MATH 351 SECTION 2: IDEALS OF \mathbb{Z}_{20}

TAMAR BLANKS

During workshop, we briefly talked about the ideals of \mathbb{Z}_{20}, but didn't prove anything. In this document, I'll share two different approaches for proving what these ideals are.

Ideals of \mathbb{Z}_{20}

Like every ring, the ring \mathbb{Z}_{20} has the principal ideal $\langle 0\rangle$, which just contains the element 0 , and the principal ideal $\langle 1\rangle$, which is the whole ring. It turns out that its other ideals are just the principal ideals generated by the elements which are not units. More precisely:

Proposition. The ring \mathbb{Z}_{20} has exactly six ideals: the principal ideals $\langle 0\rangle,\langle 1\rangle,\langle 2\rangle$, $\langle 4\rangle,\langle 5\rangle$, and $\langle 10\rangle$.

The proof of this uses a lemma.
Lemma. Let $I=\langle a\rangle$ be a principal ideal in the ring \mathbb{Z}_{n}. If $b=\operatorname{gcd}(a, n)$, then $I=\langle b\rangle$.

The proof of this is a good exercise. Hint: For the proof that $\langle b\rangle \subseteq\langle a\rangle$, use a property of the gcd to show that $b \in I$.
Proof. Of the Proposition.
One can check that the given ideals are all distinct by writing down their elements and noting that they are all different sets. (For example, the ideal $\langle 4\rangle$ is the set of five congruences classes $\{0,4,8,12,16\}$.) To prove that this list includes all the ideals of \mathbb{Z}_{20}, we will first show that it includes every principal ideal of \mathbb{Z}_{20}, and then show that all ideals of \mathbb{Z}_{20} are principal.

Let $I=\langle a\rangle$. By the Lemma, I is generated by $b=\operatorname{gcd}(a, 20)$. So $I=\langle b\rangle$ for some divisor b of 20 . The divisors of 20 are $1,2,4,5,10$, and 20 , so I must be one of the ideals in our list.

Now let's check that every ideal I of \mathbb{Z}_{20} is principal. Since \mathbb{Z}_{20} is a finite set, so is I, so we may write $I=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ for some $a_{i} \in \mathbb{Z}_{20 .}{ }^{1}$

Let $b_{1}=\operatorname{gcd}\left(a_{1}, a_{2}\right)$. Then $b_{1}=c_{1} a_{1}+c_{2} a_{2}$ for some integers c_{1} and c_{2}. Since I is closed under addition and under multiplication by elements of \mathbb{Z}_{20}, we have $b_{1} \in I$. So $I=\left\langle b_{1}, a_{3}, \ldots, a_{n}\right\rangle$. Repeat this process to show that $I=\left\langle b_{2}, a_{4}, \ldots, a_{n}\right\rangle$ for $b_{2}=\operatorname{gcd}\left(b_{1}, a_{3}\right)$, and so on. At the final step, we have $I=\langle b\rangle$ for $b=\operatorname{gcd}\left(b_{n-2}, a_{n}\right)$. So I is principal.

As a challenge, think about how you would generalize this proof to \mathbb{Z}_{n}.

[^0]
A More High-Tech Proof

There is another way to describe the ideals of \mathbb{Z}_{n} using a general theorem in ring theory called the correspondence theorem. In Hungerford's book this is Exercise 32 in Section 6.2.

Theorem. (Correspondence theorem for rings.) Let R be a ring with identity and let I be an ideal of R. Then the ideals of R / I are exactly the ideals of the form J / I, where J is an ideal of R containing I.

Now using the facts that

- $\mathbb{Z}_{n} \cong \mathbb{Z} /\langle n\rangle$,
- the ideals of \mathbb{Z} are the principal ideals $\langle d\rangle$ for $d \in \mathbb{Z}$, and
- the ideals of \mathbb{Z} containing $\langle n\rangle$ are the ideals $\langle d\rangle$ for $d \mid n$,
the correspondence theorem shows that the ideals of \mathbb{Z}_{n} are exactly the principal ideals generated by the divisors of n.

[^0]: Date: March 7, 2022.
 ${ }^{1}$ If I is the set $\left\{a_{1}, \ldots, a_{n}\right\}$, then every element of I is equal to a sum of the form $\sum c_{i} a_{i}$ for some $c_{i} \in \mathbb{Z}_{20}$ (set all but one c_{i} to 0). Since I is closed under addition and absorption, all sums of the form $\sum c_{i} a_{i}$ are in I. So $I=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.

