Root System Basics

Terence Coelho

Vertex Operator Algebras

September 27, 2021

We say \mathfrak{g} is a Lie algebra if it is a vector space with bilinear multiplication $[\cdot, \cdot]$ that satisfies:
$■[x, x]=0$ for all $x($ which implies $[x, y]=-[y, x])$
■ $[[x, y], z]=[x,[y, z]]-[y,[x, z]]$.
For $x \in \mathfrak{g}$, define $\mathrm{ad}_{x}: \mathfrak{g} \rightarrow \mathfrak{g}$ by $g \mapsto[x, g]$.
The second rule should be thought of as:

$$
\operatorname{ad}_{[x, y]}=\operatorname{ad}_{x} \operatorname{ad}_{y}-\operatorname{ad}_{y} \operatorname{ad}_{x}
$$

The prototypical Lie algebra is $\operatorname{End}(V)$ with $[A, B]=A B-B A$. Lie algebra homomorphisms are defined as you would expect. A representation is a Lie algebra homomorphism:

$$
\phi: \mathfrak{g} \rightarrow \operatorname{End}(V)
$$

for some vector space $V . V$ is also said to be a \mathfrak{g} module (corresponding to this representation):

$$
x \cdot v=\phi(x) v
$$

Putting these together, V is a \mathfrak{g} module if

$$
x \cdot(y \cdot v)-y \cdot(x \cdot v)=[x, y] \cdot v
$$

Any Lie algebra \mathfrak{g} is a module over itself via:

$$
x \cdot g=[x, g]
$$

since

$$
x \cdot(y \cdot v)-y \cdot(x \cdot v)=[x,[y, v]]-[y,[x, v]]=[[x, y], v]
$$

Any Lie algebra has two trivial ideals - 0 and itself.
The uninteresting one-dimensional Lie algebra that maps all brackets to 0 technically only has these two ideals; thus we say Lie algebra is simple if it has non-trivial ideals and is dimension >1. From here on out, we always assume vector spaces and Lie algebras are over \mathbb{C}.

Last week, we identified an important simple Lie algebra $\mathfrak{s l}(2)$ the subspace of Endomorphisms on \mathbb{C}^{2} with trace 0 . This is the smallest simple Lie algebra (over \mathbb{C}; on other fields it is tied for the smallest). Under some choice of basis of \mathbb{C}, we set

$$
h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

and have relations

$$
[h, e]=2 e,[h, f]=-2 f,[e, f]=h
$$

(recall $[x, x]=0$ and $[x, y]=-[y, x]$ so this gives all basis relations). Note $a d_{h}$ acts diagonally on $\mathfrak{s} \ell(2)$. Thus we say h is a semisimple element.

We pointed out that all finite-dimensional modules of simple Lie algebras can be written as the direct sum of irreducible modules and that semisimple elements in \mathfrak{g} act diagonally on such modules. We also found that there is exactly one irreducible $\mathfrak{s l}(2)$ module V_{k-1} of each dimension $k>0$, and it has the following properties:

- V_{k-1} has a basis $\left\{v_{k-1}, v_{k-3}, \ldots v_{-(k-1)}\right.$

■ $h \cdot v_{i}=i v_{i}$.
■ $f \cdot v_{i}=v_{i-2}($ or 0 if $i=-k-1)$
■ e $v_{i}=\frac{k+k^{2} / 2+i-i^{2} / 2}{2} v_{i+2}$

Lie Algebras

We also introduced an important bilinear form known as the Killing form $(x, y)=\operatorname{tr}\left(a d_{x} a d_{y}\right)$ on \mathfrak{g}. With just algebra manipulation, one can show:

■ $(x, y)=(y, x)$ (symmetric)
■ $(x,[y, z])=([x, y], z)(\mathfrak{g}$-invariant)
but what's a bit harder to show (and very important) is that if \mathfrak{g} is simple, the Killing form is non-degenerate

Let \mathfrak{g} be a simple Lie algebra. One can show that \mathfrak{g} must contain some semisimple elements; take let \mathfrak{h} be a maximal subspace of commuting semisimple elements. This is called a Cartan Subalgebra
Commuting diagonal operators have the same eigenspaces (with possibly different eigenvalues):

$$
B A v_{\lambda, B}=A B v_{\lambda, B}=A \lambda v_{\lambda, B}
$$

So A preserves eigenspaces of B and vice versa. Thus A has eigenspaces in the eigenspaces of B and vice versa, so their eigenspaces are the same.

