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We say g is a Lie algebra if it is a vector space with bilinear
multiplication [·, ·] that satisfies:

[x , x ] = 0 for all x (which implies [x , y ] = −[y , x ])

[[x , y ], z ] = [x , [y , z ]]− [y , [x , z ]].

For x ∈ g, define adx : g→ g by g 7→ [x , g ].
The second rule should be thought of as:

ad[x ,y ] = adxady − adyadx
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The prototypical Lie algebra is End(V ) with [A,B] = AB − BA.
Lie algebra homomorphisms are defined as you would expect. A
representation is a Lie algebra homomorphism:

φ : g→ End(V )

for some vector space V . V is also said to be a g module
(corresponding to this representation):

x · v = φ(x)v

Putting these together, V is a g module if

x · (y · v)− y · (x · v) = [x , y ] · v
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Any Lie algebra g is a module over itself via:

x · g = [x , g ]

since

x · (y · v)− y · (x · v) = [x , [y , v ]]− [y , [x , v ]] = [[x , y ], v ]
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Any Lie algebra has two trivial ideals - 0 and itself.
The uninteresting one-dimensional Lie algebra that maps all
brackets to 0 technically only has these two ideals; thus we say Lie
algebra is simple if it has non-trivial ideals and is dimension > 1.
From here on out, we always assume vector spaces and Lie
algebras are over C.
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Last week, we identified an important simple Lie algebra s`(2) -
the subspace of Endomorphisms on C2 with trace 0. This is the
smallest simple Lie algebra (over C; on other fields it is tied for the
smallest). Under some choice of basis of C, we set

h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
and have relations

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h

(recall [x , x ] = 0 and [x , y ] = −[y , x ] so this gives all basis
relations). Note adh acts diagonally on s`(2). Thus we say h is a
semisimple element.
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We pointed out that all finite-dimensional modules of simple Lie
algebras can be written as the direct sum of irreducible modules
and that semisimple elements in g act diagonally on such modules.
We also found that there is exactly one irreducible s`(2) module
Vk−1 of each dimension k > 0, and it has the following properties:

Vk−1 has a basis {vk−1, vk−3, . . . v−(k−1)

h · vi = ivi .

f · vi = vi−2 (or 0 if i = −k − 1)

e · vi = k+k2/2+i−i2/2
2 vi+2
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We also introduced an important bilinear form known as the
Killing form (x , y) = tr(adxady ) on g. With just algebra
manipulation, one can show:

(x , y) = (y , x) (symmetric)

(x , [y , z ]) = ([x , y ], z) (g-invariant)

but what’s a bit harder to show (and very important) is that if g is
simple, the Killing form is non-degenerate
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Let g be a simple Lie algebra. One can show that g must contain
some semisimple elements; take let h be a maximal subspace of
commuting semisimple elements. This is called a Cartan
Subalgebra
Commuting diagonal operators have the same eigenspaces (with
possibly different eigenvalues):

BAvλ,B = ABvλ,B = Aλvλ,B

So A preserves eigenspaces of B and vice versa. Thus A has
eigenspaces in the eigenspaces of B and vice versa, so their
eigenspaces are the same.
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With that being said, write

g =
⊕
λ∈h∗

gλ

where each gλ is an eigenspace for all adh and adh, h ∈ h has
eigenvalue λ(h) on this space.
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Note h ⊂ g0 since h is abelian. One can show we actually have
h = g0.
Let Φ ⊂ h∗ be the set of λ 6= 0 for which gλ 6= 0. These are called
the roots. So in this notation:

g = h⊕
⊕
α∈Φ

gα
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Lemma

Φ spans h∗

Proof.

Otherwise there is some h ∈ h for which Φ(h) = 0. Then for all
α ∈ Φ, xα ∈ gα we have

[h, xα] = α(h)xα = 0

and [h, h] ⊂ [h, h] = 0. So h spans a 1-dimensional ideal of g, but
g is simple (also can’t happen in semisimple)
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Lemma

[gα, gβ] ⊂ gα+β

Proof.

Take xα ∈ gα, xβ ∈ gβ.

[h, [xα, xβ]] = [[h, xα], xβ] + [xα, [h, xβ]]

= α(h)[xα, xβ] + β(h)[xα, xβ] = (α + β)(h)[xα, xβ]
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Lemma

(gα, gβ) = 0 if α 6= −β

Proof.

Take an h for which α and −β disagree. Take xα ∈ gα, xβ ∈ gβ.

