∆t is the number of shares held at time t. Note that at any time πt = ∆tSt.

Replacing q by q∆T we have ∆T = ∆0
1

(1−q∆T )
T

∆T
. Push ∆T to 0 gives ∆T = ∆0e

qT .

If ∆0 = 1 then ∆T = eqT and thus S0 grows to eqTST at time T .

12 Chapter 12: Trading strategies involving op-

tions

Principal protected notes: Consists of a zero coupon bond and a call or a put option

on an asset (portfolio). The strike of the option is usually the principal of the bond.

Thus the investor invests the principal at the beginning of the investment and receives

the principal at the end of the investment from the bond plus the option pay off (if

any). This allows the investor to take a bet on the price movement of the asset

without incurring a risk on the principal. On the other hand, the investor forgoes any

interest on the principal and / or dividend payout from the asset. For the bank (the
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seller) to make a profit, the price of zero coupon bond plus the option price must be

less than the principal. This depends on the interest rate (the higher it is the lower

the bond price) and the volatiltiy (the higher it is the higher the option price). If this

sum exceeds the principal, some adjustments can be made such as increasing strike

price, increasing the expiry, capping the investor’s return, using barrier option. A

critical variable for the bank is the dividend yield (in the example 12.1). The higher

it is, the more profitable the product is for the bank (possibly because the call option

price is lower?). If not then the lower bound on call option prices shows that the

bank cannot make profit in this example.

Option plus underlying asset: Covered call : long a stock and short a Euro call.

Reverse covered call (reverse the position of covered call). Protective put : long

a stock and a Euro put. Reverse protective put. The profit patterns of all these

strategies are similar to their counterpart with Euro put / call (with a shift) because

of the put call parity.

Spread : Long / short on different calls (or puts) on the same stock.

Bull spreads (Call): Long a Euro call at K1 and short a Euro call at K2 at same

expiries where K1 < K2. Pay off (ST−K1)+−(ST−K2)+. Requires initial investment.

Thus positive profit if ST sufficiently above K1.

Bull spreads (Put) : Long a Euro put at K1 and short a Euro put at K2 at same

expiries where K1 < K2. Pay off (K1 − ST )+ − (K2 − ST )+ is non positive. Positive

initial cash flow. Thus also profit if ST sufficiently above K1. Actually the same profit

structure with Bull spreads (Call) (is exactly K2 −K1 less than the bull call pay off

if stock pays no dividend by put call parity).

Bull spread is thus betting on stock price increasing.

Bear spreads (Put): Short a Euro put at K1 and long a Euro put at K2 at same

expiries where K1 < K2. Payoff (K2−ST )+−(K1−ST )+. Requires initial investment.

Positive profit if ST is sufficiently below K2.

Bear spreads (Call): Short a Euro call at K1 and long a Euro call at K2 at same

expiries where K1 < K2. Payoff (ST −K2)+ − (ST −K1)+ is non positive. Positive

initial cash flow. Thus also positive profit if ST is sufficiently below K2.

Bear spread is thus betting on stock price decreasing.

Box spreads : Combination of a bull call and bear put with the same two strike

prices. Pay off is always K2−K1. Thus is a way to arbitrage if the market price and

the interest rate (K2 −K1)e−rT do not match. Only works with European option.

Butterfly spreads: Long a Euro call with strike K1, short 2 Euro call with strike
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K2 and long a Euro call with strike K3, with K1 < K2 < K3. Pay off (ST −K3)+ +

(ST −K1)+− 2(ST −K2)+. Has limited loss (just initial option price) when ST < K1

or ST > K3 (assuming K2 = 1/2(K1 +K3) ) and gain approximately K2 −K1 when

ST is close to K2. Thus is a bet that the stock price does not have large movement

in the life of the option. A short butterfly spread gives moderate profit when there is

significant movement in stock price. A loss is incurred here if the stock remains close

to K2.

The assumption is the initial investment of the butterfly spread is positive. Thus

the call option price structure must be in a certain way. This is not obvious just by

looking at the relation of the strike prices.

Calendar spreads: Short a call option with expiry T1 and long a call option with

expiry T2 and same strike, T1 < T2. Pay off at time T1 is positive if ST remains close

to K because the option with expiry T2 is still worth high value. Incurs a loss if ST

is sufficiently far away from K at time T1. Is similar to butterfly spreads in pay off

structure. Neutral calendar spread: Strike is close to current spot. Bullish calendar

spread: strike is higher than spot, bearish calendar spread : strike lower than spot.

Combinations: Combining calls and puts on the same stock, usually long only

position.

Straddle: Long a Euro call and put with the same strike and expiry. Positive pay

off with large swing and loss with moderate move. Also referred to as a bottom strad-

dle or straddle purchase. A top straddle or a straddle write is the reverse position.

Highly risky since it has unlimited loss from large movement of stock price.

Strangles: Buy a Euro put at strike K1 and call at strike K2 with same expiration,

K1 < K2. Positive pay off with large movement of stock price and moderate loss with

moderate move. Requires bigger swing than straddle but also provides less loss.

Strips : Long one Euro call and two Euro put with the same strike and expiry.

Straps : Long two Euro call and one Euro put with the same strike and expiry. Also

positive pay off with large movement but betting on a specific direction.

Range forwards ( a topic of chapter 17, related to foreign currency) : if in position

to sell foreign currency : long a put at strike K1 and short a call at strike K2,

K1 < K2. If in position to buy foreign currency : short a put at K1 and long a

call at K2, K1 < K2. This is an alternative to forward contract and it is assumed

that K1 < F < K2 where F is the forward exchange rate at expiry. The point is to

construct the contract so that the cost of the contract is zero, to be an alternative to

a forward contract.
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13 Chapter 17: Options on stock indices and cur-

rencies

How many options to buy for portfolio insurance : If we have a portfolio of stock

indices that have the same dividend yield as the index yield. To protect the portfolio

from falling below a certain value, we can buy put options on the index. One index

option is on 100 times the index. For example, upon exercise, the holder of a call

option receives (S − K) × 100 and holder of a put option receives (K − S) × 100

in cash. Suppose that the value of the index today is S0. If the portfolio’s β is not

1.0, β put options must be purchased for each 100 S0 dollars in the portfolio. To

calculate the appropriate strike price (quoted in index value) we need to figure out

the corresponding portfolio value at the strike index level (from CAPM model, using

excess return (from risk free rate) of the index and excess return of the portfolio

from the beta) and reverse the process with the desired protected portfolio value. See

Business Snapshot 17.1 for an interesting application.

Options on stock paying known dividend yields: Suppose the yield rate is q. The

important argument is the price S0 changes to ST at time T when paying dividend

at rate q. Thus without paying dividend at rate q, a price S0e
−qT at time T will also

change to ST at time T , all else being equal. In terms of probability distribution,

we have the same ST distribution in two cases: 1. the stock starts at S0 and pays

dividend yield at rate q 2. the stock starts at S0e
−qT and pays no dividend (which is

the classical Black-Scholes case). Thus we just have to use the B-S formula with S0

replaced by S0e
−qT . The formula is

V0 = S0e
−qTN(d+)−Ke−rTN(d−)

d± =
(r ± 1

2
σ2)T − log( K

S0e−qT )

σ
√
T

=
(r − q ± 1

2
σ2)T − log(K

S0
)

σ
√
T

.

Thus in terms of option pricing, the word dividend should be defined as the reduc-

tion in the stock price on the ex-dividend date arising from any dividend declared. On

the other hand, this is exactly the result we obtain if we compute Ẽ(e−rT (ST −K)+)

where dSt = (r − q)Stdt+ σStdW̃t under P̃. Therefore, the Black-Scholes PDE is

−rv + vt + (r − q)xvx +
1

2
σ2x2vxx = 0

v(T, x) = (x−K)+.

29



Put-call parity: (From the same principle of replacing S0 with S0e
−qT ) c − p =

S0e−qT − Ke−rT . If we also recall that the forward price of S at time T is F0 =

S0e
r−qT then put-call parity can be expressed as F0 = K + (c− p)erT . This equation

can be used to estimate term structure of forward prices at the expiries that have

pairs of put and call actively traded. Other options can be valued using the B-S

formula expressed in (estimated) F0 :

V0 = F0e
−rTN(d+)−Ke−rTN(d−)

d± =
(r ± 1

2
σ2)T − log(K

F0
)

σ
√
T

.

This approach has the advantage of not having to estimate the yield on the index

explicitly. On the other hand, if estimates of dividend yield is required ( say with

American option ), the implied yield rate can be used from put call parity:

q =
−1

T
log(

c− p+Ke−rt

S0

).

This rate can be used, for example, in binomial tree evaluation of American tree

where the risk neutral probability is

p =
e(r−q)∆T − d

u− d
,

where u = eσ
√

∆T and d = 1
u
. These values (see 13.7 is so that the volatility (standard

deviation of the stock return St+∆T−St

St
in time period ∆T ) is σ

√
∆T . Equivalently

the variance of return in time period ∆T ) is σ2∆T. Is this the discrete version of

Ẽ(e−rT (ST −K)+), where we discretize the dynamics of the stock price under the risk

neutral probability and approximate the Brownian motion part ?

Option on foreign currency: Let S0 be the value of one unit of foreign currency

in US dollars. A foreign currency is analogous to a stock paying a known dividend

yield : 1. The rate rf paid depends on the value of the currency 2. A unit of foreign

currecy S0 would grow to erfTST at time T 3. Thus even though price wise S0 changes

to ST we only need e−rfTS0 to grow to ST in investment at time T (in other words

the fair price for ST at time 0 is e−rfTS0 and hence S “loses” value with rate rf ) . So

all formula in the above can be reapplied here with q replaced by rf and the forward

exchange rate as F0 = S0e
r−rfT .

14 Chapter 18 : Futures, Options and Black’s model

Distinguish spot options versus futures options (different underlyings)
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Futures call options : right to enter into a long futures contract. If exercised, the

holder acquires a long position in the futures contract plus a cash amount equals to

the most recent settlement futures minus strike. Effective payoff : (FT −K)+.

Futures put options : right to enter into a short futures contract. If exercised, the

holder acquires a short position in the futures contract plus a cash amount equals to

the most recent settlement futures minus strike. Effective payoff : (K − FT )+.

Usually futures option expiry is before the underlying futures contract expiry. If

they are the same, then the futures option is the same as the spot option, which is

the basis for Black’s formula.

Options on Interest rate futures: Options on Treasury bond, Treasury note and

Eurodollar futures. If an investor thinks short term (long term) interest rate will fall

(rise), he can buy a call (put) Eurodolalr futures (Treasury bond, Treasury notes)

option.

Spot versus futures option: Futures option is more popular. Futures price quote

much easier to get (from trading floor) than spot price quote. Further, one can

close out a futures contract before its expiry thus excluding the need to obtain the

underlying futures asset (commodity, bonds etc.), no delivery hassle. Futures is much

cheaper to trade so the funding required is less.

Most futures options are traded American style. We discuss Euro futures options

for Black’s formula.

Dynamics of futures price in the risk neutral world: If T is the futures expiry then

Ft = Ste
r(T−t). Therefore, dFt = σFtdW̃t. That is Ft is a martingale under the risk

neutral probability and has no drift. Futures can also be looked at then as asset that

pays dividend with rate r. (In fact, futures price is a martingale under the forward

measture. That is futures price is stock price denominated by zero coupon price)

Thus the fair price of FT at time 0 is F0e
−rT .

Observation on martingale pricing: Martingale pricing is the mathematical ex-

pression of the principle : the present value of a tradable asset (at some future point)

is its current price. This extends also to a portfolio of tradable assets. The emphasis

is on the asset. Thus the price process is not necessarily a martingale (price of a

dividend paying asset, futures price etc). On the other hand, the value of a share of

an asset paying dividend yield (as long as it is reinvested) is still a martingale. From

this point of view, we get the risk neutral pricing of derivatives of dividend paying

asset by looking at the replicating portfolios of such derivatives. On the other hand,

the futures price process actually is not a price of any asset. So looking at a portfolio
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of asset with futures price is not possible. Actually the futures price is the price of

St denominated under the unit of the zero coupon bond B(t, T ). From this point of

view, the t1 value of St2 denominated under B(t2, T ) should be the value of St1 de-

nominated under B(t1, T ). This is risk neutral pricing under the T forward measure.

This still does not give the pricing for FT at time 0. The reason is we want FT itself

in dollars, not in the unit of B(t, T ). Indeed, Ft is not the price of any traded asset.

It is the price of St

B(t,T )
. In this writing it is also strange if we consider it as fraction

of prices. We want to look at B(t, T ) as a “discounting factor” with no unit. Thus

we need to revert to risk neutral pricing formula to price FT using the replicating

portfolio idea (portfolio consisting both of B(t, T ) and St). The replicating portfolio

for Ft may not be straightforward. On the other hand, we know that the dynamics

of Ft is like a dividend paying stock. Thus for all pricing purposes it can be treated

that way. If there is an asset whose price process is Ft that asset MUST pay dividend

with rate r. Otherwise no one would hold on to such asset. Ft can be looked at as a

synthetic price in that sense.

Short term dynamics of futures price: Suppose the settlements days are ∆T, 2∆T · · ·
for the margin account. At time ∆T the payoff is F∆T −F0. The time 0 value of this

payoff is Ẽ[e−r∆T (F∆T −F0)]. But this is the value of the forward contract, which is 0.

This argument can be repeated at time i to show that Ft is a martingale udner P̃. In

fact, this shows the difference between futures price and forward price. Futures price

is martingale under the choice of numeraire as the money market account. Forward

price is a martingale under the choice of numeraire as the zero coupon bond. Forward

price is NOT a martingale under the usual risk neutral world of the money market

numeraire (see Shreve chapter 9 for example). Also see Hull footnote page 392 and

chapter 28. This is also why futures price can be viewed as an asset paying dividend

rate r. In general pricing VT = FT would be hard if FT is a forward price of an asset.

Lastly to show that the pricing formula is correct, we can use a replicating portfolio

consisting of a dividend paying stock whose price matches Ft. Because if we start out

with e−rTF0 at time 0 the final value of the portfolio is FT it must be the right price.

This shows that as long as two price processes match, their derivatives value are the

same, including dividend payment etc. Thus price doesn’t have to be of a physical

asset !

Futures price part 2: Actually if we hold a futures contract, by the daily settle-

ment, we actually do get the price stream change (minus the initial amount). This

price stream change can then be subjected to risk free rate if need be (? ).
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Thus the Black’s formula for Call futures option with expiry T is the pricing

formula for dividend paying asset with rate r

V0 = F0e
−rTN(d+)−Ke−rTN(d−)

d± =
±1

2
σ2T − log K

F0

σ
√
T

.

Black’s formula is more popular even for spot options price calculation. We only

need to find the futures with the same expiry as the option so that spot and futures

option price are equal. This is convenient because then the underlying asset can

be commodity, consumption, investment asset and can even provide income to the

holder. The relevant variable is just the futures price. Thus we don’t even need to

estimate the income (convenience yield) of the underlying asset. The futures price

incorporated the market’s estimate of this income. Black’s formula is also true when

interest rate is random. See Shreve’s 9.4.3

American futures option vs American spot option : American futures option can

be exercised early, in both call and put version. If we have a normal market (futures

price is higher than spot) then there is reason to exercise American futures call early.

In this case American futures call option is worth more and American futures put

options is worth less than their spot counterparts. If we have an inverted market

with futures price lower than spot then there is reason to exercise American futures

put early. In this case American futures call option is worth less and American put

options is worth more than their spot counterparts. This holds true even if option

expiry is the same as futures expiry.

15 Chapter 19: The Greeks

Stop loss strategy : Buy the underlying when the price is just above K and sell the

underlying when the price is just below K. Not practical because not self-financing

basically. In reality will need to buy when the price is about K + ε and sell when the

price is K− ε and thus incur a cost of 2ε plus transaction cost when doing so. If push

ε to 0 will have to infinitely many transactions.

Delta hedging: Hold −∆ shares of stock for every share of option in the portfolio.

Delta hedging is self-financing (approximately so in practice). See Table 19.2 and

19.3. Performance measure of delta hedging: the ratio of the standard deviation

of the cost of hedging the option to the theoretical price of the option (the smaller
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the better? ) Unlike stop-loss strategy, the performance measure gets beter as the

hedge is monitored more frequently (as rebalancing takes place more frequently, the

variation in the cost of hedging is reduced, see table 19.4). Delta hedging of a short

position in call option generally involves selling stock just when price decreases and

buying just when price increases (a buy high sell low strategy ! not the usual buy

low sell high? ). When we have a portfolio of options with the same underlying,

transaction cost can be reduced by doing a single transaction in the underlying to

make the delta of the whole portfolio neutral.

Theta: Sensitivity of the portfolio to the time remaining. Not a hedge parameter

as it does not make sense to hedge against the passage of time. Is usually used as

a proxy for gamma : in a delta neutral portfolio, if Gamma is high and positive,

Theta is high and negative and vice versa. The reason is the Black-Scholes PDE :

Θ + 1
2
σ2S2Γ = rΠ.

Gamma: Using Taylor expansion, assuming Delta is 0: ∆Π = Θ∆t + σ2∆S2Γ.

Thus combined with the remark in Theta, if Gamma is positive and there is no

change is S, portfolio tends to decline in value, but increases in value if there is a

large positive or negative change in S. If Gamma is negative, the situation is reverse.