With that being said, write

$$
\mathfrak{g}=\bigoplus_{\lambda \in \mathfrak{h}^{*}} \mathfrak{g}_{\lambda}
$$

where each \mathfrak{g}_{λ} is an eigenspace for all $\operatorname{ad}_{\mathfrak{h}}$ and $\operatorname{ad}_{h}, h \in \mathfrak{h}$ has eigenvalue $\lambda(h)$ on this space.

Note $\mathfrak{h} \subset \mathfrak{g}_{0}$ since \mathfrak{h} is abelian. One can show we actually have $\mathfrak{h}=\mathfrak{g}_{0}$.
Let $\Phi \subset \mathfrak{h}^{*}$ be the set of $\lambda \neq 0$ for which $\mathfrak{g}_{\lambda} \neq 0$. These are called the roots. So in this notation:

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

Lemma

Φ spans \mathfrak{h}^{*}

Proof.

Otherwise there is some $h \in \mathfrak{h}$ for which $\Phi(h)=0$. Then for all $\alpha \in \Phi, x_{\alpha} \in \mathfrak{g}_{\alpha}$ we have

$$
\left[h, x_{\alpha}\right]=\alpha(h) x_{\alpha}=0
$$

and $[h, \mathfrak{h}] \subset[\mathfrak{h}, \mathfrak{h}]=0$. So h spans a 1-dimensional ideal of \mathfrak{g}, but \mathfrak{g} is simple (also can't happen in semisimple)

Lemma

$\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$

Proof.

Take $x_{\alpha} \in \mathfrak{g}_{\alpha}, x_{\beta} \in \mathfrak{g}_{\beta}$.

$$
\begin{gathered}
{\left[h,\left[x_{\alpha}, x_{\beta}\right]\right]=\left[\left[h, x_{\alpha}\right], x_{\beta}\right]+\left[x_{\alpha},\left[h, x_{\beta}\right]\right]} \\
=\alpha(h)\left[x_{\alpha}, x_{\beta}\right]+\beta(h)\left[x_{\alpha}, x_{\beta}\right]=(\alpha+\beta)(h)\left[x_{\alpha}, x_{\beta}\right]
\end{gathered}
$$

Lemma

$\left(\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right)=0$ if $\alpha \neq-\beta$

Proof.

Take an h for which α and $-\beta$ disagree. Take $x_{\alpha} \in \mathfrak{g}_{\alpha}, x_{\beta} \in \mathfrak{g}_{\beta}$.

$$
\left(\left[x_{\alpha}, h\right], x_{\beta}\right)=\left(x_{\alpha},\left[h, x_{\beta}\right]\right)
$$

by \mathfrak{g} associativity of the killing form. Since $\left[x_{\alpha}, h\right]=-\left[h, x_{\alpha}\right]=-\alpha(h) x_{\alpha}$ and $\left[h, x_{\beta}\right]=\beta(h) x_{\beta}$, this is equivalent to

$$
-\alpha(h)\left(x_{\alpha}, x_{\beta}\right)=\beta(h)\left(x_{\alpha}, x_{\beta}\right)
$$

By our assumption on h, this forces $\left(x_{\alpha}, x_{\beta}\right)=0$.

By the non-degeneracy of (\cdot, \cdot), this forces \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ to pair non-degenerately and (\cdot, \cdot) to be non-degenerate on \mathfrak{h}. In particular, $\alpha \in \Phi \Longleftrightarrow-\alpha \in \Phi$.
This non-degeneracy on \mathfrak{h} allows us to naturally pair \mathfrak{h} with \mathfrak{h}^{*} (isomorphically) via

$$
h \rightarrow(h, \cdot)
$$

For $\alpha \in \Phi$, let t_{α} be the corresponding element of h in this association (so $\left.\left(t_{\alpha}, h\right)=\alpha(h)\right)$).
We can also lift (\cdot, \cdot) to a form on \mathfrak{h}^{*} via $(\alpha, \beta)=\left(t_{\alpha}, t_{\beta}\right)$

Lemma

For $e_{\alpha} \in \mathfrak{g}_{\alpha}, f_{\alpha} \in \mathfrak{g}_{-\alpha}$, we have

$$
\left[e_{\alpha}, f_{\alpha}\right]=\left(e_{\alpha}, f_{\alpha}\right) t_{\alpha}
$$

Proof.

$$
\left(h,\left[e_{\alpha}, f_{\alpha}\right]\right)=\left(\left[h, e_{\alpha}\right], f_{\alpha}\right)=\alpha(h)\left(e_{\alpha}, f_{\alpha}\right)=\left(h,\left(e_{\alpha}, f_{\alpha}\right) t_{\alpha}\right)
$$