([xα, h], xβ) = (xα, [h, xβ])

by g associativity of the killing form. Since
[xα, h] = −[h, xα] = −α(h)xα and [h, xβ] = β(h)xβ, this is
equivalent to

−α(h)(xα, xβ) = β(h)(xα, xβ)

By our assumption on h, this forces (xα, xβ) = 0.
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By the non-degeneracy of (·, ·), this forces gα and g−α to pair
non-degenerately and (·, ·) to be non-degenerate on h. In
particular, α ∈ Φ ⇐⇒ −α ∈ Φ.
This non-degeneracy on h allows us to naturally pair h with h∗

(isomorphically) via
h→ (h, ·)

For α ∈ Φ, let tα be the corresponding element of h in this
association (so (tα, h) = α(h))).
We can also lift (·, ·) to a form on h∗ via (α, β) = (tα, tβ)
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Lemma

For eα ∈ gα, fα ∈ g−α, we have

[eα, fα] = (eα, fα)tα

Proof.

(h, [eα, fα]) = ([h, eα], fα) = α(h)(eα, fα) = (h, (eα, fα)tα)
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Let hα = 2tα
(tα,tα) (one can show this denominator isn’t 0). Choose

eα arbitrarily and choose fα such that (eα, fα) = 2
(tα,tα)

Then from this, we can see that eα, hα, fα forms an s`(2) (with the
same relations as e, h, f from earlier):

[eα, fα] =
2tα

(tα, tα)
= hα

[hα, eα] = α(hα)eα = (tα, hα)eα =
2(tα, tα)

(tα, tα)
eα = 2eα

(note we’ve shown here that α(hα) = 2).

[hα, fα] = −α(hα)fα = −2fα
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Thus the span of {hα, eα, fα} form an s`(2) subalgebra (we’ll call it
s`(2)α)
Now for each α ∈ Φ and choice of associated s`(2)α, we can view
g as an s`(2)α module via adjoint.
Since g is finite dimensional and s`(2)α simple, we know it
decomposes uniquely into a direct sum of irreducible modules of
the type we described earlier (and thus every submodule has a
complement).
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Lemma

We have shown if α ∈ Φ, then −α ∈ Φ. There are no other
multiples of α in Φ. Furthermore, the root space gα is
1-dimensional.

Let’s consider the s`(2)α submodule

Wα =
⊕
c∈C

gcα

This is an s`(2) submodule (why?) and note hα scales vectors in
gcα by cα(hα) = 2c . Since we know hα acts integrally on finite
dimensional modules, we have c ∈ Z/2
Now note the following is an s`(2)α submodule of Wα:

Wα,0 = h⊕ Ceα ⊕ Cfα
The lemma is equivalent to showing Wα,0 = Wα
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Suppose not. Then there is some complement Wα,1 ⊂Wα. Note

Wα,1 ⊂
⊕

c∈Z/2\0

gcα

Thus hα has no 0 weight on Wα,1. This forces all weights in Wα,1

to be odd, since all irreducible submodules of Wα,1 with even
weights would contain a 0 weight. Thus

Wα,1 ⊂
⊕

c∈Z+ 1
2

gcα

This immediately shows that gα and g−α have dimension 1, and
there are no other integer multiples of α as roots.
In particular, α and 2α cannot both be roots. Hence α/2 cannot
be a root either.
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So we have
Wα,1 ⊂

⊕
c∈Z+ 1

2
\{ 1

2
}

gcα

So Wα,1 does not have the weight 1. Thus it cannot contain any
odd weights, as all its irreducible submodules with odd weights
would contain the weight 1.
So Wα,1 is a finite-dimensional s`(2)α submodule with no even or
odd weights. So it must be 0.
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Lemma

If α, β ∈ Φ, then β(hα) ∈ Z and β − β(hα)α ∈ Φ.

If α = ±β this is clear. Assume otherwise.
Consider the s`(2)α submodule of g:

W β
α =

⊕
i∈Z

gβ+iα

Since β 6= ±α and no other multiples of α are roots, g0 = h is not
among these spaces. Thus they are all root spaces - 1 dimensional.
The weight of hα on β + iα is β(ha) + iα(hα) = β(hα) + 2i .
So all weight spaces are 1-dimensional and all weights are the same
parity. This means it is impossible for W β

α to be the sum of 2 or
more irreducibles so W β

α is irreducible.
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Let q be largest such that β + rα ∈ Φ. Then the highest weight of
W β
α is β(hα) + 2r . So the lowest weight is
−β(hα)− 2r = β(hα)− 2(β(hα) + r) and all integers of the same
parity in between are weights. Thus

β + iα ∈ Φ ⇐⇒ −β(hα)− r ≤ i ≤ r

In particular β − β(hα)α ∈ Φ
Note that we have also shown that the action of s`(2)α on g
decomposes into irreducibles as follows:

g = Ker(α)⊕ s`(2)α ⊕
⊕

β∈Φ/Cα

⊕
i∈Z

gβ+iα
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Note β − β(hα)α = β − 2(tβ ,tα)
(tα,tα) α = β − 2(β,α)

(α,α) α.