Gamma of both put and call are positive (think about why, using the payoff profile

of put and call.)

Dynamic hedging in practice : Each trader ( or team) assigned to all options on

an underlying. Limits are defined for each Greek letter, special permission required to

exceed limits. Delta is quoted in the equivalent max dollar amount in the underlying

position. Ex : Delta limit is 1 million, stock price is 50 so delta cannot exceed

20k in absolute value (related, but not the same as max tolerance for the change

in portfolio). Vega quoted as max dollar exposure per 1 % change in vol. Traders

always make themselves delta neutral at the end of each day. Gamma and vega are

monitored, but not managed on day to day basis. Financial institutions usually have

negative gamma and vega since they write options. They manage gamma and vega

risks by buying options at competitive prices. Usually options are at the money at

the start so gamma and vega are high. As time progresses, options might be deep in

or out of the money so gamma and vega are low and of little consequence. Nightmare

scenario : close to expiry and options are also close to the money.

Delta of forward contract: Delta is 1 if no dividend and e−qT if pays dividend.

Delta of futures contract: Delta is erT if no dividend and er−qT if pays dividend.

Thus ∆ of futures and forward contract is different ! This is because futures contract
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gets settled daily on the futures price stream. Forward contract changes according to

the forward contract price (not the forward price) of S0 −Ke−rT .
Using futures for Delta hedging : Since futures is more actively traded than un-

derlying, for delta hedging we can use futures instead of underlying. The number of

shares need to be modified by either e−rT if underlying does not pay dividend and

e−(r−q)T if the underlying pays dividend from the original delta. If it is a currency

then the modification is e−(r−rf )T .

Synthetic option using dynamic hedging: Portfolio managers tend to buy put

options for portfolio insurance. If the put options are not available, one can be

synthetically created by holding Delta of put in the underlying and the rest in the

money market account. The action required to dynamically hedge everyday may have

an impact on the overall market supply / demand and thus create unintended market

size effect (see business snapshot 19.2). Index futures can be used to synthesize the

put option since index futures tends to have lower transaction cost than regular spot

futures. In this case two expiries need to be distinguished: the option expiry T1 and

the futures expiry T2 where T1 < T2.

16 Chapter 20: Volatility smiles

Deriving implied risk neutral distribution from call option price: We have

c(K) =

∫ ∞
K

e−rT (x−K)f(x)dx.

Thus

c′(K) = −
∫ ∞
K

e−rTf(x)dx

and

c′′(K) = e−rTf(K).

One can approximate f(K) with the central difference quotient :

f(K) ≈ erT
c(K + δ)− 2c(K) + c(K − δ)

δ2
.

This is also the same as the price of erT

δ2 share of the butterfly spread. Thus observing

the butterfly spread at different strikes gives us the implied risk neutral distribution.

Volatility smile is the same for call and put : By put call parity :c−p = S0−Ke−rT

which applies for both theoretical and market price, we have cT − cM = pT − pM .
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Suppose σCimplied is such that the LHS is 0 (by its definition). Then it must also make

the RHS 0 and thus σCimplied = σPimplied.

Volatility smile for foreign currency options: Both deep in and out of the money

has higher implied volatility than close to the money options. This leads to the

implied distribution having fatter tails than the theoretical log normal distribution.

(The probability of being in the money for a call option (which is originally out of

the money) by finishing over K2 is higher than the theory which implies higher price

than the theory. Similarly the probability of being in the money for a put option

(which also is originally out of the money) by finishing below K1 is higher than the

theory which leads to higher implied price).

Emprical evidence : One can test the evidence of volatility smile by testing the

implied distribution versus the log normal distribution using empirical data. We

record how often the percentage change in exchange rate exceeds 1, 2, · · · , 6 standard

deviations of the daily percentage change (this percentage change is NOT the same

for physical versus risk neutral probability. However, since dSt

St
= µdt + σdWt, the

probability of exceeding the SD depends only on σ). The result shows that the tails

of the distribution are fatter than we would expect from a log normal distribution

(see Table 20.1).

Reason for volatility smile in foreign currency options: Exchange rate has non-

constant volatility (in time? need to see how that relates to strikes) and exchange

rate has jumps (in response to central banks actions, for example). Both of these

effects are less pronouce as the maturity increases. Thus the vol smile becomes less

pronouced as maturity increases (also referred to as vol term structure). When there

is a jump, the implied distribution can be viewed as a mixture of two log normal

distributions (see figure 20.5).

We can use the one-step binomial model to simulate the effect of a jump in volatil-

ity. (See e.g. Table 20.3). The implied vol is actually a frown, not a smile.

Vol smile of equity options: Actually a decreasing concave up function, thus the

lower the strike the higher the implied volatility. This results in the implied distribu-

tion with fatter tail on the left and skinnier tail on the right. The reason for this kind

of smile may be because of leverage : the higher the equity, the lower the vol (vol is

a decreasing function of S). This leads to the skinner tail on the right and fatter tail

on the left of the implied distribution picture, as well as the fact that option with

lower strike has higher price due to higher volatility when underlying is close to the

money. Another is fear of crash : traders price option according to the fear of crash,
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thus lower strike tends to be priced more expensively. Empirical evidence supporting

this: Declien in S&P 500 tends to be accompanied by a steepening of the vol skew,

while increasing of the 500 tends to have a less steep skew.

Alternative ways of characterizing the vol smile: If graph implied vol vs K, the

lowest point tends to be S0, which leads to movement of the smile when S changes.

If we graph against K
S0

this becomes more stable. An alternative is against K
F0

(some

traders define at the money option as when K = F0). Yet another is against option

∆ and at the money is when Delta = 0.5 for call and equals −0.5 for put.

Vol surface and term structure: We can graph implied vol against K
S0

and T . In

the direction of T , the vol smile becomes less pronouced, thus the time to maturity

needs to be taken into account for option pricing. Thus one can also graph implied

vol against 1√
T

log K
S0
. This way the smile is less dependent on time to maturity.

Greek letters: The Greek in the presence of implied vol needs to be modified to

(i.e. Delta)

∂CBS
∂S

+
∂CBS
∂σimp

∂σimp
∂S

.

This reflects the fact that as the price of the underlying changes, the implied vol

changes to reflect the option’s moneyness (or just simply σ depending on S, via
K
S0

or K
F0

?). Thus if we believe that implied vol is a decreasing function of K
S

(in

contradiction to the leverage effect mentioned above !, which may be strange since

the graph should be obtained by changing K, even if it’s graphed against K
S

) then this

implies that the Delta here is higher than the Delta given by BS. Hull: in practice,

trader ensures their exposure to the most commonly observed change in vol surface

is small.

Role of model: Sophisticated interpolation tools ? Arguably if BS is not used

and other models adopted, vol surface would change, but the market price would not

change appreciably. Even Delta, if calculated using the above formula, would not

change as much. Model has most effect when derivatives are not actively traded.

17 Chapter 21 : VaR

Statement: I am X percent certain that there won’t be a loss of more than V dollars

in the next N days. V is the VaR of the portfolio. Banks are required to calculate

VaR for market risk with N = 10 and X = 99 and hold a capital k times of the V aR

( k ≥ 3 and is bank specific). It is the 1st percentile of the distribution of the gain
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(left tail) and equivalently 99th percentile of the distribution of the loss (right tail)

of the portfolio.

Time horizon: Market risk VaR is calculated using N = 1 because there is not

enough data available to estimate directly the behavior of the market variables over

periods longer than 1 day. The N− day VaR then is calculated as
√
N 1-day VaR.

This is based on the assumption that daily changes of portfolio value are iid Normal.

Since then the 99th percentile of the total change is
√
N× the 99th percentile of the

one day change.

General theory: We look at the general market variables affecting the portfolio :

interest rates, equity prices, commodity prices. VaR then is calculated based on the

historical changes of these variables or on the models of these variables.

Historical simulation: We look at the 501 days of data and consider each daily

change as a possible scenarios (for a total of 500 scenarios). Suppose today is day n

and the historical day is day i. Then

Portfolio value under the ith scenario = vn
vi
vi−1

,

where v denotes the value of the market variable at the specific date. For example,

the market variables in section 22.2 are the 4 stock indices: DJIA, FTSE 100, CAC

40, Nikkei 225. The change of the portfolio value in the ith scenario is

4∑
k=1

V kIkn
Iki
Iki−1

− Πn,

where Ik is the k th index value and V k is the portfolio dollar value invested in the ith

index. From the 500 such changes calculated from the 500 scenarios, the 5th worst

loss would correspond to the 99 % daily VaR. The 99 % 10 day VaR is
√

10 times

this number.

Model building approach :

General theory for portfolio of assets : Daily percentage changes of each asset are

iid Normal. We assume that σdaily of each asset is known. Then letting αi to be the

number of shares in asset i :

∆Π =
∑
i

αi∆Si

=
∑
i

αiSi
∆Si
Si

=
∑
i

Vi
∆Si
Si

,
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where again Vi is the dollar amount in asset i. Thus

SD(∆Π) =

√∑
ij

ρij(Viσi)(Vjσj),

where rhoij is the correlation of assets i,j. This is the estimate of one standard

deviation change in the portfolio value. The 99 % one day VaR is then 2.236 SD(∆Π)

where 2.236 is the 99th percentile of the standard Normal. The 99 % 10 day VaR is√
10 times this.

Trivia: σyear = σday
√

252 as there are 252 trading days in a year. For ex if daily

vol is 2 % then annual vol is about 32 %.

General theory for portfolio of options: Consider a portfolio of options on different

underlyings. Denoting δi as the (total) delta of the options with the ith underlying

then

∆Π =
∑
i

∆Π

∆Si
∆Si

=
∑
i

δiSi
∆Si
Si

.

Thus

SD(∆Π) =

√∑
ij

ρij(δiSiσi)(δjSjσj),

The 99 % one day VaR is then 2.236 SD(∆Π) where 2.236 is the 99th percentile of

the standard Normal. The 99 % 10 day VaR is
√

10 times this.

General theory for portfolio with bonds: Assuming parallel shift in the yield

curve is unrealistic. Instead, the market variables are the prices of zero coupon bonds

with standard maturitires: 1 month, 3 months, 6 months, 1 year, 2 years, 5 years,

7 years, 10 years and 30 years. For the purposes of calculating VaR, the cash flows

from instruments in the portfolio are mapped into cashflows occuring on the standard

maturity dates. Ex: suppose a portfolio with 1 million dollars position in a bond with

coupons in 0.2, 0.7, 1.2 years. The cashflow in 0.2 year is apporximated by position

in 1 month and 3 month zero-coupon bonds, 0.7 year is aproximated by 6 month and

1 year bonds, 1.2 years is approximated by 1 year and 2 years bond. This is known

as cash-flow mapping. Cash-flow mapping is not necessary if historical simulation is

used.
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Dimension reduction - PCA approach : Using historical data on movements in

market variables such as the swap rates with various maturities (or equivalently the

bond yields in the previous example) we can reduce the number of variables by the

PCA approach. Table 22.7 gives the factor loadings. It can be understood as followed:

(∆S)t = PCᾱt, where ∆S is the vector of daily interest rate changes, PC is the

principle component matrix (matrix of factors) and ᾱt is the solution so that the

equation holds, also known as factor scores of the day.

To illustrate, suppose Si is the swap rate and Fi are the factors. Then

∆Π =
∑
i

∆Π

∆Si
∆Si

=
∆Π

∆S

T

PCᾱt,

where ∆Π
∆S

is the vector of the change of portfolio value under one basis movement of a

particular rate (can be computed simply, thus deterministic). The co-variance matrix

of ᾱt is a diagonal matrix as a consequence of principle component decomposition,

denoted by Σ. We then have

SD(∆Π) =

√
∆Π

∆S

T

PCΣPCT
∆Π

∆S
.

This then gets translated to 99 % daily VaR and 99 % 10 day VaR exactly as above.

In Hull’s example, PC only consists of the first 2 factors of the component matrix.

SD(∆Π) on the other hand can be calculated from the covariance matrix of ∆Si.

What is the advantage of using PCA?

Alternative to VaR: Expected shortfall : the expected loss during the N-day period

conditional on the loss being worse than VaR loss. The expected short fall may be

helpful to detect large loss that exceeds VaR level (outliers). See also figure 22.1 in

Hull.

Stress test: Estimating how the portfolio would perform under some of the most

extreme market movements (5 standard deviation moves or more of market variables).

Back testing: Testing how well VaR estimates would have performed in the past.

For example : Looking at how often the loss in 1 day exceeded 1 day 99 % VaR that

would have been calculated for that day. If this happens significantly more than 1 %

then the VaR methodology needs revision.
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18 Chapter 23: Estimating Volatilites and Corre-

lations

Daily percentage change distribution: ui = Si−Si−1

Si−1
. ui is assumed to be Normal with

mean 0 and Variance σ2
i−1. (Mean zero actually means the mean is much smaller than

the standard deviation). ui will be the basic building blocks for vi = σ2
i .

Constant variance model: vN =
∑N

i=1 u
2
i

N
. This can also be viewed as giving equal

weights to u2
i .

General weighting scheme model:

No long run average: vN =
∑N

i=1 αiu
2
N−i where alpha1 > α2 > · · · (note the

subscripts of α and u) and the sum of the alphas equalling 1. The idea is giving more

weight to the most recent percentage change and less weight to further data points.

Long run average : vN = γvL +
∑N

i=1 αiu
2
N−i where alpha1 > α2 > · · · and

γ +
∑

i αi = 1. This is also known as the ARCH(N) model (autoregressive models

that posit structure on the variance of the errors).

EWMA (exponential weighted moving average) model : Example of the no long

run average scheme with αi+1 = (1 − λ)αi for 0 < λ < 1. By the requirement that∑
i αi = 1 it actually follows that αi = (1 − λ)λi−1. The recurrence relation for

updating vi is

vi = λvi−1 + (1− λ)u2
i−1

λ governs how responsive the estimate of daily vol to most recent daily perecentage

change. A low λ gives more weight to u2
i−1. In this case the estimates themselves are

highly volatile. A large λ produces estimates that respond relatively slowly to new

information provided by daily percentage change.

GARCH(1,1) model : Example of the long run average scheme. The updating

recurrence relation is

vi = γvL + βvi−1 + αu2
i−1,

where γ+α+β = 1. In general, the weight applied to u2
N−i is αβi−1 (so that they sum

up to α
1−β . The weight of the vL is γ

1−β . For a stable Garch(1,1) process we require

α + β < 1 otherwise γ < 0. EWMA is a special case of Garch(1,1) with β = λ and

α = 1− λ, γ = 0.

In general, GARCH(p,q) model would use p observations on u2 and the most

recent q estimates on v.
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GARCH(1,1) is a discretization of a mean reversion model:

dv = γ(vL − v)dt+
√

2 α v dz.

Reason : from the above we get

vi − vi−1 = γ(vL − vi−1) + α(u2
i−1 − vi−1).

Now ui−1 is Normal with mean 0 and variance vi−1. Therefore u2
i−1 has mean vi−1 and

variance 2v2
i−1. Or u2

i−1 − vi−1 is approximately
√

2vi−1dz where dz represents some

noise distribution.

Fitting the model : Whether it’s EWMA or Garch(1,1), we basically need to

choose λ or α, β, γ (or ω = γvL ) to maximize

N∏
i=1

1√
2πvi

e
− u2

i
2vi .

We start by setting v2 = u2
2 and fill in the table of values for vi, ui. An iterative method

can be used to then figure out the optimal parameters of α, β, ω. If the optimal ω is

negative, we should choose EWMA for stability reason.

Estimating covariance matrix : Denoting xi, yi as the percentage change of assets

X, Y. We can similarly update vXi , v
Y
i as

vXi = γvXL + βvXi−1 + α x2
i−1

vYi = γvYL + βvYi−1 + α y2
i−1

covi = γcovL + βcovi−1 + α xi−1yi−1

In doing this, we should keep the the covariance matrix to be positive semi-definite.

Autocorrelation of daily percentage change : It is observed that when u2
i is high,

u2
i+1, u

2
i+2 · · · also tend to be high and vice versa. That is u2

i do exhibit autocorrelation.

The Garch(1,1) model works well if it removes the autocorrelation in
u2
i

vi
. Table 23.2

shows that this is indeed the case. ui is the daily percentage change, σi is its standard

deviation. Thus
u2
i

vi
is a “normalization” of u2

i which may remove the autocorrelation

structure (the GARCH structure) in its variance.

Using Garch(1,1) to forecast volatility: We have

vn − vL = α(u2
n−1 − vL) + β(vn−1 − vL),

true for all n so that

vn+t − vL = α(u2
n+t−1 − vL) + β(vn+t−1 − vL).
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Since E(u2
n+t−1) = vn+t−1,

E(vn+t − vL) = (α + β)(vn+t−1 − vL)

= (α + β)t(vn − vL)

or

E(vn+t) = vL+ = (α + β)t(vn − vL).

This also shows that E(vn) tends to VL as n gets large if α + β < 1.

Volatility term structures: Denoting V (t) = E(vt) and setting n = 0 in the above

equation gives

V (t) = vL + e−at(V (0)− vL),

a = − log(α + β).

Vt is an estimate of the instantaneous variance rate in t days. The average variance

rate perday between [0, T ] is

1

T

∫ T

0

V (t)dt = vL +
1− e−aT

aT
[V (0)− vL].