Let $h_{\alpha}=\frac{2 t_{\alpha}}{\left(t_{\alpha}, t_{\alpha}\right)}$ (one can show this denominator isn't 0). Choose e_{α} arbitrarily and choose f_{α} such that $\left(e_{\alpha}, f_{\alpha}\right)=\frac{2}{\left(t_{\alpha}, t_{\alpha}\right)}$
Then from this, we can see that $e_{\alpha}, h_{\alpha}, f_{\alpha}$ forms an $\mathfrak{s l}$ (2) (with the same relations as e, h, f from earlier):

$$
\begin{gathered}
{\left[e_{\alpha}, f_{\alpha}\right]=\frac{2 t_{\alpha}}{\left(t_{\alpha}, t_{\alpha}\right)}=h_{\alpha}} \\
{\left[h_{\alpha}, e_{\alpha}\right]=\alpha\left(h_{\alpha}\right) e_{\alpha}=\left(t_{\alpha}, h_{\alpha}\right) e_{\alpha}=\frac{2\left(t_{\alpha}, t_{\alpha}\right)}{\left(t_{\alpha}, t_{\alpha}\right)} e_{\alpha}=2 e_{\alpha}}
\end{gathered}
$$

(note we've shown here that $\alpha\left(h_{\alpha}\right)=2$).

$$
\left[h_{\alpha}, f_{\alpha}\right]=-\alpha\left(h_{\alpha}\right) f_{\alpha}=-2 f_{\alpha}
$$

Thus the span of $\left\{h_{\alpha}, e_{\alpha}, f_{\alpha}\right\}$ form an $\mathfrak{s} \ell(2)$ subalgebra (we'll call it $\left.\mathfrak{s} \ell(2)_{\alpha}\right)$
Now for each $\alpha \in \Phi$ and choice of associated $\mathfrak{s} \ell(2)_{\alpha}$, we can view \mathfrak{g} as an $\mathfrak{s l}(2)_{\alpha}$ module via adjoint.
 decomposes uniquely into a direct sum of irreducible modules of the type we described earlier (and thus every submodule has a complement).

Lemma

We have shown if $\alpha \in \Phi$, then $-\alpha \in \Phi$. There are no other multiples of α in Φ. Furthermore, the root space \mathfrak{g}_{α} is 1-dimensional.

Let's consider the $\mathfrak{s} \ell(2)_{\alpha}$ submodule

$$
W_{\alpha}=\bigoplus_{c \in \mathbb{C}} \mathfrak{g}_{c \alpha}
$$

This is an $\mathfrak{s l}(2)$ submodule (why?) and note h_{α} scales vectors in $\mathfrak{g}_{c \alpha}$ by $c \alpha\left(h_{\alpha}\right)=2 c$. Since we know h_{α} acts integrally on finite dimensional modules, we have $c \in \mathbb{Z} / 2$
Now note the following is an $\mathfrak{s} \ell(2)_{\alpha}$ submodule of W_{α} :

$$
W_{\alpha, 0}=\mathfrak{h} \oplus \mathbb{C} e_{\alpha} \oplus \mathbb{C} f_{\alpha}
$$

The lemma is equivalent to showing $W_{\alpha, 0}=W_{\alpha}$

Suppose not. Then there is some complement $W_{\alpha, 1} \subset W_{\alpha}$. Note

$$
W_{\alpha, 1} \subset \bigoplus_{c \in \mathbb{Z} / 2 \backslash 0} \mathfrak{g}_{c \alpha}
$$

Thus h_{α} has no 0 weight on $W_{\alpha, 1}$. This forces all weights in $W_{\alpha, 1}$ to be odd, since all irreducible submodules of $W_{\alpha, 1}$ with even weights would contain a 0 weight. Thus

$$
W_{\alpha, 1} \subset \bigoplus_{c \in \mathbb{Z}+\frac{1}{2}} \mathfrak{g}_{c \alpha}
$$

This immediately shows that \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$ have dimension 1 , and there are no other integer multiples of α as roots. In particular, α and 2α cannot both be roots. Hence $\alpha / 2$ cannot be a root either.