If these were vectors in Euclidean space and (·, ·) was dot product,
this would mean the reflection of β across the hyperplane
orthogonal to α is in Φ.
To get this realization, need to show the following:

Lemma

1 All Φ lies in an R vector subspace of h∗ of the same
dimension. Call this space E .

2 (·, ·) is non-degenerate and positive-definite on E
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Since Φ spans h∗, choose a basis {α1, . . . αn} ∈ Φ for h∗. We show
that all roots β ∈ Φ are in the R span of the {αi}.
We know

β =
∑
i

ciαi

for ci ∈ C.
So for all αj we have

2(β, αj)

(αj , αj)
=
∑
i

ci
2(αi , αj)

(αj , αj)

Since the αj span, treting ci as free variables, this set of equations
has a unique solution (the actual ci ). And since all coefficients are
integers, the solutions are rational; in particular real. So
Φ ⊂ E = R{α1, . . . αn}.
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Next, we show (γ, γ) > 0 for all γ ∈ E , γ 6= 0.
Note (γ, γ) = (tγ , tγ) = tr(adtγ)2. Since all root spaces gα are
one dimensional and adtγ kills h, we have

(tγ , tγ) =
∑
α∈Φ

(α(tγ))2 =
∑
α∈Φ

(α, γ)2 =
∑
α∈Φ

(
2(γ, α)

(α, α)

)2

(α, α)2

Since γ ∈ E and 2(ai ,α)
(α,α) ∈ Z for all αi in the basis and α ∈ Φ, we

know 2(γ,α)
(α,α) ∈ R.
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All that remains to be shown is that (β, β) ∈ R for β ∈ Φ. We use
a similar idea:

(β, β) =
∑
α∈Φ

(α, β)2 =
∑
α∈Φ

(
2(α, β)

(β, β)

)2

(β, β)2

and divide through by (β, β)2 to get

1

(β, β)
=
∑
α∈Φ

(
2(α, β)

(β, β)

)2

∈ Z ⊂ R

So (β, β) ∈ R for all β ∈ Φ (actually the inverse of a positive
integer, from this argument).

Thus
∑
α∈Φ

(
2(γ,α)
(α,α)

)2

(α, α)2 is the sum of squares of real numbers;

hence non-negative. And since Φ spans, not all terms are 0.
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We summarize as follows: Let g be a finite-dimensional simple Lie
algebra, h ⊂ g a maximal abelian semisimple subspace, and (·, ·)
the killing form of g. Then there is a finite subset Φ ∈ h∗ such that
we can write

g = h⊕
⊕
α∈Φ

gα

with:
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1 h ∈ h acts on gα (via bracket) with eigenvalue α(h)

2 [gα, gβ] ⊂ gα+β

3 All gα are 1-dimensional

4 For every α ∈ Φ, we have −α ∈ Φ and no other multiples

5 (·, ·) restricts non-degenerately to h, so we can equip h∗ with
a form corresponding to (·, ·) that we label the same way.

6 Φ spans h∗ and an R-subspace E of h∗ of the same
dimension. On this subspace, (·, ·) is positive definite and this
subspace can therefore be realized as Euclidean space with
(·, ·) being dot product.

7 For all α, β ∈ Φ, 2(α,β)
(β,β) ∈ Z

8 On E , define sα (α ∈ Φ) to be the map γ → γ − 2(γ,α)
(α,α) α; in

other words, reflection across the hyperplane orthogonal to α.
Φ is closed under sα for all α ∈ Φ.
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A subset Φ ⊂ E of Euclidean space with the properties

1 Φ spans E and is finite.

2 Φ is closed under sα for all α ∈ Φ.