Denoting σ(T )2 as the volatiltiy per annum that should be used to price a T day

option under the Garch(1,1). Then

σ(T )2 = 252
(
vL +

1− e−aT

aT
[V (0)− vL]

)
.

When the current volatility is above the long-term vol, the Garch(1,1) model estimates

a downward sloping vol term structure and vice versa. This equation can also be used

to analyze the impact of volatility changes. If σ(0) moves to ∆σ(0), σ(T ) changes by

approximately

1− e−aT

aT

σ(0)

σ(T )
∆σ(0).

Financial institutions then relate the size of the volatility increase that is considered

to the maturity of the option, rather than consider an across the board increae of 1

% implied vol in calculating vega.

Case study of EWMA model when estimating VaR: (Section 23.8) Because the

date is right after a period of high volatility, the vol estimate using EWMA gives

much higher vol than the equal weight approach. Correlation is also higher. This

gives a twice as high VaR than the previous estimate using equal weights.
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19 Credit risk

Credit ratings: (Moody’s) Investment grade: Aaa, Aa, A. Baa. Others: Ba, B, Caa-C.

For investment grade bonds, probability of default in a year tends to be an increasing

function of time (the longer the time, the greater the possibility that financial health

will decline). For the poor credit rating, it tends to be a decreasing function of time

(the next couple years are critical, if survived, financial health will improve).

Altman’s Z-Score: For publicly traded manufacturing companies, based on dis-

criminant analysis, using five accounting ratios:

X1 : Working capital / Total assets

X2 : Retained earnings / Total assets

X3 : Earnings before interest and taxes / Total assets

X4 : Market value of equity / Book value of total liabilities

X5 : Sales / Total assets

Z = 1.2X1 + 1.4X2 + 3.3X3 + 0.6X4 + 0.999X5.

If Z ≥ 3.0, the company is unlikely to default. If 2.7 ≤ Z < 3.0 it should be “on

alert.” If 1.8 ≤ Z < 2.7 there is a good chance of default. If Z < 1.8 the chance of

default is very high.

Conditional and unconditional probability of default: Moody publishes tables for

average cumulative default rates Q for different credit ratings (see e.g. Hull Table

19.1). The unconditional probability of default in year n ifQ(n)−Q(n−1) (where data

for both years n − 1 and n are available). The conditional probability of defaulting

in year n, conditioned on the fact that the company has survived until year n− 1 is
Q(n)−Q(n−1)

1−Q(n−1)
. The conditional probability of default is the basis for defining the hazard

rates.

Hazard rates: (a.k.a default intensity) λ(t) so that

P ( default in (t, t+ ∆t)|no default before t) = λ(t)∆t.

If τ is the time of default then

P(t < τ < t+ ∆t | τ ≥ t) = λ(t)∆t.

Let Q(t) = P(τ ≤ t) and V (t) = 1−Q(t). Then

V (t+ ∆t)− V (t) = −V (t)λ(t)∆t.
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Pushing ∆t to 0 gives the solution V (t) = e−
∫ t
0 λ(u)du. Thus

Q(t) = 1− e−
∫ t
0 λ(u)du = 1− e−tλ̄(t),

where λ̄(t) is the average hazard rate for the duration [0, t]. Note : In this case the

density of τ is λ(t)e−
¯λ(t)t.

Recovery rate: denoted by R is the percentage of the asset value recovered in case

of default. For a bond, typically defined as the market value a couple days after a

default, as a percentage of its face value. Hull’s example in table 24.2 has R ranges

from 24.7 % to 51.6 %. Recovery rate typically is negatively related to default rate

(the more defaults, the less the recovery). In fact, implied probability of defaults are

approximately proportional to 1
1−R . See below for more discussions.

Estimating λ̄(t) from bond yield spread: Approximately we have

λ̄(T )(1−R) = s(T ),

where s(T ) is the excess of the bond yield over the risk free rate (typically Treasury

rate) per annum. This equation means the average loss rates equals the average

default rate times the estimated loss percentage. A variation will appear in Merton’s

model below. Mathematical reason : the value of the bond is

R Ẽ(e−rτ1{τ≤T}) + e−rTP (τ > T ) = R

∫ T

0

λ(t)e−(r+λ̄(t))tdt+ e−(r+λ̄(T ))T

= e−(r+s(T ))T .

So

R

∫ T

0

λ(t)e−(r+λ̄(t))tdt+ e−(r+λ̄(T ))T ≈ e−
(
r+(1−R)λ̄(T )

)
T ?

If we take the case where λ is constant and look at the first order expansion this is

approximately true.

Example : matching bond price assuming piecewise constant hazard rate. Con-

sider a 1 year bond with semiannual coupon rate of 8% per annum and yield 6.5 %.

Its present value is 101.33. The risk free rate is 5 % per annum. Thus the bond’s

risk free value is 102.83. The expected default loss is 1.5. Suppose the recovery rate

is 40 % (in reality this rate R may need to be estimated as well. See the CDS section

for more discussion). That is the bond is worth 40 dollars in the event of default.

Assume λ(t) is piecewise constant during any 1 year period. We want to estimate
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λ1 based on this. We assume that bond can only default at the mid point of each 6

month interval ( of coupon paying date ). The 3 month value of the bond is

e−0.05×0.254 + e−0.05×0.75104 = 104.12

If default happens at 3 month point the present value of the loss is

e−0.05×0.25(104.12− 40) = 63.33

Similarly the 9 month value of the bond is

e−0.05×0.25104 = 102.71

If default happens at 3 month point the present value of the loss is

e−0.05×0.75(102.71− 40) = 60.40

The probability of default happens at 3 month point is 1 − e−0.5λ1 and at 9 month

point is e−0.5λ1 − e−λ1. Thus λ1 satisfies

(1− e−0.5λ1)63.33 + (e−0.5λ1 − e−λ1)60.40 = 1.5.

If we have a 2 year bond with a semiannual 8% per annum coupon and yield 6.8 %

we can calculate λ2 in a similar way, having known λ1 to calculate the probability of

the 2 year bond defaulting in year 1.

Risk neutral versus physical probability: The default probabilities or hazard rates

implied from credit spreads are risk-neutral estimates (Table 24.3, column 3). De-

fault probabilities or hazard rates calculated from historical data are physical default

probabilities (Table 24.3, column 2). The risk neutral probability estimate tends to

give higher estimates in hazard rates and default probabilities than the real world

estimates. This also corresponds to excess return over risk free rate (even after ac-

counting for the spread of historical default). This excess return can be explained

by the risks that the holder has to bear, which include systemic risks and idiosyn-

cratic risks that cannot be diversified away. (If there was no expected excess return,

the real-world and risk-neutral probabilities would be the same, and vice verssa) For

pricing purpose, risk neutral probabilities should be used. When carrying out sce-

nario analyses to calculate potential future loss from defaults, real world probabilities

should be used. Thus the abstract reason for the difference in real world versus risk

neutral world default probabilities is the same reason as why corporate bond traders
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earn more than the risk free rate on average. Viewing it from this angle, we then

see that one reason is that corporate bonds are relatively illiquid and the higher re-

turns are to compensate for this. By far the most important reason is that bonds do

not default independently of each other.Bond traders earn excess expected return for

bearing this risk. These reasonings again can be captured in the observation that the

expected return (the drift term in the dynamics of the asset) in the risk neutral world

is the risk free rate, which is (generally) lower than the expected return of the same

asset in the physical world. Viewing it this way, it is not surprising that the default

probability in the risk neutral world is higher than the physical world.

Estimating default probabilities using equity price: Let V denotes the value of the

company’s asset and σV its volatility (assumed constant), E the value of its equity

and σE its instantaneous volatility, D the debt repayment at time T . Then

ET = max(VT −D, 0)

and

E0 = V0N(d+)−De−rTN(d−),

d± =
r ± 1

2
σ2
V T − log D

V0

σV
√
T

.

The probability of default is 1−N(d−), which requires (non directly observable)

σV and V0 to calculate. We also have the concept of distance to default, which is

represented by d− :

d− =
r − 1

2
σ2
V T − log D

V0

σV
√
T

.

As the distance to default declines, the company becomes more likely to default (as

1 − N(d−) increases). On the other hand, E0 and σE can be directly observed. We

then have

E∆t − E0 ≈
∂E

∂t
∆t+

∂E

∂V
∆V +

1

2

∂2E

∂V 2
σ2
V V

2
0 ∆t.

Thus

σE = SD(
E∆t − E0

E0

) =
1

E0

∂E

∂V
SD(Vh − V0)

=
1

E0

∂E

∂V
σV V0

√
∆t.
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Taking ∆t = 1 we arrive at

σEE0 =
∂E

∂V
σV V0 = N(d+)σV V0.

This provides another equation to solve for σV and V0. For example, E0 = 3, σE =

0.8, D = 10, T = 1, r = 0.05. Then V0 = 12.4 and σV = 0.2123. Probability of default

is N(d−) = 12.7%. Market value of the debt is V0−E0 = 9.4. Present value of the debt

assuming no default is 10e−0.05 = 9.51. Expected loss percentage is 9.51−9.4
9.51

= 1.2% of

the no default value. Since expected loss (EL) equals prob of default (PD) times (1

- recovery rate),

R = 1− EL

PD
= 1− 1.2

12.7
= 91%

of the debt’s no default value. (Can the 91 % be calculated in another way?)

Performance of the Merton’s model: Merton’s model provides a good ranking of

default probabilities either in risk neutral or the real world. The default probability

1−N(d−) is in theory a risk neutral probability. Thus the ranking of default probabil-

ities in the risk neutral world obtained via Meron’s model can be directly translated

to the ranking (but not the probabilities itself) in the real world. Moody’s KMV

and Kamakura provide a service that transforms a default probability produced by

Merton’s model into a real world probability. CreditGrades uses Merton’s model to

estimate credit spreads, which are closely linked to risk-neutral dfefault probabilities.

Credit value adjustment (CVA) calculation: If fnd is the no default value to the

bank of its outstanding derivative transactions with the counterparty, the value of the

outstanding transactions after taking into account possible defaults is fnd − CV A +

DV A. CVA is the expected loss of the bank from default by the counterparty. DVA

is the counterparty’s CVA: it is the expected cost to the counterparty because of the

default by the bank. CVA reduces the value of the derivative, while DVA increases

its value to the bank (if DVA is a cost to the counterparty it must be a benefit ot the

bank). We have

CV A =
∑
i

qivi,

where vi is the present value of the expected loss to the bank if the counterparty

defaults at the midpoint of the ith interval and qi is the risk neutral probability of

the counterparty defaulting in the ith interval. Alternatively, we can write

CV A = (1−R)
∑
i

qivi,
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where R is the recovery rate and vi is the present value of the expected net exposure

of the dealer to the counterparty (after collateral) at the mid point of the ith interval,

conditional on a default. If s(ti) is the counterparty credit spread then

q(ti) = exp(−s(ti+1)ti+1

1−R
)− exp(−s(ti)ti

1−R
)

vi is usually calculated via Monte Carlo by simulating different market scenarios and

calculating the exposure of the bank to the counterparty at the midpoint of each

interval. The exposure E is equal to max(V −C, 0) where V is the total value of the

outstanding transaction to the bank and C is the collateral posted by the counterparty

at the time of a default. If C is negative, −C is he collateral posted by the bank with

the counterparty at the time of the default. Consider first the three scenarios where

C = 0 for simplicity:

1. The bank has a short position in an option with the counterparty. In this case

the derivative is a liability to the bank and the bank (always) has no credit exposure

to the counterparty.

2. The bank has a long position in an option with the counterparty. In this

case the derivative is an asset to the bank and the bank (always) has positive credit

exposure to the counterparty.

3. The bank has a long (or short) position in a forward contract with the coun-

terparty. In this case, the bank may have a positive or no credit exposure to the

counterparty in the future, depending on the price of the underlying asset.

Next consider 4 scenarios where collateral is posted. In this case, it is usually

assumed that a period of time elapses between the time when a counterparty stops

posting collateral and the close out of transactions. This period is referred to as the

cure period (or margin period of risk), typically of 10 or 20 days. The effect of the

cure period is that the collateral at the time of default does not reflect the value of

the portfolio at the time of default. It reflects the value 10 or 20 days earlier. Thus

the Monte Carlo simulation to calculate vi mentioned above should be structured so

that the value of the derivatives portfolio with the counterparty is calculated at time

t∗i −c as well as time t∗i where t∗i is the midpoint between ti−1 and ti and c is the length

of the cure period. The following 4 scenarios illustrate the possibilities. It assumes a

two way zero threshold collateral agreement between the bank and its counterparty.

This means that the collateral posted by one side at the time of a default equals

max(V, 0) where V is the value to the other side 20 days earlier (the cure period).

1. On a particular simulation trial, the value of outstanding transaction to the
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bank at time τ is 50 and their value 20 days earlier is 45. The calculation assumes

that the bank has collateral worth 45 in the event of a default at time τ . The bank’s

exposure is 5.

2. On a particular simulation trial, the value of outstanding transaction to the

bank at time τ is 45 and their value 20 days earlier is 50. The calculation assumes

that the bank has collateral worth 50 in the event of a default at time τ . The bank’s

exposure is 0.

3. On a particular simulation trial, the value of outstanding transaction to the

bank at time τ is -50 and their value 20 days earlier is -45. The calculation assumes

that the bank has posted collateral worth 45 which is less than 50 in the event of a

default at time τ . The bank’s exposure is 0.

4. On a particular simulation trial, the value of outstanding transaction to the

bank at time τ is - 45 and their value 20 days earlier is -50. The calculation assumes

that the bank has posted collateral worth 50 which is less than 45 in the event of a

default at time τ . The bank’s exposure is 5.

Two special cases for CVA:

a) The portfolio consists of a single uncollateralized derivative that provides payoff

to the bank at time T (ex: the bank bought a European option with maturity at time

T from the counterparty). Then vi = Vnd(1−R) where Vnd is the no-default value of

the derivative today. Thus

CV A = (1−R)fnd
∑
i

qi.

Note also that in this case DVA = 0 and thus the value f of the derivative today

after adjusting for credit risk is

f = fnd − (1−R)fnd
∑
i

qi.

On the other hand, this equation also applies to a T year zero coupon bond issued

by the counterparty (assuming the same recovery rate):

B = Bnd − (1−R)Bnd

∑
i

qi.

This implies that f
fnd

= B
Bnd

. But there are simpler expression for B and Bnd : B =

e−yT and Bnd = e−yndT where ynd is the yield of a riskless similar bond. Thus we have

a simpler expression for f in terms of fnd :

f = fnde
−(y−ynd)T .
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That is the risk adjusted value of the derivative can be evaluated by its no default

value and the credit spread of the counterparty.

b) The portfolio consists of a long position in a forward contract with strike K

for an asset with futures price Ft. The value of the transaction at time t is

(Ft −K)e−r(T−t).

The bank’s exposure at time t is

max((Ft −K)e−r(T−t), 0) = e−r(T−t) max((Ft −K), 0).

The expected present value of this exposure (from Black’s formula) is

w(t) = e−rte−r(T−t)(F0N(d+)−K(d−))

= e−rT (F0N(d+)−K(d−))

where

d± =
±1

2
σ2t− log K

F0

σ
√
t

.

Finally v(ti) = (1−R)w(ti).

Peak exposure: In addition to CVA, the bank may also be interested in the peak

exposure at a time point t∗i , which is a high percentile ( 97.5 % ) of the exposure

given by the Monte Carlo simulation. The maximum peak exposure is the maximum

of the peak exposures across all time t∗i . On the other hand, there is a theoretical

issue with the approach, since peak exposure is about scenario analysis (the bank is

asking ”how bad can the exposure get in the future”) which should be carried out

under the real world probability. On the other hand, the CVA calculation is done

under the risk neutral probability since it is essentially about “pricing” (evaluating)

the exposure at time t∗i at the present time.

Wrong way risk: The calculation of CVA assumes the indpendence between default

and exposure level. This needs not be the case. In fact, there may be a positive

correlation between the two, which is referred to as the wrong way risk. There may

also be a negative correlation between the two, which is referred to as the right way

risk. An example of wrong way risk is when a counterparty is using a credit default

swap to sell protection (to a different reference entity) to the bank. Suppose the

credit spread of the entity increases, the swap’s value to the bank becomes positive

(the bank’s exposure to the counterparty increases). On the other hand, since credit
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spreads of different companies tend to be correlated, the default probability of the

counterparty also increases. An example o wright way risk is when a counterparty

buys credit protection from the bank, with similar reasoning. A simple way of dealing

with wrong way risk is to increase the value of CVA by an alpha factor, which is

typically about 1.07 to 1.10 as reported by the banks.

Expected exposure of interest rate swaps vs currency swaps: The expected ex-

posure of interest rate swaps starts at zero, increases then decreases. By contrast,

the expected exposure on the currency swaps increases steadily with the passage of

time. The main reason is because principals are exchanged at the end of the life

of a currency swap and there is uncertainty about the exchange rate at that time.

By contrast, toward the end of the life of the interest rate swap, there is very little

remaining to be exchanged. The impact of default risk for a currency swap dealer

is therefore much higher than for an interest rate swap dealer. The probability of

defaults qi are the same (if with the same counterparty) but the exposure vi are on

average greater for currency swaps.