So we have

$$
W_{\alpha, 1} \subset \bigoplus_{c \in \mathbb{Z}+\frac{1}{2} \backslash\left\{\frac{1}{2}\right\}} \mathfrak{g}_{c \alpha}
$$

So $W_{\alpha, 1}$ does not have the weight 1 . Thus it cannot contain any odd weights, as all its irreducible submodules with odd weights would contain the weight 1.
So $W_{\alpha, 1}$ is a finite-dimensional $\mathfrak{s l}(2)_{\alpha}$ submodule with no even or odd weights. So it must be 0 .

Lemma

If $\alpha, \beta \in \Phi$, then $\beta\left(h_{\alpha}\right) \in \mathbb{Z}$ and $\beta-\beta\left(h_{\alpha}\right) \alpha \in \Phi$.
If $\alpha= \pm \beta$ this is clear. Assume otherwise.
Consider the $\mathfrak{s \ell}(2) \alpha$ submodule of \mathfrak{g} :

$$
W_{\alpha}^{\beta}=\bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{\beta+i \alpha}
$$

Since $\beta \neq \pm \alpha$ and no other multiples of α are roots, $\mathfrak{g}_{0}=\mathfrak{h}$ is not among these spaces. Thus they are all root spaces -1 dimensional. The weight of h_{α} on $\beta+i \alpha$ is $\beta\left(h_{a}\right)+i \alpha\left(h_{\alpha}\right)=\beta\left(h_{\alpha}\right)+2 i$. So all weight spaces are 1-dimensional and all weights are the same parity. This means it is impossible for W_{α}^{β} to be the sum of 2 or more irreducibles so W_{α}^{β} is irreducible.

Let q be largest such that $\beta+r \alpha \in \Phi$. Then the highest weight of W_{α}^{β} is $\beta\left(h_{\alpha}\right)+2 r$. So the lowest weight is $-\beta\left(h_{\alpha}\right)-2 r=\beta\left(h_{\alpha}\right)-2\left(\beta\left(h_{\alpha}\right)+r\right)$ and all integers of the same parity in between are weights. Thus

$$
\beta+i \alpha \in \Phi \Longleftrightarrow-\beta\left(h_{\alpha}\right)-r \leq i \leq r
$$

In particular $\beta-\beta\left(h_{\alpha}\right) \alpha \in \Phi$
Note that we have also shown that the action of $\mathfrak{s \ell}(2)_{\alpha}$ on \mathfrak{g} decomposes into irreducibles as follows:

$$
\mathfrak{g}=\operatorname{Ker}(\alpha) \oplus \mathfrak{s} \ell(2)_{\alpha} \oplus \bigoplus_{\beta \in \Phi / \mathbb{C} \alpha} \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_{\beta+i \alpha}
$$

Note $\beta-\beta\left(h_{\alpha}\right) \alpha=\beta-\frac{2\left(t_{\beta}, t_{\alpha}\right)}{\left(t_{\alpha}, t_{\alpha}\right)} \alpha=\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha$.
If these were vectors in Euclidean space and (\cdot, \cdot) was dot product, this would mean the reflection of β across the hyperplane orthogonal to α is in Φ.
To get this realization, need to show the following:

Lemma

1 All Φ lies in an \mathbb{R} vector subspace of \mathfrak{h}^{*} of the same dimension. Call this space E.
$2(\cdot, \cdot)$ is non-degenerate and positive-definite on E

Since Φ spans \mathfrak{h}^{*}, choose a basis $\left\{\alpha_{1}, \ldots \alpha_{n}\right\} \in \Phi$ for \mathfrak{h}^{*}. We show that all roots $\beta \in \Phi$ are in the \mathbb{R} span of the $\left\{\alpha_{i}\right\}$.
We know

$$
\beta=\sum_{i} c_{i} \alpha_{i}
$$

for $c_{i} \in \mathbb{C}$.
So for all α_{j} we have

$$
\frac{2\left(\beta, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}=\sum_{i} c_{i} \frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}
$$

Since the α_{j} span, treting c_{i} as free variables, this set of equations has a unique solution (the actual c_{i}). And since all coefficients are integers, the solutions are rational; in particular real. So $\Phi \subset E=\mathbb{R}\left\{\alpha_{1}, \ldots \alpha_{n}\right\}$.

