MATH 351 SECTION 2: IDEALS WHICH ARE NOT PRINCIPAL

TAMAR BLANKS

This note is meant to fill in the details of something we started discussing during the last workshop: examples of ideals which are not principal.

Example from class. The ring $\mathbb{Z}[x]$ has the non-principal ideal

$$
I=\langle x, 2\rangle=\{f(x) \cdot x+g(x) \cdot 2: f, g \in \mathbb{Z}[x]\} .
$$

To check that this is really not principal, suppose that $I=\langle p(x)\rangle$ for some polynomial $p(x)$. Then $f(x) p(x)=2$ for some $f(x) \in \mathbb{Z}[x]$, so $p(x)$ must be $1,-1$, 2 , or -2 . But $1 \notin I$, so $p(x)=2$ or -2 . We also know that $x \in I$, so $g(x) \cdot 2=x$ for some $g(x) \in \mathbb{Z}[x]$. But there is no $g(x) \in \mathbb{Z}[x]$ which satisfies this equation. So I cannot be principal.

A new example. Let F be a field. The polynomial ring in two variables is defined to be

$$
F[x, y]=\left\{\sum_{0 \leq i, j \leq n} a_{i j} x^{i} y^{j}: a_{i j} \in F, n \in \mathbb{Z}_{\geq 0}\right\}
$$

You can check that this is the same as the polynomial ring $F[x][y]$ of polynomials in y with coefficients in the ring $F[x]$, so this isn't too different from rings that were covered in class.

For any field F, the ideal $I=\langle x, y\rangle$ of $F[x, y]$ is a non-principal ideal. The proof that I is not principal is a good exercise. Hint: suppose $I=\langle p(x, y)\rangle$ for some polynomial $p(x, y)$. Then $f(x, y) p(x, y)=x$ for some f. What are the possibilities for $p(x, y)$ that could satisfy this equation? Could any of those generate I ?

The ring $F[x, y]$ has a lot of non-principal ideals. As another exercise, you can try to come up with some more examples.

Some non-examples. Why was it so hard to generate examples for rings other than $\mathbb{Z}[x]$? One reason is that many of the rings discussed in this class so far are examples of a kind of ring known as "principal ideal domains" (PIDs). These are integral domains in which every ideal is principal. For example, \mathbb{Z} is a PID, and so is $F[x]$ for any field F. It turns out that every ideal in \mathbb{Z}_{n} is principal also. So there are no examples to find in these rings.

[^0]
[^0]: Date: March 7, 2022.