Modeling correlated default using Gaussian copula : Let Qi(t) be the cumulative

distribution of τi, i = 1, · · · , n. Then N−1(Qi(τi)) has standard Normal distribution.

To simulate n default times with the same marginal distribution but with a correlation

structure, we first simulate a n multivariate Gaussian distribution with a correlation

structure. To decide whether the ith default has happened by time T , we compare

Xi with N−1(Qi(T )). Since

P (Xi < N−1(Qi(T ))) = P (N(Xi) < Qi(T )) = Qi(T ).

( If X is a RV then FX(X) has Uniform distribution :

P (FX(X) < u) = P (X < F−1
X (u)) = FX(F−1

X (u)) = u.)

Modeling correlated default using factor based structure : Instead of generating a

multivariate Normal distribution, we can also defined

Xi = aiF +
√

1− a2
iZi,

where F,Zi are iid standard Normals. Then Cor(Xi, Xj) = aiaj. The probability of

the ith default having happened by time T becomes

P (Xi < N−1(Qi(T ))) = P
(
Zi ≤

N−1(Qi(T ))− aiF√
1− a2

i

)
= Qi(T ),
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as before. We express the default probability of the ith company as:

Qi(T |F ) = N
(N−1(Qi(T ))− aiF√

1− a2
i

)
.

Note that the expression N
(
N−1(Qi(T ))−aiF√

1−a2
i

)
by itself is random while the expression

P
(
Zi ≤ N−1(Qi(T ))−aiF√

1−a2
i

)
is a constant. Thus Qi(T |F ) expresses the procedure to

generate a set of correlated distributions whose marginals will be the same as Qi(T ).

That is E(Qi(T |F )) = Qi(T ). It comes from the following observation :∫
y

P (X < g(Y )|Y )fY (y)dy = P (X < g(Y )),

where the RHS is over a pair of (X, Y ) whose marginals equal to the LHS X, Y and

jointly independent. The quantity Qi(T |F ) is usually used in between the modelling

for correlation effect. The final result (e.g. price of a derivative ) will be integrated

over F to obtain the unconditional value (again see the CDS chapter for example).

If ai = ρ and Qi(T ) = Q(T ),∀i then the above equation reduces to

Q(T |F ) = N
(N−1(Q(T ))− ρF√

1− ρ2

)
.

Credit risk VaR: Credit loss over a certain time period that will not be exceeded

within a certain confidence level. Credit risk VaR models may either consider losses

only from defaults or losses from downgrades / credit spread changes as well as

defaults.

Vasicek’s model: For a portfolio of loans with individual marginal default distri-

bution T (t) := P (τ ≤ t) and default correlation ρ, the propotion of loans defaulting

by time t that will not be exceeded within X confidence level is

WCD(t,X) = N(
N−1(T (t)) +

√
ρN−1(X)

√
1− ρ

).

Therefore, the t-days X− level credit VaR given by Vasicek model for a portfolio of

loans is

WCD(t,X)× (1−R)× EAD,

where EAD is the exposure (of the portfolio) at default and R is the recovery rate.

The portfolio of loans can also be viewed as a portfolio on assets of companies whose
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default distribution and correlation are given by T (t) and ρ. If we have n such (sub)

portfolios to form a large portfolio (each sub-portfolio may represent an area of the

industry), it is approximately true that the Xth percentile of the loss distribution is

n∑
i=1

WCDi(t,X)× (1−Ri)× EADi.

Using Merton’s model of company’s default, the correlation ρ between two companies’

default times can be showed to be roughly equal to the correlation between the returns

on their assets. This correlation again can be approximated by the correlation between

the returns of their equities.

Credit risk plus: A methodology to calculate credit VaR from Credit Suisse Finan-

cial Products. It relies on the Gamma-Poisson mixture result in probability (whhich

is also used in the insurance industry) which says that if X has a Possion(λ) distri-

bution where λ is also a Gamma(r, p
1−p) distribution (where r and p

1−p are the shape

and scale parameters) then X equivalently has a Negative Binomial (r,p) distribu-

tion. See e.g. Negative Binomial. In the context of defaults, we assume that the

average default rate over a period of time T is λ = np where p is small and n is large

(n is the total number of companies and p is the probability of individual company

defaulting). The number of defaults in this period of time can be approximated as

a Poission (λ) distribution. The expected number of defaults is not a deterministic

constant. We thus assume it has a Gamma distribution with mean µ and variance σ2.

(A Gamma (k, θ) distribution has mean kθ and variance kθ2 - when k is an integer

it is equivalent to the sum of k iid Exp(1
θ

) distribution ). The reason for Gamma

distribution assumption may come from the Gamma process model for the average

defaults at different time intervals. That is we assume the average number of defaults

follow a Gamma process. See e.g. Gamma process. The number of defaults M in the

time interval T then follows a negative binomial distribution:

P (M = m) = pm(1− p)α Γ(m+ α)

Γ(m+ 1)Γ(α)

α =
µ2

σ2
, p =

σ2

µ+ σ2
.

Note that Γ(n) = (n − 1)! for n integer. But α may not be an integer so the above

formulation is more general. The X− percentile of the number of losses M can be

computed using the negative binomial model, which depends on µ, σ. When σ → 0

the distribution converges to a Poisson distribution. The X percentile of the loss

distribution is then calculated based on the X percentile of M.
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Credit plus model can be characterized as a default rate uncertainty model (

the uncertainty is the distribution of the average default rate λ ). Without this

uncertainty (namely when σ = 0), there is very little chance of a large number of

defaults. As the uncertainty increases, a large number of defaults become more likely.

Thus Credit plus captures default correlation with the uncertainty of the default

rate. The loss distribution under credit plus model also has positive skewness when

the uncertainty is non-zero (which may agree with empirical data). Without default

correlation, the loss probability distribution is fairly symmetric.

Monte Carlo simulation: Vasicek and Credit risk plus provides models for com-

puting percentiles of the loss distribution based on either the proportion of defaults

(Vasicek) or the number of defaults (Credit risk plus). In practice, a bank may have

a number of different categories of exposures with different default rate for each cat-

egory. In this case, Monte Carlo simulation provides a flexible alternative to the

modelling approach. A simulation may proceed as follows:

1. Develop a model relating the default rate in each category to the overall default

rate. This could be via regressing the specific default rate against the overall default

rate (over a period of time) or from some structural model.

2. Sample an overall default rate. This could be from a table for the annual

percentage default frate for all rated companies in a period of time (table 11.4 in Hull)

or from a default rate model. In particular, annual default rates are not independent.

Thus randomly sampling a default rate from a table to determine next year’s default

rate may not be the best approach. It may be preferrable to develop a model that

relates the rate of one year to the rate or other economic variables of the previous

year .

3. Sample a number of defaults for each category using the rates in step 1.

4. Sample a loss given default for each default in each category. This could be

from a model of loss distribution, exposure level and recovery. It could also be from

the nature of the financial products / contracts the bank has in each category.

5. Calculate the total loss from defaults.

6. Repeat steps 1-5 to construct a total loss probability distribution.

7. Calculate the VaR from the total lss distribution.

Credit metrics: Vasicek and Credit risk plus gives the loss percentile based on

default events, but not on credit downgrading. In practice, a change in credit rating

would affect the default probability (or equivalently the credit sread) which would

in turn affect the credit risk VaR. CreditMetrics, proposed my JPMorgan in 1997 is
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a credit VaR model that takes into account both defaults and downgradings. It is

based on a (annual) rating transition matrix such as the one given in Hull table 21.1.

Monte Carlo simulation is used to calculate a one year credit VaR for a portfolio of

transactions with many counterparties. A simulation may proceed as follows:

1. Use the rating transition matrix to simulate the credit ratings of all counter-

parties at the end of the year. A correlation structure of credit ratings change may

need to be incorporated using the Gaussian copula model. Specifically if there are n

counterparties with a correlation structure Σ, we can generate a multivariate Normal

(X1, · · · , Xn) with covariance matrix Σ and the rating change of the ith counterparty

is decided by how N(Xi) is compared with its corresponding transition matrix entries.

2. Calculate the credit loss for each counter party. If the end-of-year credit rating

is default, the credit loss is the exposure at default times (1−R). If the rating is not

default, the credit loss is

n∑
i=j

(1−R)(q∗i− qi)vi.

Here we follow the set up of CVA calculation, where the time horizon is divided

into n transactions. The jth interval represents the 1 year point. vi is the present

value of the exposure if default at the midpoint of the ith interval. qi is the original

probability of default (based on the present rating) and q∗i is the new probability

of default based on the end of year rating. Determination of q∗i requires the term

structure of credit spreads at the one year point and determination of qi requires the

term structure of the credit spreads at the present time. (Recall that λ̄i(1− R) = si

and qi = e−λ̄i−1ti−1 − e−λ̄iti .)
Example: Suppose a company owns a two year zero coupon bond with principal

of 1,000. Suppose the risk free rate is 3 % and the current credit spread is 200

basis points (2 %). Thus the bond yield is 5 % and its current price (with annual

compounding) is 1, 000/1.052 = 907.03. Uppose that the bond’s current rating is BB

and during the next year there is 0.3 % that it wil increase to BBB, 99.2 % that it

will stay the same and 0.4 % chnace that it will decrease to B and 0.1 % chance that

it will default. If defaults, the bond is worth 400 (so R = 40%). For each possible

rating category there are 2 equally likely credit spreads. In basis points there are 100

and 120 for BBB, 200 and 240 for BB and 450 and 500 for B.

If the bond defaults, it is worth 400 and the present value is 400/ 1.03 = 388.34.

The credit loss is 907.03 - 388.34 = 518.69. This event has probability 0.1 %.
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If the bond’s rating is BBB, there are two possibilities each with probability 0.15

%. The first is when the credit spread is 100 with expected present value

1000

1.04× 1.03
= 933.53.

The credit loss is 907.03 - 933.53 = -26.5. Note that here the credit loss is negative

since actually it is a “gain.” The second is when the credit spread is 120 with expected

present value

1000

1.042× 1.03
= 931.74.

The credit loss is 907.03 - 931.74 = -24.71. With other similar calculations the

distribution of the credit loss is calculated and the credit VaR is the appropriate

percentile of the credit loss.

20 Chapter 25: Credit derivatives

Credit default swap (CDS): A contract that provides insurance against the risk of

default of a particular company (a reference entity). The default is known as a credit

event. The buyer of the CDS makes periodic payments (determined by the notional

principal L, the CDS spread s and the frequency of payment (typically quarterly) )

to the seller until the end of the life of the CDS or until the credit event occurs. The

buyer receives the payoff of L(1−R) upon default.

Use of CDS in hedging: Suppose an investor buys a 5 year corporate bond with 7

% yield per annum and at the same time enters into a 5 year CDS against the bond

default. The effect of the CDS is to convert the corporate bond into a risk free bond.

Therefore in principle, the CDS spread should be equal to the bond yield spread. In

reality this is rarely the case. CDS-bond basis = CDS spread - Bond yield spread was

positive pre-2007 and negative 2007-2009. This sign can also depend on a number of

factors:

1. The bond may sell for a price that is significantly different from par (above par

leads to negative basis while below par leads to positive basis)

2. There is counterparty default risk in a CDS (negative basis direction)

3. Cheapest to deliver bond in a CDS (positive basis direction)

4. Payoff in CDS does not include accrued interest on the bond that is delivered

(negative basis direction)
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5. Restrucuring clause in a CDS contract may lead to a payoff when there is no

default ( positive basis direction)

6. LIBOR is greater than the risk free rate assumed by the market (positive

direction).

Evaluation of CDS: To find the CDS spread of a particular reference entity. Stan-

dard assumption: Default only happens at midpoint of the periodic payments. Recall

that

Q(t) = P(τ ≤ t)

and

V (t) = 1−Q(t) = P(τ > t)

are the probabilities of default and survival of the entity by time t. We suppose that

the payment for the CDS is made at times ti and Q(ti), V (ti), i = 1, · · · , n are given

(or calculated from the hazard rate). Suppose that the risk free rate is r and the CDS

spread is s. Then s satisfies

A(s) +B(s) = C,

where A(s) is the present value of the expected payments, B(s) is the present value

of the accrual payment (from the time of the previous payment to default ) and C is

the present value of the expected payoff. A(s), B(s) are from the buyer of the CDS

and C is from the seller of the CDS. The notional amount L does not appear in the

equation since it gets cancelled out on both sides. We have

A(s) =
n∑
i=1

e−rtiV (ti)s ∆t

B(s) =
n∑
i=0

e−r
ti+ti+1

2 (Q(ti+1)−Q(ti))s
∆t

2

C = (1−R)
n∑
i=0

e−r
ti+ti+1

2 (Q(ti+1)−Q(ti)).

Here we assume ti+1 − ti = ∆t is a constant.

CDS marked to market: The CDS spread s is a function of time. Thus a CDS has

zero value at the beginning but may have positive or negative value after. In fact,
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a similar caculation as above (provided the present time is t0 ) can be used to show

that the current value of the CDS to the buyer is

L
(
A(s2) +B(s2)− [A(s1) +B(s1)]

)
where s1 is the orginal CDS spread and s2 is the current CDS spread. The value of

the CDS to the seller is the opposite. Thus if the spread goes down, the CDS becomes

negative in value to the buyer and positive to the seller.

Dependence of implied probability of defaults on recovery rate R : We need to

estimate the recovery rate to evaluate the CDS spread. However, as long as we use the

same recovery rate in estimating the default probabilities and valuing the CDS, the

CDS spread is not sensitive to this rate. We have discussed that implied probability

of defaults are approximately proportional to 1
1−R . On the other hand, the payoffs

from the CDS are proportional to 1−R. This argument does not apply to the binary

CDS below.

Binary CDS: A CDS where the payoff is 1 instead of 1 - R (or equivalently R = 0

).

CDS forward and options: Similar to forward and option on other assets, where

the strike is quoted in basis points for the CDS spread to be entered with.

Total return swaps: A credit derivative to exchange the total return on a bond

(coupons, interests, gain or loss on the bond value) for LIBOR plus a spread. The

payer pays coupons earned on the bond. The receiver pays LIBOR plus a spread

on the same principal. At the end of life of the swap T , the payer pays VT −V0 to the

receiver where V is the value of the bond (the payer receives the amount VT −V0 if it

is negative). Thus if there is default on the bond, the payer would receive (1 − R)L

from the receiver and the swap is terminated. If the payer actually owns the bond,

the total return swap allows it to pass the credit risk of the bond to the receiver. The

total return swap spread reflects the credit risk of the receiver (the receiver itself can

default on the swap.) The total return swap is also a financial tool for the receiver

to invest in the corporate bond without having to make the actual investment (the

payer would do the actual investment in the bond). The receiver in effect is taking

out a loan on the bond principal with rate LIBOR plus spread, which reflects its own

credit risk.

Synthetic CDOs: Recall : (cash) CDO is an ABS on bonds. Synthetic CDOs

create the CDOs wihtout actually acquiring the bonds, based on the observation that

a long position on a corporate bond is the same as a short position on the CDS on the
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same corporation. The synthetic CDO originator chooses a portfolio of companies

and a maturity T (for example, an idex of companies such as the iTRaxx Europe

or the CDX NA IG in America). It sells CDS protection on each company with

the same maturity T (thus in effect as buying bonds from the corporations). The

synthetic CDO principal is the total of the notional principals underlying the CDSs.

The originator has cash inflows equal to the CDS spreads and cash outflows when

the companies in the portfolio default. Tranches are formed and the cash inflows

and outflows are distributed to tranches. The tranche cashflow rules are as followed:

Each tranche is responsible for the payoffs on the CDSs above its attachment point

αL and below its detachment point αH of the synthetic CDO principal. It earns its

own spread of s basis points per year on the outstanding principal of its tranche. For

example, suppose there are 3 tranches: senior, mezzanie and equity with proportions

(80 %, 15 %, 5%) respectively on a principal of 100 millions. There is a loss of 2

millions in the first year by the CDSs payout. The equity tranche principal is reduced

to 3 millions and it earns its spread on 3 millions after that. If the loss is above 5

millions then the equity tranche is wiped out and the mezzanine tranche principal is

reduced etc. In this way, the CDO originator sells protection on the companies to

some market participants and the tranche holders sell protection to the originator.

Single tranche trading: trading of a specific tranche of the synthetic CDO without

the portfolio of CDSs being created. The CDS portfolio is used as reference for

cashflows. The buyer pays the tranche spread (on the tranche principal) to the seller

and the seller pays the CDS payouts that the tranche is responsible for to the buyer.

Thus the buyer can be viewed as buying protection for the tranche (by paying the

tranche spread) and the seller can be viewed as selling protection for the tranche (by

receiving the tranche spread).

Valuing of a particular synthetic CDO tranche: Here we assume Ei as the expected

tranche principal at time ti, i = 0, · · · , n. The calculation is very similar to CDS

calculation with

A(s) +B(s) = C,

where A(s) is the present value of the expected tranche payment, B(s) is the present

value of the expected accrual payment and C is the present value of the expected

payoffs. We also assume defaults of the reference entities only happen at the midpoint
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of the payments. We have

A(s) =
n∑
i=1

e−rtiEis(ti − ti−1)

B(s) =
n∑
i=1

e−r
ti+ti−1

2 (Ei−1 − Ei)s
ti − ti−1

2

C =
n∑
i=1

e−r
ti+ti−1

2 (Ei−1 − Ei).