3 For all α, β ∈ Φ, 2(α,β)
(β,β) ∈ Z

4 For every α ∈ Φ, we have −α ∈ Φ and no other multiples are
in Φ

is called a root system. These have beautiful structures that hint
at the beauty of Lie theory as a whole. A root system is
decomposable if we have Φ = Φ1 ∪ Φ2,Φ1 ∩ Φ2 = and
(Φ1,Φ2) = 0. Indecomposable otherwise. Simple Lie algebras will
have indecomposable root systems; the idea being otherwise you
could separate the root space decomposition based on this
partition of Φ and each would be an ideal in g.
With a bit of work, one can also show the reverse direction - for
any simple root system there is an associated simple Lie algebra.
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Last time, we saw that any finite dimensional module of a simple
Lie algebra is diagonalized by h:

V =
⊕
λ∈h∗

Vλ

and note

h · (xα · vλ) = (xα · h · vλ) + [h, xα] · vλ = λ(h)xα · vλ + α(h)xa · vλ

So xα · Vλ ⊂ Vλ+α.
Since Vλ is also a module for the subalgebra s`(2)α for each
α ∈ Φ, we must have λ(hα) ∈ Z for all weights λ in V and α ∈ Φ.
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Here are the 2-dimensional indecomposable root systems:
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Let θ be the angle between roots α and β. Then since
2(α,β)
(β,β) = 2 ||α||||β||cos(θ), we have

2(α, β)

(β, β)

2(β, α)

(α, α)
= 4cos2(θ)

In particular, 4cos2(θ) ∈ Z. So θ must be related (in the
pre-calculus sense) to 0, π/6, π/3, or π/4.
Furthermore, if α and β are non-proportional, this forces
2(α,β)
(β,β)

2(β,α)
(α,α) ∈ {0, 1, 2, 3} (and only 0 if they are orthogonal).
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Lemma

For non-proportional root α, β, if (α, β) < 0 then α + β ∈ Φ. If
(α, β) > 0, then α− β ∈ Φ

Proof.

In both cases, we have 2(α,β)
(β,β)

2(β,α)
(α,α) ∈ {1, 2, 3}. Since both are

integral, one must be ±1. In the first case, one must be −1 and in
the second case, one must be 1. WLOG, let this be frαβ.
Then sβ(α) = α− frαββ = α± β and the conclusion follows.
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Now cut Φ by some arbitrary hyperplane that does not intersect
any root, and let γ be a vector orthogonal to it. Let Φ+ be the
roots acute with γ (the positive roots) and Φ− the roots obtuse
with γ (the negative roots).
Let ∆ = {αi} be a minimal set of positive roots such that every
positive root is a non-negative integral combination of the αi . We
call these simple roots.

Lemma

∆ is linearly independent. Thus it is a basis for E for which every
root in Φ has either all coeffients non-negative or non-positive
(based on whether it’s in Φ+ or Φ−)
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We show that vectors in ∆ are all mutually non-acute. Then if we
had a dependence relation, we could write

∑
ciαi =

∑
cjαj , all

coefficients non-negative and distinct simple roots on both sides.
But by assumption

(
∑

ciαi ,
∑

ciαi ) = (
∑

ciαi ,
∑

cjαj) ≤ 0

so
∑

cjαj = 0 by positive definiteness (in otherwords, this
expression says a non-negative sum of simple roots is 0). But such
a sum must have a positive inner product with γ as all (γ, αi ) > 0,
leading to a contradiction. So we just need to show that all
(αi , αj) ≤ 0.
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Suppose otherwise - (αi , αj) > 0. Then we know αi − αj and
αj − αi are roots. Suppose αi − αj is positive without loss of
generality. Then by assumption αi − αj is a non-negative integral
combination of simple roots αi − αj =

∑
ckαk . So any time we

see αi , we can replace it with αj +
∑

ckαk , so the αi ∈ ∆ is not
needed. This contradicts minimality.
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This also shows that Z∆ = ZΦ. Since the former is linearly
independent, this means the roots form a lattice.

The matrix A =
[

2(αi ,αj )
(αj ,αj )

]
is called a Cartan Matrix for this Root

system (some define it to be the transpose of this). By
construction, we will have

2s on the diagonal all off-diagonal entries in {0,−1,−2,−3}
0s symmetric

If ai ,j ∈ {−2,−3}, aj ,i = −1

A positive definite
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To an n× n Cartan matrix, we associate a graph on n nodes called
the Dynkin Diagram as follows:

If ai ,j = 0, no edges between nodes i and j .

If ai ,j = aj ,i = −1, draw 1 edge between nodes i and j

If ai ,j − n < −1, draw n edges between nodes i and j , and an
arrow from node i to node j .
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The Dynkin Diagrams of all indecomposable root systems are as
follows:
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