Here Ei−1 −Ei is the expected tranche loss in between the (i-1)th and ith payments.

Calculation of the expected tranche principal: We use the Gaussian copula model

in the previous chapter to model N reference entities in the portfolio. Suppose all

companies have the same probability Q(t|F ) of defaulting by time t where

Q(t|F ) = N
(N−1(Q(t)) + ρN−1(X)√

1− ρ2

)
,

where Q(t) = 1 − e−λt, for example. The probability of exactly k defaults by time t

is then

P (k, t|F ) =

(
n

k

)
Q(t|F )k(1−Q(t|F ))N−k.

Let αL, αH be the attachment and detachment points of the tranche. Also assume

the notional principal L on each company and their recovery rates are the same. The

tranche is responsible for the defaults amount k such that

nLαL ≤ (1−R)Lk ≤ nLαH .

In other words

dnLe := d nαL
1−R

e ≤ k < d nαH
1−R

e = dnHe.

Thus the tranche principal is 1 if k < dnLe and 0 if k ≥ dnLe. It is

αH − k(1−R)
n

αH − αL
otherwise. This is the tranche percentage, but in calculation of CDS spread the

notional principal does not enter. Then the expected tranche principle Ei (conditional

on the factor F ) at time ti is

Ei(F ) =

dnLe−1∑
k=0

P (k, ti|F ) +

dnHe−1∑
dnLe

P (k, ti|F )
αH − k(1−R)

n

αH − αL
.
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Thus the quantity A(s), B(s), C we calculated above will be dependent on F. To

obtain the tranche spread, we integrate these quantities over F and use the relation

A(s) +B(s) = C again.

kth to default CDS: a CDS that provides payoff when the kth default occurs in a

number of reference entities. It is part of a family called basket CDS. The evaluation

of a kth to default CDS is similar to the vanilla CDS :

A(s) =
n∑
i=1

e−rtiV (ti)s ∆t

B(s) =
n∑
i=0

e−r
ti+ti+1

2 (Q(ti+1)−Q(ti))s
∆t

2

C = (1−R)
n∑
i=0

e−r
ti+ti+1

2 (Q(ti+1)−Q(ti)),

where we replace

Q(ti) =
N∑

m=k

P (m, ti|F )

V (ti) = 1−Q(ti).

21 Exotic options

Variance swap : Consider an asset with dynamics

dSt = (r − q)Stdt+ σ(t)StdW̃t.

A variance swap with expiration T pays the holder

VT = L(

∫ T
0
σ(t)2dt

T
− VK)

at time T where L is some notional amount (taken to be 1 here for convenience) and

VK is some fixed variance rate.

Remark : If we discretize 0 = t0 < t1 < · · · < tn = T days then

v̄(T ) :=

∫ T
0
σ(t)2dt

T

can be approximated as

252

n− 2

n−1∑
i=0

[
log

Sti+1

Sti

]2
.
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Reason:

log
Sti+1

Sti
=

∫ ti+1

ti

(r − q − 1

2
σ2(t)dt+

∫ ti+1

ti

σ(t)dW̃t∑
i=0

[ ∫ ti+1

ti

σ(t)dW̃t

]2 ≈ ∫ T

0

σ2(t)dt

T =
n− 2

252
,

where the last equation converts the number of trading days to years.

Pricing variance swap : We have

d logSt = (r − q − 1

2
σ2(t))dt+ σ(t)dW̃T .

Thus ∫ T

0

1

2
σ2(t)dt = (r − q)T +

∫ T

0

σ(t)dW̃T − log
ST
S0

.

That is

Ẽv̄(T ) =
2

T
(r − q)T − 2

T
Ẽ log

ST
S0

=
2

T
log

F0

S0

+
2

T
Ẽ log

S0

ST

where we recall that F0 = e(r−q)TS0.

We claim that for any value S∗ :∫ S∗

0

1

K2
(K − ST )+dK +

∫ ∞
S∗

1

K2
(ST −K)+dK = log

S∗

ST
+
ST
S∗
− 1.

Reason: If S∗ < ST then∫ S∗

0

1

K2
(K − ST )+dK = 0∫ ∞

S∗

1

K2
(ST −K)+dK =

∫ ST

S∗

1

K2
(ST −K)dK

= log
S∗

ST
+
ST
S∗
− 1.

If S∗ ≥ ST then ∫ ∞
S∗

1

K2
(ST −K)+dK = 0∫ S∗

0

1

K2
(K − ST )+dK =

∫ S∗

ST

1

K2
(K − ST )dK

= log
S∗

ST
+
ST
S∗
− 1.
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Thus choosing S∗ = F0 (which may not possible in practical application) we have

2

T

[ ∫ F0

0

1

K2
erTp(K)dK +

∫ ∞
F0

1

K2
erT c(K)dK

]
= Ẽ log

F0

ST
= Ẽv̄(T ).

More generally we have

Ẽv̄(T ) =
2

T

[
1 + log

F0

S∗
− F0

S∗
+

∫ S∗

0

1

K2
erTp(K)dK +

∫ ∞
S∗

1

K2
erT c(K)dK

]
.

In practice, we generally choose S∗ to equal to the first strike price below F0 and

approximate ∫ S∗

0

1

K2
(K − ST )+dK +

∫ ∞
S∗

1

K2
(ST −K)+dK

with

n∑
i=1

∆Ki

K2
i

erTQ(Ki),

where Q(Ki) is the price of Euro put when Ki < S∗ and the price of Euro call when

Ki = S∗. If Ki = S∗ we set Q(Ki) to be the average of the price of Euro call and put.

This also suggests a way to replicate a variance swap with a portfolio of Euro calls

an puts.

Volatility swap: A volatility swap with expiration T pays the holder

VT = L(

√∫ T
0
σ(t)2dt

T
− σK)

= L(
√
v̄(T )− σK) = L(σ̄(T )− σK)

at time T where L is some notional amount (taken to be 1 here for convenience) and

VK is some fixed variance rate.

Pricing of volatility swap: We need to evaluate

Ẽ
√
v̄(T ).

We have

√
v̄(T ) =

√
Ẽv̄(T )

√
1 +

v̄(T )− Ẽv̄(T )

Ẽv̄(T )
.
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The second order xxpansion of
√

1 + x around 0 is

√
1 + x ≈ 1 +

1

2
x− 1

8
x2.

Thus √
1 +

v̄(T )− Ẽv̄(T )

Ẽv̄(T )
≈ 1 +

1

2

v̄(T )− Ẽv̄(T )

Ẽv̄(T )
− 1

8

(
v̄(T )− Ẽv̄(T )

Ẽv̄(T )

)2

.

Thus

Ẽσ̄(T ) ≈
√
Ẽv̄(T )

(
1− 1

8

˜var[v̄(T )]

[Ẽv̄(T )]2

)
.

Thus in pricing the volatility swap, the variance of the average variance rate during

the life of the contract is required.

VIX index: The CBOE publishes indices of implied volatility. The most popular

index, SPX VIX is the index of the implied vol of 30 day options on the S&P 500

calculated from a wide range of calls and puts. Trading on futures and options on

the VIX is available in the mid 2000s. A trade involving futures or options on the

S&P 500 is a bet on both the future level of the S&P 500 and its volatility. On the

other hand, a futures or options contract on the VIX is a bet only on volatility. In

the equation

Ẽv̄(T ) =
2

T

[
1 + log

F0

S∗
− F0

S∗
+

∫ S∗

0

1

K2
erTp(K)dK +

∫ ∞
S∗

1

K2
erT c(K)dK

]
we can approximate log(x) around x = 1

log x ≈ (x− 1)− 1

2
(x− 1)2

to have

Ẽv̄(T )T ≈ −(
F0

S∗
− 1)2 + 2

n∑
i=1

∆Ki

K2
i

erTQ(Ki).

This is the equation that is based on to calculate the VIX. On any given day, Ẽv̄(T )T

is calculated for options traded in the market with maturities immediately above and

below 30 days. The 30 day risk neutral expected cumulative variance is calculated

from these two numbers using interpolation. The result is multiplied with 365/30 and

the index is set equal to the square root of the result.
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22 Chapter 21, 27: Models and Numerical Proce-

dures

Determination of p, u, d in tree model: p, u, d must match the first two moments of

the asset return during a time interval of length δt. An additional condition is Cox,

Ross, Rubinstein :

d =
1

u
.

In a binomial tree for an asset with dividend rate q, the model is

Si+1 = Siu with probability p

= Sid with probability 1− p.

On the other hand, the log return is

log
St+∆t

St
= (r − q)∆t+ σ(W̃t+∆t − W̃t).

Hence

Ẽ log(
Si+1

Si

∣∣∣Fi) = (r − q)∆t

Ṽ ar log(
Si+1

Si

∣∣∣Fi) = σ2∆t.

That is

p log u+ (1− p) log d = (r − q)∆t
p(log u)2 + (1− p)(log d)2 = σ2∆t+ [(r − q)∆t]2.

A solution to these equations, when terms of higher order than ∆t are ignored is

p =
e(r−q)∆t − d

u− d
u = eσ

√
∆t

d = e−σ
√

∆t.

On the other hand, if the asset has a probability of 1− e−λ∆t of defaulting in the

interval of length ∆t :

P (t < τ < t+ ∆t|τ ≥ t) =

∫ t+∆t

t
e−λsds

e−λt
= 1− e−λ∆t
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the above equations are modified to

Si+1 = Siu with probability p

= Sid with probability 1− λ∆t− p
= 0 with probability λ∆t.

That is

Si+1 − Si
Si

= u− 1 with probability p

= d− 1 with probability 1− λ∆t− p
= −1 with probability λ∆t.

The continuous model is

St+∆t − St = St

[
(r − q + λ)∆t+ σW (W̃t+∆t − W̃t)

]
− St1{t≤τ<t+∆t}.

Hence

Ẽ(
Si+1 − Si

Si

∣∣∣Fi) = (r − q)∆t

Ṽ ar(
Si+1 − Si

Si

∣∣∣Fi) = σ2
W∆t+ λ∆t(1− λ∆t) =

(
σ2
W + λ

)
∆t := σ2∆t.

Note : The vol of the stock by definition is just the square root of Ẽ(Si+1−Si

Si

∣∣∣Fi) and

may NOT be σW if there are other noise factors. This way of viewing it may cause

problem in estimating historical volatility, since all we observe is the movement in

BM and not the default. Also in this sense the vol given in example 27.1 in the book

should be viewed as the historical vol and thus only belonging to BM. Unless the vol

is the implied vol in which case the hazard rate has been factored into the option

price??? We have

p(u− 1) + (1− λ∆t− p)(d− 1)− λ∆t = (r − q)∆t
p(u− 1)2 + (1− λ∆t− p)(d− 1)2 + λ∆t = σ2∆t,

(ignoring higher order terms in ∆t.) Rewriting these equations :

pu(u− 1) + pd(d− 1) = (r − q + λ)∆t

pu(u− 1)2 + pd(d− 1)2 = (σ2 − λ)∆t.
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A solution to these equations, when terms of higher order than ∆t are ignored is

pu = e−λ∆t e
(r−q+λ)∆t − d

u− d

pd = e−λ∆tu− e(r−q+λ)∆t

u− d
u = e

√
(σ2−λ)∆t

d =
1

u
.

e−λ∆t is the probability of not defaulting in the time interval [t, t + ∆t]. The term

e(r−q+λ)∆t represents the drift of the continous time dynamics when the asset does not

default given above. The u, d term reflecting that when there’s no default in [t, t+∆t]

then the vol contributed by the BM is
√
σ2 − λ.

The implied volatility function (IVF) model: a stochastic vol model such that the

option price matches all Euro option prices on any given day, regardless of the shape

of the vol surface. The model is

dSt = (rt − qt)Sdt+ σ(S, t)SdW̃t,

where

[σ(K,T )]2 = 2
∂cmkt

∂T
+ q(T )cmkt +K[r(T )− q(T )]∂cmkt

∂K

K2 ∂2cmkt

∂K2

.

There is also the implied tree methodology (by Derman) involves constructing a

tree for the asset price that is consistent with option prices in the market.

Convertible bond: Corporate bonds where the holder has the option to exchanged

the bonds for the company’s stock at certain times in the future. The conversion

ratio is the number of shares of stock obtained for one bond (can be a function of

time). The bonds are almost always callable (the issuer has the right to buy them

back at a certain times at a predetermined prices). The holder always has the right

to convert the bond once it has been called. The call feature therefore is a way of

forcing conversion earlier than the holder would otherwise choose. Credit risk plays

an important role in the valuation of convertibles (thus modelling the equity with a

hazard rate as above is relevant in pricing a concertible bond). See example 27.1 in

Hull. We need to model the stock price with default using the binomial tree model.

If default happens the bond is worth 40 % of its face value. At each point n where

conversion is possible, the value of the bond is valued as

max(min(Vroll(n), K), α(n)Sn),
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where Vroll(n) is obtained by rolling back from step n+1, K is the callable strike, α(n)

is the conversion ratio at time n. K is at least the face value of the bond. Therefore

at the terminal node N , if conversion is allowed then min(Vroll(N), K) = F, the face

value and the only decision to make is whether conversion happens at that node.

Trinomial trees: Trinomial trees can be used as an alternative for binomial trees.

A calibration for pu, pm, pd that matches the two first moments of d logSi are

pu =

√
∆t

12σ2
(r − q − σ2

2
) +

1

6

pu = −
√

∆t

12σ2
(r − q − σ2

2
) +

1

6

pm =
2

3

u = eσ
√

3∆t

d =
1

u
.

The trinomial tree approach proves to be equivalent to the explicit finite difference

method.

23 Chapter 28: Martingales and numéraires

Market price of risk : Suppose there is an asset with dynamics

dSt = µSStdt+ σSStdWt

(under some UNSPECIFIED measure, the measure actually is equivalent to the mar-

ket price of risk λ see below). Suppose V 1, V 2 are two derivatives based on S and

dV 1
t = µ1V

1
t dt+ σ1V 1

t dWt

dV 2
t = µ2V

2
t dt+ σ2V 2

t dWt.

(This is true, if e.g. V i = f i(t, St).) Then

µ1 − r
σ1

=
µ2 − r
σ2

= λ.

This result , of course, also applies to St itself. λ is referred to as the market price of

risk of St (under the choice of a particular measure). Thus more precisely it should be

λ is the market price of risk associated with a particular risk measure (or a particular

investors’ preference). See below.
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Reason: If we form a self financing portfolio π with V 1, V 2 then

dπt = α1
tdV

1
t + α2

tdV
2
t

= (· · · )dt+ (α1
tσ

1V 1
t + α2σ2V 2

t )dWt.

By choosing α1 = σ2V 2, α2 = −σ1V 1 we have

dπt = (σ2µ1 − σ1µ2)V 1
t V

2
t dt = rπtdt = r(σ2 − σ1)V 1

t V
2
t dt

by no arbitrage argument. Thus

σ2(µ1 − r) = σ1(µ2 − r).

The conclusion follows. In multivariate asset Si, i = 1, · · ·N case, where

dSit = µS,iSitdt+ σiSitdW
i
t ,

the result is

µ1 − r =
N∑
i=1

λiσ
1
i

µ2 − r =
N∑
i=1

λiσ
2
i ,

where λi is the market price of risk of asset Si.

Remark: A more precise statement is, when we have m sources of risk and n assets

then we have m market prices of risk λ1, λ2, · · · , λm that have to satisfy the system

of equations

m∑
k=1

σikλ
k = µi − r, i = 1, · · · , n.

Here σik is the risk factor of the ith asset in the kth risk component. Thus one should

refer to λk as the market price of risk of the kth risk factor rather than the kth asset

in general.

Risk measures and market price of risk: The dynamics of the price of a derivative

V is

dVt = µVtdt+ σVtdWt.
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The value of µ depends on the risk preferences of investors. By the above result it

can be written as

dVt = (r + λσ)Vtdt+ σVtdWt.

When λ = 0 this is the dynamics of Vt under the risk neutral measure and thus

the probability under consideration is risk neutral. For other choices of λ we have

different views of the market, including the physical and other choices of numéraire.

Change of numéraire: There are two fundamental principles in change of numéraire.

The pricing principle: Let Vt, Nt be the price processes (in the physical world) of

two non-dividend paying assets V,N . The t-value of an asset V denoted in the unit of

any numéraire N at some future point T , that is the t- value of VT
NT

, must be exactly

the t-price of the asset denominated in N , that is Vt
Nt
. This principle can be proven

by no arbitrage argument: Conisder a self-financing portfolio investing α1
t shares in

Vt and α2
T shares in Nt. The value of this portfolio in the denomination of N is

π
(N)
t = α1

tV
(N)
t + α2

t ,

where π
(N)
t = πt

Nt
· · · . Viewed in this way, this is exactly the same as the traditional

value of a portfolio investing in a stock and the money market account. The tradi-

tional no arbitrage argument applies in this case.

The mathematical expression of the pricing principle is that the price process of

a non dividend paying asset denominated under a numéraire is a martingale under

the risk measure associated with that numéraire. Note that the risk neutral pricing

formula is a special case of this when the numéraire is the money market account

(usually denoted as Nt = ert when r is constant.)

Remark: In the case that the numéraire is some nondividend paying foreign asset

(such as the foreign money market or foreign bond), the same martingale pricing

principle applies. That is the discounted price of the foreign bond or foreign money

market denominated in the domestic currency unit is a martingale : the present value

of the future price of the foreign bond is its current price, expressed in domestic unit.

In symbols: Bf (t, T )Qt and e
∫ t
0 r

fduQt are P̃ martingales.

The risk measure principle: The risk measure associated with a numéraire N is

such that the market price of risk is the volatility ρNSσ
N , where ρNS is the correlation

of the percentage return of S and N . (Thus when N is the money market and has

no correlation with the asset λ = 0). More precisely, ρNS should be the correlation

between N and the (only) risk factor of the market. Thus more preciesly, if the money
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market risk factor is uncorrelated with the security market risk factor, we have λ = 0.

Is this true? This should be ! So that e−
∫ t
0 rsdsSt is still a martingale under the “risk

neutral” measure.

Reason: We only need to show that given a price process Vt :

dVt = (r + σNσV )Vtdt+ σV VtdWt

and the price process of Nt itself :

dNt = (r + (σN)2)Ntdt+ ρNSσNNtdWt,

then V
(N)
t = Vt

Nt
is a martingale. In fact,

dV
(N)
t = (σV − σNρNS)V

(N)
t dWt.

This can be verified straightforwardly using Ito’s formula.

In the multivariate case as set up above, λi = ρNSi
σNi where ρNSi

is the correlation

between N and the ith risk factor (which coincides with the ith asset in the above

model, but not in general, see the example below).

Effect of change of numéraire (multivariate case): Suppose

dVt = (r +
n∑
i=1

λiσ
V
i )Vtdt+ Vt

n∑
i=1

σVi dW
i
t

dNt = (r +
n∑
i=1

λiσ
N
i )Ntdt+Nt

n∑
i=1

σNi dW
i
t .

dMt = (r +
n∑
i=1

λiσ
M
i )Mtdt+Nt

n∑
i=1

σMi dW
i
t .

Using Nt as numéraire results in a dynamics where λi = σNi , i = 1, · · · , n :

dVt = (r +
n∑
i=1

σNi σ
V
i )Vtdt+ Vt

n∑
i=1

σ1
i dW

i
t

Similarly using Mt as numéraire results in a dynamics where λi = σMi , i = 1, · · · , n :

dVt = (r +
n∑
i=1

σMi σ
V
i )Vtdt+ Vt

n∑
i=1

σ1
i dW

i
t .

If we change from numéraire M to numéraire N , the change in the expected growth

rate of V is
n∑
i=1

(σNi − σMi )σVi .
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On the other hand, the dynamics of the numéraire ratio N
M

is

d
Nt

Mt

= (· · · )dt+
Nt

Mt

n∑
i=1

(σNi − σMt )dW i
t .

Thus the result can be summarized as: the adjustment αV to the expected growth

rate of an asset V when we change from one numéraire M to another numéraire N

is the covariance between the percentage change of V with the percentage change of

the numéraire ratio W = N
M

:

αV = ρVWσV σW .

Note that in the multi-dimensinal case, this really means:

ρVWσV σW =
∑
i

σiV σ
i
W .

σV really is ‖σV ‖ and similarly for σW . For example :

dS1
t = µ1S1

t dt+ σ1S1
t dW

1
t

dS2
t = µ2S2

t dt+ σ2S2
t (ρdW

1
t +

√
1− ρ2dW 2

t ).

Here

vol(S1
t ) = SD(

dS1
t

S1
t

) = σ1

vol(S2
t ) = SD(

dS2
t

S2
t

) = σ2

Cov(
dS1

t

S1
t

,
dS2

t

S2
t

) = ρσ1σ2

corr(
dS1

t

S1
t

,
dS2

t

S2
t

) = ρ.

In this example, we can define dW 3
t = ρdW 1

t +
√

1− ρ2dW 2
t . Thus ρVW can also be

looked at as the correlation between the risk factors of V and W (this may be the

easiest definition to follow).

Note that ρVW can be negative, as in the example below.

Application: Siegel’s paradox

Suppose Qt is the exchange rate at time t of Y for X. That is Qt is the number

of units of Y per one unit of X. Under the risk measure of the Y -money market, we

have

dQt = (rY − rX)Qtdt+ σQtdWt.
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By Ito’s formula, we can calculate that

d
1

Qt

= (rY − rX + σ2)
1

Qt

dt− σ 1

Qt

dWt.

1
Qt

is the exchange rate of X for Y . We would expect that its growth rate is rX − ry
by a similar argument to the growth rate of Qt. The reason this did not show is

because the above dynamics is given under the Y− money market numéraire. If we

use the above result, we have M is the Y money market, N is the X money market

and Wt = e(rX−rY )tQt and V = 1
Qt

. Thus ρVW = −1, σV = σW = σ. Therefore, the

dynamics of 1
Qt

under the X−money market numéraire must be

d
1

Qt

= (rY − rX + σ2 − σ2)
1

Qt

dt− σ 1

Qt

dWX
t

= (rY − rX)
1

Qt

dt− σ 1

Qt

dWX
t

as expected.

Forward price versus futures price: Consider a forward contract on an asset St

with strike K with maturity T . We want to find the forward price F (t, T ) of St. Since

Vt = 0 it is the same under the T forward measure :

0 = E(T )(ST − F (t, T )|Ft).

Thus

F (t, T ) := E(T )(ST |Ft)
= Ẽ(e−

∫ T
t ruduST |Ft).

These relations can be viewed as the definitino of forward price. On the other hand,

the futures price Fu(t, T ) of St is such that

Fu(t, T ) = Ẽ(ST |Ft).

(Note the non discounting part). Thus future price process itself is martingale under

the risk neutral world. The reason is by construction, the futures prices process is an

asset paying dividend with rate rt which converges to ST .

Black’s model with random interest rate : Consider a call option on an asset St

where the risk free rate is random. The price of this option under the foward measure

(the measure with the zero coupon bond B(t, T ) as numéraire) is

V
(T )

0 = E(T )(ST −K)+

= E(T )(ST )N(d+)−KN(d−),
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since B(T, T ) = 1 and

N(d±) =
±σ2T

2
− log K

E(T )(ST )

σ
√
T

.

Now E(T )(ST ) = F0, the forward price of ST . Thus we recover Black’s result :

V0 = B(0, T )F0N(d+)−KN(d−),

N(d±) =
±σ2

2
− log K

F0

σ
√
T

.

Note that σ
√
T = SD(T )(log(ST )) but it is equal to the physical volatility by the

change of measure result.

Option to exchange one asset for another: Suppose S1
t , S

2
t each has volatility σ1, σ2

and correlation ρ for their percentage change.

dS1
t = µ1S1

t dt+ σ1S1
t dW

1
t

dS2
t = µ2S2

t dt+ σ2S2
t (ρdW

1
t +

√
1− ρ2dW 2

t )

VT = (S1
T − S2

T )+.

Then

V
(2)

0 = E(2)(S1,(2) − 1)+,

where under the risk measure of numéraire S2

dS
1,(2)
t = d

S1
t

S2
t

=
S1
t

S2
t

((σ1 − ρσ2)dW 1
t −

√
1− ρ2σ2dW

2
t )

=
S1
t

S2
t

σ3dW
3
t ,

where

σ2
3 = (σ1 − ρσ2)2 + (1− ρ2)(σ2)2

= (σ1)2 − 2ρσ1σ2 + (σ2)2.

Thus

V0 = S2
0(
S1

0

S2
0

N(d+)−N(d−)),

= S1
0N(d+)− S2

0N(d−)

N(d±) =
± (σ3)2

2
− log

S2
0

S1
0

σ3

√
T
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24 Chapter 29: Interest rates derivatives

Embedded bond options: Callable bond: the issuer has the right to repurchase the

bond at a predetermined price (usually as a decreasing function of time, also not

exercisable in the first few years in the bond’s life : lock out period). Effectively

the purchaser has sold the issuer a call option on the bond. The yield of a callable

bond therefore is higher than bond with no call features. Puttable bond (retractable

bond) : the purchaser has the right to redeem the bond before the maturity at a

predetermined price. The issuer effectively has sold the purchaser a put option on

the bond. The yield of a puttable bond therefore is lower than bond with no put

features.

Examples of products with call / put features: Prepayment previleges on loans

and mortgages are call options on bonds. Loan commitment (a rate quote that is

good until a certain time T in the future) made by a financial institution is a put

option on a bond.

Pricing of Euro bond option: By Black’s formula:

c = ẼT ((B(T, T∗)−K)+)

c = B(0, T )(FBN(d+)−KN(d−))

p = B(0, T )(KN(−d−)− FBN(−d+))

d± =
±1

2
σ2
BT − log K

FB

σB
√
T

where FB is the forward bond price :

FB =
S0 − I
B(0, T )

,

S0 is the bond price at time 0 and I is the present value of the income provided by

the bond.

Note : This assumes that the forward bond price FB(0, T ) has a log normal

distribution with volatility σB (and mean 0 under the forward risk measure T ). These

and other similar assumptions in this chapter are sufficient for valuing Euro style

interest rate derivatives; but not sufficient for American style interest rate derivatives

or structured notes. For these derivatives, short rate models such as CIR, Vasicek,

Hull-White, Ho-Lee etc are relevant. See chapter 31.

Determination of σB: σB is the vol of the forward bond price. In practice it is
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calculated from the forward bond yield via the duration equation :

∆FB
FB

≈ −DyF
∆yF
yF

,

where D is the modified duration and yF is the forward yield. Thus we have

σB = Dy0σy,

where y0 is the current value of the forward yield.

Interest rate caps and floors: Consider a cap with a total life of T , principal of

P and cap rate of R. Suppose the reset dates are t1, t2, · · · , tn. An interest rate cap

pays the holder at time tk+1, k = 1, · · · , n an amount of

P (L(tk, tk+1)−R)+(tk+1 − tk).

A cap can be viewed as n call options on the LIBOR rate observed at time tk with

payoff at time tk+1. The n call options underlying the cap are known as caplets.

The payoff above at time tk+1 is equivalent to the following payment at time tk :

P

1 + L(tk, tk+1)∆t
(L(tk, tk+1)−R)+∆t =

[
P − P (1 +R∆t)

1 + L(tk, tk+1)∆t

]+
.

The quantity P (1+R∆t)
1+L(tk,tk+1)∆t

is the value at time tk of a zero coupon bond with face

value P (1 +R∆t). Thus the cap can also be viewed as a portfolio of put options with

expiry tk on zero coupon bond with maturity at tk+1 and face value P (1 +R∆t).

A floor is the reverse of a cap. Thus we have the put call parity for Caps and

Floors:

Value of cap - Value of floor = Value of swap,

where the all contracts have the fixed rate R and floating rate being the prevailing

LIBOR.

Valuation of caplet: By Black’s formula the value of the caplet is

V k
0 = L∆tB(0, tk+1)[FkN(d1)−RN(d−)],

d± =
±σ2

ktk
2
− log R

Fk

σk
√
tk

,

where Fk is the LIBOR forward rate of at time 0 for the period [tk, tk+1] and σk is

the vol of this forward rate.
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Remark: This is why forward price is relevant since Black’s formula allows to

price option with random interest rate once the forward price is available. Again,

the assumption here is the LIBOR forward rate has a log-normal distribution with

volatility σk.

Flat volatility vs spot volatility: Each caplet (floorlet) must be valued separtely

using the equation above. One approach is to use a different vol for each caplet. This

is referred to as spot volatilities. An alternative is to use the same vol for all caplets

comprising of a cap, but vary this according to the life of the cap. This is referred to

as flat volatility. The vols quoted in the market are usually flat volatilities.

European swaptions: Options on interest rate swaps, which give holder the right

to enter into a certain interest rate swap at a certain time in the future ( with a

predetermined fixed rate sK). Suppose that there are m payments per year under the

swap and the notional amount is L. Thus each fixed payment is L
m

times the fixed

rate. Suppose that the realized swap rate at time T for this swap is sT . The payoff

from the swaption is a series of cash flows equal to

L

m
(sT − sK , 0),

received at times t1, t2, · · · , tnm for a total of mn payments. The value of the swaption

is

V0 =
mn∑
i=1

L

m
B(0, ti)(s0N(d+)− skN(d−))

d± =
±σ2T

2
− log sk

s0

σ
√
T

,

where s0 is the forward rate of the swap rate sT .

Remark : The forward swap rate s0 may need to be calculated using the whole

swap structure in the future, i.e. using the forward LIBOR rates etc. so that the

value of the future swap at time T is 0. (See next chapter for some finer details on

convexity and time adjustments). Indeed, let T1 < T2 < · · · < TN be the payment

dates , t = T0 is the start date of the swap and τi = Ti+1 − Ti then the swap rate s(t)

satisfies

n−1∑
i=0

B(t, Ti+1)F (t, Ti, Ti+1)τi =
n−1∑
i=0

B(t, Ti+1)s(t)τi.
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On the other hand, F (t, Ti, Ti+1)τi = B(t,Ti)−B(t,Ti+1)
B(t,Ti+1)

. Thus

s(t) =

∑n−1
i=0 B(t, Ti)−B(t, Ti+1)∑n−1

i=0 B(t, Ti+1)τi

=
B(t, T0)−B(t, Tn)∑n−1

i=0 B(t, Ti+1)τi
.

Note that s(0) is NOT ẼT (s(T )). Recall that a swap rate is the par yield when

LIBOR discounting is used. Thus we can consider a bond with coupon rate s(0) with

life time equals the life time of the swap whose yield at that time is s(T ). We can

write down the price of that bond B(T ) as a function of its yield G(yT ) (since we use

s0 as the coupon rate and NOT LIBOR the price of the bond B(T ) is not 1). We can

then use convexity adjustment which says

ẼT (sT ) = s0 −
1

2
s2

0σ
2
ST

G′′(s0)

G(s0)
.

σS can be implied from the prices of swaption with the same maturity.

25 Chapter 30: Convexity and timing adjustments

Main question: For T1 < T2 how to relate ET2(ST1) and ET1(ST1). By definition,

we already know the forward price of S at time T1, which could be ET1(ST1) OR

ET2(ST1), depending on the situation (see below).

Case 1: Interest rates. Note: interest rate is NOT a traded asset. Thus if RT1 is

the prevaling rate (LIBOR, swap etc) for some time interval [T1, T2] ET1(RT1) is NOT

the forward rate of RT1 . Indeed, suppose RT1 = L(T1, T2) is the prevailing LIBOR

rate at T1. the usual approach is to relate the amount received at T2, which can be

viewed as some traded asset ( a zero coupon bond) with the bond prices at time

T1, T2. Indeed, we have showed that the forward rate F0 of RT1 at time 0 (compound

once) is such that

(1 + F0(T2 − T1))B(0, T2) = B(0, T1).

And thus

F0 =
B(0, T1)

B(0, T2)
− 1.
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In the T2 forward risk measure notation, this calculation is

ET2

[
[L(T1, T2)− F0](T2 − T1)

]
= 0,

and thus by definition ET2 [RT1 ] = ET2 [L(T1, T2)] = F0. And thus one easily see that

ET2 [RT1 ] is NOT F0, the forward rate. Now since RT1 is available at time T1, one can

have a contract that pays

VT1 = RT1(T2 − T1)

at time T1. The value of this contrat is

V0 = B(0, T1)ET1(VT1) = B(0, T1)(T2 − T1)ET1(RT1).

Thus we need to evaluate (or at least approximate) ET1(RT1).

The most consistent approach is time adjustment (that would be used also to

evaluate quanto option below) : In changing from ET1(RT1) to ET2(RT1) we change

from the numéraire B(t, T1) to B(t, T2). Another observation is that the forward rate

F (t, T1) is such that F (T1, T1) = RT1 . Thus we are changing from ET1(F (T1, T1)) to

ET2(F (T1, T1)). This is helpful because F (t, T1) is a process with growth rate and

volatility that we can discuss. The numéraire ratio is W = B(t,T2)
B(t,T1)

. and the “asset” is

F (t, T1). According to the change of numéraire result, the growth rate of the asset is

changed by

αF = ρFWσFσW .

We need to be able to express σW in terms of σF . Suppose that the interst is structured

in a frequency of m times (per annum). Then similar to the above we have

(1 +
F (t, T1)

m
)m(T2−T1) =

B(t, T1)

B(t, T2)
=

1

W
.

A side remark about geometric BM processes: not all Ito processes are of the

geoemetric form:

dXt = µX(t)Xtdt+ σX(t)XtdWt.

But if we are reasonably certain that Xt is not zero in some interval of time, then

it can be turned into a geometric form by redefining µX(t), σX(t). Thus the vol and

growth rate, defined as the mean and standard deviation of the percentage return,
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can always be found for any process. The growth rate and the vol may be dependent

on the process itself.

A side remark about Ito’s formula:

If Y = f(X) are two Ito processes then we always have

σY Y = σXXf
′(X).

Note that σy, siX here are the ”generalized” vol as in the above sense. They might

even contain ± sign and so they may be one sign away from what we think of as vol.

The reason is by the generalized geometric structure:

dYt = (· · · )dt+ σY YtdWt

= (· · · )dt+ f ′(X)σXXdWt.

Equating the dWt terms we have the result. (Again in reality Wt may even be a multi

dimensional BM).

Applying these remarks, we have

σW (t) =
−σFF (t, T1)(T2 − T1)

1 + F (t,T1)
m

.

Here we assume that σF is a constant. The negative sign in front shows that the

correlation ρFW between the risk factors of F,W is -1 (in this case we are really

taking

σW (t) =
σFF (t, T1)(T2 − T1)

1 + F (t,T1)
m

).

And thus

αF ≈ −
(σF )2F (0, T1)(T2 − T1)

1 + F (0,T1)
m

,

where we have approximated F (t, T1) with F (0, T1).

Lastly, since changing from ET1(F (T1, T1)) to ET2(F (T1, T1)) only affects the

growth rate by αF , we can approximate :

ET2(F (T1, T1)) ≈ ET1(F (T1, T1))eαF (T2−T1)

≈ ET1(F (T1, T1)) exp
(
− (σF )2F (0, T1)(T2 − T1)

1 + F (0,T1)
m

T1

)
.
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In particular, if T2 − T1 = ∆t is one period of compounding then 1
m

= ∆t and thus

ET1(F (T1, T1)) ≈ F (0, T1) exp
((σF )2F (0, T1)(T2 − T1)

1 + F (0, T1)(T2 − T1)
T1

)
.

Case 2: Equity: Consider a derivative that provides a pay off in T2 equalling to

the value of an index observed at T1 < T2. Here we need to evaluate ET2(ST1) and

we already know ET1(ST1) which is the forward price of S at time T1. Using the same

argument as above, but now

αS = ρSWσSσW = −ρSFσSσFF (t, T1)(T2 − T1)

1 + F (t,T1)
m

.

Remark: The correlation between the risk factors of F,W is -1 as in the above remark.

This literally means if the BM factor of F is Wt then the BM factor of W is −Wt.

Therefore, ρSW = −ρSF naturally.

The result then is

ET2(ST1) ≈ ET1(ST1) exp
(
− ρSRσSσFF (0, T1)(T2 − T1)

1 + F (t,T1)
m

T1

)
.

Finally,

V0 = B(0, T2)F S(0, T1) exp
(
− ρSRσSσFF (0, T1)(T2 − T1)

1 + F (t,T1)
m

T1

)
.

Quantos : Quantos are derivatives where the payoff is defined in terms of a variable

that is measured in one of the currencies and the payoff is made in another currency.

Specifically, consider an index St that is defined in terms of a currency X (say Nikkei

250 in yen) and a derivative that pays ST at time T in the denomination of Y -currency

(e.g. US dollars). The value of the derivative is

B(0, T )EY,T (ST )

while what we know is EX,T (ST ) which is the forward price of S in the currency of X.

EY,T is the risk measure associated with the zero coupon bond in Y− currency and

similarly for X. Thus we want to relate EX,T (ST ) with EY,T (ST ). Changing from EX,T

to EY,T (S, T ) the ratio W of the numéraires is BY (t,T )Qt

BX(t,T )
where Qt is the exchange of

X for Y (that is the price of 1 unit of Y currency denominated in X ). In fact, Wt

here is the forward exchange rate of X for Y with expiry T quoted at time t : The

forward exchange rate F (t, T ) of X for Y must satisfy BY (t, T )Qt = F (t, T )BX(t, T ).
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The change in growth rate of ST is

αS = ρSWσSσW .

And we have

EY,T (ST ) ≈ EX,T (ST )exp(ρSWσSσWT ).

26 Chapter 31: Interest rate derivatives: Model

for short rates

For Euro style interest rate derivatives evaluation, log normal distribution assumption

on the forward rate (or forward price, in case of a bond) is sufficient. On the other

hand, these structures does not directly provide a description of how interest rates

evolve through time ( knowing the distribution of F (t, T1) and F (t, T2) where they

are the forward rates prevaling at time T1 and T2 does not provide a description on

how short rate evolves in [T1, T2]. In other words, we don’t have R(T1, T2) in the

notation below (be careful to distinguish this with F (t, T1, T2), the forward rate for

the borrowing period [T1, T2] available at time t ). This is unless we model the forward

rate directly for any T as in the HJM approach.) The convexity and time adjustment

in the previous chapter is one way to address this problem. Alternatively, we can

model the short rate directly. This provides a description of the evolution of all zero-

coupon interest rates r(t, T ) (for all T ), also known as a term structure model. Using

term structure models, convexity and timing adjustments are not required. They are

also useful for evaluating American style interest rate derivatives or structure notes.

Basics of instantaneous short rate: Derivative pricing depends only on the dynam-

ics of r(t) in a risk-neutral world. The process of r(t) in the real world is not used

(this is not quite precise, see below for the fitting the equilibrium models section).

The pricing formula for a zero coupon bond with maturity T is

B(t, T ) = Ẽ(e−
∫ T
t rudu|Ft)

= e−R(t,T )(T−t).

Or

R(t, T ) = − 1

T − t
log Ẽ(e−

∫ T
t rudu|Ft)

= − 1

T − t
logB(t, T ).
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This is the term structure equation. If we assume the Markov property of rt, the

term structure only depends on the value of r at t and its dynamics on [t, T ].

Black-Scholes equation for any interest rate derivatives: suppose r follows the

dynamics

dr = m(r, t)dt+ σ(r, t)dWt.

Then any derivative dependent on r, if providing no income must satisfy

−rV + Vt +mVr +
1

2
σ2Vrr = 0.

One particular solution to the equation is the zero-coupon bond B(t, T ) (under the

Markov property of r(t).)

Equilibrium models: Equilibrium models start with assumptions about economic

variables (factors ? ) and derive a process for r. This process in turn implies about

bond prices and option prices. The general dynamics of rt under the risk neutral

measure is of the form

dr = m(r)dt+ σ(r)dWt.

The distinction is m,σ do not depend on t (especially m). (Is this what is meant by

equilibrium? When t→∞? ). Examples in clude Vasicek :

dr = a(b− r) + σdWt

and CIR:

dr = a(b− r) + σ
√
rdWt.

Both Vasicek and CIR gave bond price of the form

B(t, T ) = A(t, T )e−C(t,T )r(t)

with explicit solutions for A(t, T ), C(t, T ).

Equilibrium models (Vasicek, CIR) and term structure : In both Vasicek and CIR

model

R(t, T ) = − 1

T − t
logB(t, T )

=
− logA(t, T )

T − t
+
C(t, T )

T − t
r(t).
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Since A(t, T ), C(t, T ) can be explicitly determined by a, b, σ in both models, the

entire term structure is determined by these coefficients as well. Moreover, R(t, T ) is

linearly dependent on r(t). Thus the level of the term structure at time t depends

only the value of r(t). On the other hand, the shape of the term structure at time

t (as a function of T ) is independent of r(t) but does depend on t. Moreover, as

A(t, T ), C(t, T ) are really functions of T − t, we get a homogenous term structure.

So the the shape of the term structure at time t (as a function of T ) is really just a

shift of the original term structure ( thus for the same time to maturity τ = T − t we

get the same R(t, T ) ).

Question: Can a, b, σ be chosen so that the equilibrium models fit the initial term

structure as the no arbitrage models below? That is can they be chosen so that

R(0, T ) = − 1

T
logBm(0, T ),

where Bm(0, T ) is the market bond prices at time 0? This does not seem possible

as we have only 3 parameters a, b, σ and the infinitely many equations for T . This

can also be explained from the fact that a, b are independent of t. The no arbitrage

models allow for this possibility and hence can fit the initial term structure exactly.

Fitting equilibrium models: We can fit the models with historical short rate data

or with bond price data. The first approach results in the dynamics of the short

rate in the real world, which is appropriate for scenario analysis (insurance company

interested in the value of its portfolio in 20 years). The second approach results in

the dynamics in the risk neutral world.

Example: Vasicek’s model:

∆r = a(b− r)∆t+ σε
√

∆t.

We can fit this model on weekly data of short temr interest rate over a period of

10 years by regressing ∆r ( the change in the short rate in 1 week) against r. The

slope is a∆t, the intercept is ab∆t and the standard error of the estimate is σ
√

∆t.

Interesting enough, this approach can also give the risk neutral dynamics of rt. The

approach is to note that changing to risk neutral measure is the same as reducing the

growth rate (the proportional drift) of rt by λσR where σR = σ
rt

in Vasicek’s model.

Thus the dynamics of r in the risk neutral world is

dr = (a(b− r)− λσ)dt+ σdW̃t

= a(b∗ − r)dt+ σdW̃t.
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where b∗ = b− λσ
a

and λ is the market price of risk to be determined by some other

methods.

Example: CIR model :

dr = a(b− r)dt+ σ
√
rdW̃t

can be used to value bonds of any maturity using the model’s analytic results. One

can choose a, b, σ that minimize the sume of squared differences between the market

prices of a set of bonds and the prices given by the model. On the other hand, using

a similar argument with the above, we get the real world dynamics of rt as

dr = [a(b− r) + λσ
√
rt]dt+ σ

√
rdW̃t.

This also can be derived from the fact that

dWt − λdt = dW̃t.

No arbitrage model: Models designed to be exactly consistent with today’s term

structure of interest rates. In an equilibrium model, today’s term structure is an

output. Furthermore, the drift is usuallly not a function of time. In a no arbitrage

model, today’s term structure of interest rates in an input. Furthermore, the drift is

usually a function of time. This is because the shape of the initial zero curve governs

the average path taken by the short rate in the future in a no-aribtrage model. If

the zero curve is steeply upward sloping for maturities betwen t1 and t2 (that is
∂
∂T
R(t, T ) < 0 for t1 ≤ T ≤ t2 )then r has a positive drift between these times and

the reverse also holds. See Ho-Lee model for example.

Ho-Lee model:

dr = θ(t)dt+ σdW̃t

θ(t) = Ft(0, t) + σ2t.

The choice of θ(t) is so that the model fits the initial term structure and is inde-

pendent of r. Note that as an approximation, θ(t) ≈ Ft(0, t), where F (0, t) is the

instantaneous forward rate for a maturity t as seen at time 0 :

F (0, T ) = − ∂

∂T
logB(0, T ).

Thus the average direction of the short rate in the future is approximately the slope

of the instantaneous forward rate.
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Reason: Note that F (0, s, t) satisfies

B(0, t)eF (0,s,t)(t−s) = B(0, s).

Thus

F (0, s, t) =
1

t− s
log

B(0, s)

B(0, t)

= −B(0, t)−B(0, s)

t− s
.

Thus the instantaneous forward rate F (0, t) satisfies

F (0, T ) = − ∂

∂T
logB(0, T ).

Note: F (0, 0) := r0 by definition. We can NOT plug in B(0, 0) = 1 to deduce that

F (0, 0) = 0 since that’s NOT the rate of change of logB(0, T ) around 0.

On the other hand, the initial term structure equation is

R(0, T ) = − 1

T
log Ẽ(e−

∫ T
0 rudu)

Plugging in

ru = r0 +

∫ u

0

Fs(0, s) + σ2sds+ σWu

= r0 + F (0, u)− F (0, 0) +
1

2
σ2u2 + σWu

= F (0, u) +
1

2
σ2u2 + σWu

where we have used r0 := F (0, 0) gives

−
∫ T

0

rudu = −
∫ T

0

F (0, u)du−
∫ T

0

1

2
σ2u2 + σWudu.

It can be showed that

Ẽ e−
∫ T
0

1
2
σ2u2+σWudu = 1

and ∫ T

0

F (0, u)du = logB(0, T ).
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Thus

R(0, T ) = − logB(0, T )

T
,

which is the initial term structure.

The bond pricing formula for Ho-Lee model is

B(t, T ) = A(t, T )e−r(t)(T−t)

logA(t, T ) = log
B(0, T )

B(0, t)
+ (T − t)F (0, t).

Here A(t, T ) does not depend only on T − t (through the term B(0,T )
B(0,t)

and thus Ho-Lee

term structure is not time homogenous.

Hull-White one factor model:

drt = (θ(t)− ar)dt+ σdW̃t.

Hull-White is Ho-Lee model with mean reversion at rate a (thus Ho-Lee is Hull-White

with a = 0). Alternatively, Hull-White is Vasicek’s model with time dependent mean

reversion level. The choice of θt that matches the initial term structure is

θ(t) = Ft(0, t) + aF (0, t) +
σ2

2a
(1− e−2at).

The bond pricing formula for Hull-White one factor model is

B(t, T ) = A(t, T )e−C(t,T )r(t)

C(t, T ) =
1− e−a(T−t)

a

logA(t, T ) = log
B(0, T )

B(0, t)
+B(t, T )F (0, t)− 1

4a3
σ2(e−aT − e−at)2(e2at − 1).

Thus A(t, T ) is not dependent only on T − t and the term structure curve is not time

homogenous.

Options on bonds: For Vasicek, Ho-Lee and Hull-White one factor models, the

price V0 at time 0 for a call option with strike K that matures at time T on a zero-
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coupon bond with principal P maturing at time T ∗ is

V0 = PB(0, T ∗)N(d+)−KB(0, T )N(d−)

d± =
±σ2

P

2
− log B(0,T )K

B(0,s)P

σP

σP =
σ

a
[1− e−a(T ∗−T )]

√
1− 2e−aT

2a
(Vasicek, Hull White)

σP = σ(T ∗ − T )
√
T (Ho Lee) .

This is essentially Black’s formula for a bond option with bond forward price having

volatility σP√
T
.

Volatility structure: The previous section gives the bond forward price volatility

to be σP√
T

. Suppose that we take T ∗ − T = ∆ to be fixed (i.e. 3 months). Then we

see that as a function of T , the volatility structure of the models are different. In

particular, Ho Lee gives a flat volatility structure, while Vasicek and Hull-White one

factor gives a decreasing volatiltiy structure. Hull-White two factor gives a hump

volatility structure, which is consistent with observations (see Figure 31.5). These

correspond (though not exactly) to the standard deviation of the instantaneous

forward rate, which is not covered here. We will see that (in the next section, when

the standard deviation of the forward rate equals σ we obtain the Ho-Lee model and

when it is equal σe−a(T−t) we obtain the Hull-White model). The volatility of forward

rate refers to the LIBOR forward rate, see next chapter.

Interest rate trees: Trinomial tree building procedure for Hull-White one factor

model:

drt = (θ(t)− art)dt+ σdW̃t.

The general procedure is to first build a tree for the process r∗ :

dr∗t = −ar∗t dt+ σdW̃t

(r∗ is r when θ(t) = 0.). Then we define

α(t) := r(t)− r ∗ (t)

and decide α(t) so that the initial term structure is exactly matched.

In particular, for the first stage, we construct a tree that mathces the first two

moments of ∆r∗(t) :

Ẽ(r∗(t+ ∆t)− r∗(t)) = −ar∗(t)∆t
Ṽ ar(r∗(t+ ∆t)− r∗(t)) = σ2∆t.
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Define the (i,j) node of the tree as where t = i∆t and r∗ = j∆R = jσ
√

3∆t. Here

∆R :=
√

3∆t is the spacing between interest rates on the tree, and proves to be a

good choice of ∆R in terms of error minimization.

Eg: At (0,0) r∗ = 0. The next time step can be (1,−1), (1, 0), (1, 1) if we use the

up, straight, down scheme (scheme 0) . We can also use up two, up one, straight

scheme (scheme 1) to get (1, 2), (1, 1), (1, 0) (useful to incorporate mean reversion

when interest rate is very low) or straight, down one, down two scheme (scheme -1)

to get (1, 0), (1,−1), (1,−2) (useful to incorporate mean reversion when interest rate

is very high).

The normal scheme is scheme 0.We incorporate mean reversion by defining a jmax

where we switch from scheme 0 to scheme -1 and a jmin where we switch from scheme

0 to scheme 1. Hull and White showed that the probabilities are always positive if

jmax =
0.184

a∆t
jmin = −jmax.

The next step is to decide the probabilities pu, om, oD at each node (i,j) that

matches the two moments. In particular, recalling ∆R =
√

3∆t for scheme 0, the

system is

pu =
1

6
+

1

2
(a2j2∆t2 − aj∆t)

pm =
2

3
− a2j2∆t2

pd =
1

6
+

1

2
(a2j2∆t2 + aj∆t).

For scheme 1, it is

pu =
1

6
+

1

2
(a2j2∆t2 + aj∆t)

pm = −1

3
− a2j2∆t2 − 2aj∆t

pd =
7

6
+

1

2
(a2j2∆t2 + 3aj∆t).

For scheme -1, it is

pu =
7

6
+

1

2
(a2j2∆t2 − 3aj∆t)

pm = −1

3
− a2j2∆t2 + 2aj∆t

pd =
1

6
+

1

2
(a2j2∆t2 − aj∆t).
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Note that the probabilities by construction depends on j but not on i.

This finishes the first stage. For the second stage, we use an interative process to

find αi := α(i∆t). In particular, let Qi,j be the present value of a security that pays 1

dollar if node (i, j) is reached an 0 otherwise. First note that Q0,0 = 1 and α0 = r(0).

r(0) is determined from the present price of a zero coupon bond with maturity ∆t :

e−r(0)∆t = B(0,∆t).

Note that r(0) is the prevailing rate compounding continuously on [0,∆t]. Next, α1

is such that it gives a precise price for the bond with maturity 2∆t. We walk back to

find the value of this bond at time ∆t or i = 1. This step is done by pure discounting

as r(1, j) := r∗(1, j)+α1 is the prevaling interest rate on [∆t, 2∆t]. Thus by definition

of Qi,j

Vi,j = Qi,je
−(r∗(i,j)+αi)∆t,

where Vi,j is the present value of a bond with maturity at time i + 1 if step (i, j) is

reached. On the other hand, if step i has been reached, Qi,j is known exactly by the

previous probabilities calculation. We then have∑
j

Qi,je
−(r∗(i,j)+αi)∆t = B(0, i+ 1).

From this equation, we can solve for αi ( B(0, i + 1) as the initial term structure is

part of the given data). This finishes the second stage.

Calibration of models: We want to determine the parameters in the short rate

model. They are determined from market data on actively traded options (i.e. caps

and swaptions) (aka calibrating instruments). Suppose there are n calibrating instru-

ments. A goodness of fit measure is the square difference:∑
i

(Ui − Vi)2,

where Ui is the market and Vi is the model price of the ith instrument. The number

of parameters should not be greater than the number of calibrating instruments. If

we have two parameters a, σ as in the Hull-White model, we can choose a to be

constant and make σ dependent on time. We can choose times t1, t2, · · · , tn and

let si(t) = σi, ti < t ≤ ti+1, 0 ≤ i <≤ n − 1 for a total of n + 1 parameters. The
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minimization of the goodness of fit measure can be accomplished using the Levenberg-

Masquardt procedure. When σ is a function of time, we can use a different objective

function for more desirable properties of σ :

∑
i

(Ui − Vi)2 +
n∑
i=1

w1,i(σi − σi−1)2 +
n−1∑
i=1

w2,i(σi−1 − 2σi−1 + σi+1)2.

The second term provides a penalty for large gradient in σ and the third provides a

penaly for large curvature in σ. Finally, the calibrating instruments chosen should be

as similar as possible to the instrument being valued.

27 Chapter 32 : HJM, LMM. and Multiple zero

curves

From the previous chapter, the instantaneous forward rate F (t, T ) satisfies :

F (t, T ) = − ∂

∂T
logB(t, T )

= − ∂

∂T
log Ẽ[e−

∫ T
t rudu|Ft].

On the other hand, the short rate rt depends only on one source of noise. If

we make the coefficients of the short rate dependent on t then the volitility term

structure given by the model in the future may be quite different from that existing

in the market today (see the σP in the options on bonds in the previous chapter).

Also the short rate implies that there is only one way to do risk free discounting (while

there are different possibilities that may be used in the same product, such as OIS

discounting in a caplet evaluation). A solution is to model the forward rate F (t, S, T )

directly and this forward rate can result from different kinds of discounting. This also

resolves the source of noice and gives flexibility in modelling the volatility structure

(since essentially we model the forward rate for each borrowing period [T1, T2] in the

future and set the volatility equalling the caplet spot volatility).

Forward rate dynamics: Suppose under the risk neutral measure

dB(t, T ) = r(t)B(t, T )dt+ v(t, T )dW̃t.

And since

f(t, S, T ) = − logB(t, T )− logB(t, S)

T − S
,
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we have

df(t, S, T ) =
v(t, T )2 − v(t, S)2

2(T − S)
dt− v(t, T )− v(t, S)

T − S
dW̃t.

Pushing T → S gives

dF (t, T ) = v(t, T )vT (t, T )dt− vT (t, T )dW̃t.

The negative sign gives some information about the correlation between bond price

and forward rate (though we need to be careful since in the forward rate it is vT (t, T )

and not v(t, T )). Thus there is a relation between the drift and standard deviation

of the instantaneous forward rate in the risk neutral world (note: vT (t, T ) or s(t, T )

below is NOT the volatility of F (t, T ). v(t, T ) is the volatility of the bond B(t, T )):

dF (t, T ) = m(t, T )dt+ s(t, T )dW̃t

m(t, T ) = s(t, T )

∫ T

t

s(t, u)du.

If we set s(t, T ) = σ we obtain the forward rate corresponding Ho-Lee model for short

rate and when s(t, T ) = e−a(T−t) we obtain the corresponding Hull-White model for

the short rate.

Note that the short rate resulting from a general HJM model is non Markov

(possibly due to the relation between the drift and standard deviation of the forward

rate, especially if s(t, T ) = −vT (t, T ) depends on rt or B(t, T ) itself).

LIBOR market model: One drawback of the HJM model is that the instantaneous

forward rate is not directly observable in the market. Also it is difficult to calibrate

the model to prices of actively traded instruments. (Due to the exponential discount-

ing, the instantaneous forward rate is NOT the price of some instrument. Hence

its dynamics under some forward risk measure is not conveniently given, unlike the

forward LIBOR rate. This in turn leads to consequence that Black’s formula is not

readily usable, since the forward bond price is related to the forward rate, but the

forward bond price is naturally given under the forward risk measure.) We instead

model the LIBOR forward rate Fk(t) that is available for the period [tk, tk+1]. Since

it is essentially the price of the traded asset, under the forward risk measure with

respect to B(t, tk+1), Fk(t) is a martingale:

dFk(t) = vk(t)Fk(t)dW̃k+1(t).
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On the other hand, suppose the forward bond price processes has the dynamics

dBk(t, tk) = σk(t)B
k(t, tk)dW̃k(t).

Denote m(t) to be the index for the next reset date at time t. That is if tk < t ≤
tk+1 then m(t) = k + 1. When value interest rate derivatives at a time t, it is most

convenient to use the forward risk neutral measure with respect to B(t,m(t)). This

is called the rolling forward risk neutral measure (since it changes with t ! ). The

dynamics of Fk(t) with respect to B(t,m(t)) is

dFk(t) = vk(t)(σm(t) − σk+1)Fk(t)dt+ vk(t)Fk(t)dW̃m(t)(t)

The relationship between forward rates and bond prices is

B(t, ti)

B(t, ti+1)
= 1 + δiFi(t)

or

logB(t, ti)− logB(t, ti+1) = log(1 + δiFi(t)).

Apply Ito’s formula and equating the dW̃ti+1
terms give

σi(t)− σi+1(t) =
δiFi(t)vi(t)

1 + δiFi(t)
.

Plugging this in we have the dynamics of Fk(t) with respect to the rolling forward

risk neutral measure as

dFk(t) = Fk(t)vk(t)
k∑

i=m(t)

δiFi(t)vi(t)

1 + δiFi(t)
+ Fk(t)vk(t)dW̃m(t)(t).

The HJM model is the limiting case of this model as δi → 0.

Forward rate volatilities : For convenience we assume that the volatility vk(t) of

Fk(t) is a step function. Let Λi, i = 1, · · · , n be given. We set

vk(t) = Λk−m(t).

Thus vk(t) = Λi where i is the nunber of accrual periods remaining between the next

reset date at time tk. For example, consider k = 4 and t1 < t ≤ t2. Then v4(t) = Λ2.

And if t3 < t ≤ t4 then v4(t) = Λ0.
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The Λi can be related to the volatilities used to value caplets in Black’s model.

Suppose that σk is the Black volatility for the caplet that corresponds to the period

[tk, tk+1]. Thus σk
√
tk IS the standard deviation for logFk(tk). On the other hand,

since

d logFk(t) = · · · dt+ vk(t)dW̃k(t),

the variance of logFk(tk) is ∫ tk

0

v2
k(t)dt =

k∑
i=1

Λ2
k−iδi.

We then have, by equating variance:

σ2
ktk =

k∑
i=1

Λ2
k−iδi.

Example: Suppose n = 3 and δi = 1. Also suppose si1 = 24%, σ2 = 22%, σ3 =

20%. Then σ1 = Λ0 = 24%.

Λ2
0 + Λ2

1 = 2σ2
2 = 2× 0.222.

We get Λ1 = 19.80%. Finally

Λ2
0 + Λ2

1 + Λ2
2 = 3σ2

3 = 3× 0.202.

We get Λ2 = 15.23%.

Implementation of the forward LIBOR model: We had

dFk(t) = Fk(t)vk(t)
k∑

i=m(t)

δiFi(t)vi(t)

1 + δiFi(t)
+ Fk(t)vk(t)dW̃m(t)(t)

= Fk(t)Λk−m(t)

k∑
i=m(t)

δiFi(t)Λi−m(t)

1 + δiFi(t)
+ Fk(t)Λk−m(t)dW̃m(t)(t)

So that

d logFk(t) = Λk−m(t)

k∑
i=m(t)

δiFi(t)Λi−m(t)

1 + δiFi(t)
+ Λk−m(t)dW̃m(t)(t).

We approximate Fi(t) by a stepwise function : Fi(t) = Fi(tj) for tj < t < tj+1. Then

Fk(tj+1) = Fk(tj) exp
[( k∑

i=j+1

δiFi(tj)Λi−j−1Λk−j−1

1 + δiFi(tj)
− 1

2
Λ2
k−j−1

)
δj + Λk−j−1(W̃j+1(tj+1)− W̃j+1(tj)).

]
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Remark on Monte Carlo simulation: in terms of simulation, we stat with the initial

values for all rates Fi(0), i = 1, · · ·n. Next we use the above formula to simulate

Fi(t1), i = 2, · · ·n. Then we simulate Fi(t2), i = 3, · · · , n etc. Note that as we move

through time, the length of the zero curve gets shorter and shorter. At each interval

[ti, ti+1] we simulate an independent Normal distribution with mean 0 and variane δi.

Even though W̃j and W̃j−1 are related, we are simulating on the interval [ti, ti+1] the

distributions that are independent from the distribution of [ti−1, ti] (in the physical

measure sense, for example). Thus there is ONLY one source of uncertainty. Also

note that the “relevant” time of W̃j is until time tj only. Thus the above formula can

be shortened to

Fk(tj+1) = Fk(tj) exp
[( k∑

i=j+1

δiFi(tj)Λi−j−1Λk−j−1

1 + δiFi(tj)
− 1

2
Λ2
k−j−1

)
δj + Λk−j−1ε

√
δj

]
,

where ε is sample from a standard normal distribution. The multiple source of

uncertainty case is similar, and its formula is

Fk(tj+1) = Fk(tj) exp
[( k∑

i=j+1

δiFi(tj)
∑p

q=1 λi−j−1,qλk−j−1,q

1 + δiFi(tj)
− 1

2

p∑
q=1

λ2
k−j−1,q

)
δj

+

p∑
q=1

λk−j−1,qεq
√
δj,
]

where λi,q is the qth component of the volatility when there are i accrual periods

between the next reset date and the maturity of the forward contract.

Model calibration: There are two steps to calibration of the forward rates. The

first is to calibrate the Λi to fit the prices of the calibrating instrumetns (typically

caps, swaptions). The penalty function is similar to the one mentioned in the previous

chapter: ∑
i

(Ui − Vi)2 + P,

where P is chosen so that the Λ′s have some smooth properties. Next we determine

the λ′s from the Λ′s. This is usually done by PCA. Suppose

∆Fj =
M∑
q=1

αj,qxq,

where M is the total number of factors (which equal to then number of different

forward rates) , ∆Fj is the change in the jth forward rate Fj and αj,q is the factor
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loading for the jth forward rate and qth factor and xq is the factor score of the qth

factor. Let sq be the standard deviation of the qth factor score. If the number of

factors (the number of uncertainties) used in the LIBOR model p is equal to the total

number of factors M we can set

λj,q = αj,qsq.

If, as usual, p < M the λj,q must be scaled so that

Λj =

√√√√ p∑
q=1

λ2
j,q.

We achieve this by setting

λj,q =
Λjsqαj,q√∑p
q=1 s

2
qα

2
j,q

.

Modelling multiple zero curves: It is now usual to use the OIS zero curve tas the

risk-free zero curve for discounting. This means that more than one zero curve must

be modeled for derivatvies such as swaps, interest rate caps and swaptions whose

payoffs depend on LIBOR. A LIBOR zero curve is necessary to calculate payoffs,

the OIS zero curve is necessary for discounting. Even within LIBOR there might be

multiple curves for different maturrity. This reflects credit risk : a 12 month LIBOR

loan has more risk than 12 continually refreshed 1 month LIBOR loans.

If we model both LIBOR and OIS curves, it is not possible to assume the no

arbitrage condition. One alternative is to model credit risk and liquidity risk so that

the spread between LIBOR and OIS is explained. This adds a huge layer of complexity

to the model. Practitioners just model the two curves separately and usually ignore

the arbitrage opportunities created by the use of the two curves.

Lastly, the curves are obtained by modelling the forward rates as we have done so

far. However, we should keep in mind that FLD(t, S, T ) (for LIBOR discounting) is a

martingale under the forward risk measure associated with PLD(t, T ) and FOD(t, S, T )

(for OIS discounting) is a martingale under the forward risk measure associated with

POD(t, T ) but not necesarily vice versa.
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28 Chapter 34: Energy and Commodity Deriva-

tives

Agricultural commodities: A watched stat is the stock-to-use ratio, which is the ratio

between year-end inventory and the year’s usage, typically between 20 % to 40 %.

As the ratio becomes lower, the price becomes more sensitive to supply change and

thus volatility increases. Agricultural prices exhibit mean reversion property due to

supply and demand. The prices also tend to be seasonal, as storage is expensive and

there is a limit to storage time. Weather also plays a role in price change. Some of

agricultural products are used to feed livestocks (e.g. corn). The price of livestock

then is dependent on agricultural prices, which in turn is subject to weather.

Metals: Metals can be consumption assets (copper) or investment assets (silver,

gold). Inventory level stats are also monitored to determine shor-term volatility.

Exchange rate can play a role since metal is extracted in a different country than the

one where the price is quoted. Investment asset metal price may not exhibit mean

reversion property. Consumption asset metal may exhibit mean reversion, again due

to supply and demand.

Energy: prices do follow mean reverting processes, again due to supply and de-

mand. Crude oil: virtually any derivative that is available on common stokcs or

indices is now available with oil as the underlying asset. Natural gas: A typical OTC

contract is for delivery of a specified amount of natural gas at a uniform rate over 1

month period. Forward contracts, options and swaps are also available. The seller

is usually responsible for moving the gas through pipelines to the specified location.

A popular source for heating, hence price is seasonal. Electriciy: cannot be stored.

A major use is for AC systems. Demand is much greater in summer than winter.

Because of inability for storage, price can be subject to very large movements (1000

% increase has been observed).

Trinomial tree for commodity price: The commodityp price tree is built so that

the futures price induced by the tree matches the futures price observed today.

d logS = (θ(t)− a log(St)dt) + σdW̃t.

Also sometimes written as

dSt
St

= (θ∗(t)− a log(St)dt) + σdW̃t.
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To build the tree for S, we first build the tree for X :

dXt = −aXtdt+ σdW̃t.

The procedure is exactly as specified in the trinomial tree for short rate model. We

then add a process α(i) so that the expected value of the commodity price at time i

is the futures price at time 0 (this futures price is F (0, i) and hence dependent on

i ). More specifically, the equation is

F (0, i) = Ẽ(eX(i)+α(i)), i = 1, · · · , n.

Interpolation and Seasonality: When a large number of time steps are used, it

is necessary to interpolate between futures price (say F (0, 5) and F (0, 7) ) to ob-

tain a futures price at the end of each time step (say for the time step at June,

or month 6). When there is seasonality, the interpolation procedure should reflect

this. One way is to collect monthly historical data on the spot price and calculate

the 12 month moving average of the price. A percentage season factor can then

be estimated as the average ratio of the spot price for the month to the 12 month

moving average of the spot prices that is centered (approximately) on the month

(say we have S(9), S(10), S(11), S(12) ). The percentage seasonal factors are then

used to deseasonalize the futures prices that are known ( say F (0, 9) and F (0, 12) are

known. We use S(9) and S(12) to deseasonalize it). Monthly deseasonalized futures

are then calculated using interpolation (say we calculate F̃ (0, 10) and F̃ (0, 10) based

on F (0,9)
S(9)

and F (0,12)
S(12)

). These futures prices are then seasonalized using the percentage

seasonal factors and the tree is built. (say we calculate F (0, 10) = S(10)F̃ (0, 10) and

F (0, 11) = S(11)F̃ (0, 11) ).

Weather derivative: The underlying variable is cumulative HDD (heating degree

days) or CDD (cooling degree days) during a month. HDD = max(0, 65− A), CDD

= max(0, A − 65) where A is the average of the highest and lowest temperature

during the day at a specified weather station, measured in Fahrenheit. There is no

systemic risk (risk priced by the market) in the payoffs of weather and insurance

CAT (catastrophic) derivatives. There has been study that showed no statistically

significant correlation between the returns from CAT bonds and stock market returns.

This means that estimates made from historical data (real world estimates) can also

be assumed to apply to the risk neutral world. Therefore, weather and insurance

derivatives can be priced by : using historical data to estimate the expected payoff (

the distribution of the log normal random variable) and discount the estimated payoff
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at the risk free rate. The uncertainty in the underlying weather variable also does

not grow at the rate of square root of time. For example, the uncertainty about the

February HDD at a certain location in 4 years is usually only a little greater than

the uncertainty about the February HDD at the same location in 1 year. Finally the

Black-Scholes formula can be applied to find the price of call and put derivatives.

Ex: Call option on cumulative HDD in Feb 2016 with strike price of 700 and

payment rate of 10,000 USD per degree day . Suppose that the HDD estimated from

historical data is log normal with mean 710 and SD of the log equalling 0.07. Thus

the expected pay off is

E = 10, 000 × [710N(d+)− 700N(d−)]

d± =
log(710

700
)± 1

2
0.072

0.07
.

Suppose the option is being valued in Feb 2015, the value of the option is Ee−0.03×1

where 0.03 is the risk free rate.
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