Next, we show $(\gamma, \gamma)>0$ for all $\gamma \in E, \gamma \neq 0$. Note $(\gamma, \gamma)=\left(t_{\gamma}, t_{\gamma}\right)=\operatorname{tr}\left(\operatorname{ad} t_{\gamma}\right)^{2}$. Since all root spaces \mathfrak{g}_{α} are one dimensional and ad t_{γ} kills \mathfrak{h}, we have

$$
\left(t_{\gamma}, t_{\gamma}\right)=\sum_{\alpha \in \Phi}\left(\alpha\left(t_{\gamma}\right)\right)^{2}=\sum_{\alpha \in \Phi}(\alpha, \gamma)^{2}=\sum_{\alpha \in \Phi}\left(\frac{2(\gamma, \alpha)}{(\alpha, \alpha)}\right)^{2}(\alpha, \alpha)^{2}
$$

Since $\gamma \in E$ and $\frac{2\left(a_{i}, \alpha\right)}{(\alpha, \alpha)} \in \mathbb{Z}$ for all α_{i} in the basis and $\alpha \in \Phi$, we know $\frac{2(\gamma, \alpha)}{(\alpha, \alpha)} \in \mathbb{R}$.

All that remains to be shown is that $(\beta, \beta) \in \mathbb{R}$ for $\beta \in \Phi$. We use a similar idea:

$$
(\beta, \beta)=\sum_{\alpha \in \Phi}(\alpha, \beta)^{2}=\sum_{\alpha \in \Phi}\left(\frac{2(\alpha, \beta)}{(\beta, \beta)}\right)^{2}(\beta, \beta)^{2}
$$

and divide through by $(\beta, \beta)^{2}$ to get

$$
\frac{1}{(\beta, \beta)}=\sum_{\alpha \in \Phi}\left(\frac{2(\alpha, \beta)}{(\beta, \beta)}\right)^{2} \in \mathbb{Z} \subset \mathbb{R}
$$

So $(\beta, \beta) \in \mathbb{R}$ for all $\beta \in \Phi$ (actually the inverse of a positive integer, from this argument).
Thus $\sum_{\alpha \in \Phi}\left(\frac{2(\gamma, \alpha)}{(\alpha, \alpha)}\right)^{2}(\alpha, \alpha)^{2}$ is the sum of squares of real numbers; hence non-negative. And since Φ spans, not all terms are 0 .

We summarize as follows: Let \mathfrak{g} be a finite-dimensional simple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a maximal abelian semisimple subspace, and (\cdot, \cdot) the killing form of \mathfrak{g}. Then there is a finite subset $\Phi \in \mathfrak{h}^{*}$ such that we can write

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}
$$

with:
$1 h \in \mathfrak{h}$ acts on \mathfrak{g}_{α} (via bracket) with eigenvalue $\alpha(h)$
$2\left[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}\right] \subset \mathfrak{g}_{\alpha+\beta}$
3 All \mathfrak{g}_{α} are 1-dimensional
4 For every $\alpha \in \Phi$, we have $-\alpha \in \Phi$ and no other multiples
$5(\cdot, \cdot)$ restricts non-degenerately to \mathfrak{h}, so we can equip \mathfrak{h}^{*} with a form corresponding to (\cdot, \cdot) that we label the same way.
6Φ spans \mathfrak{h}^{*} and an \mathbb{R}-subspace E of \mathfrak{h}^{*} of the same dimension. On this subspace, (\cdot, \cdot) is positive definite and this subspace can therefore be realized as Euclidean space with (\cdot, \cdot) being dot product.
7 For all $\alpha, \beta \in \Phi, \frac{2(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z}$
8 On E, define $s_{\alpha}(\alpha \in \Phi)$ to be the map $\gamma \rightarrow \gamma-\frac{2(\gamma, \alpha)}{(\alpha, \alpha)} \alpha$; in other words, reflection across the hyperplane orthogonal to α. Φ is closed under s_{α} for all $\alpha \in \Phi$.

Recap

A subset $\Phi \subset E$ of Euclidean space with the properties
1Φ spans E and is finite.
2Φ is closed under s_{α} for all $\alpha \in \Phi$.
3 For all $\alpha, \beta \in \Phi, \frac{2(\alpha, \beta)}{(\beta, \beta)} \in \mathbb{Z}$
4 For every $\alpha \in \Phi$, we have $-\alpha \in \Phi$ and no other multiples are in Φ
is called a root system. These have beautiful structures that hint at the beauty of Lie theory as a whole. A root system is decomposable if we have $\Phi=\Phi_{1} \cup \Phi_{2}, \Phi_{1} \cap \Phi_{2}=$ and $\left(\Phi_{1}, \Phi_{2}\right)=0$. Indecomposable otherwise. Simple Lie algebras will have indecomposable root systems; the idea being otherwise you could separate the root space decomposition based on this partition of Φ and each would be an ideal in \mathfrak{g}. With a bit of work, one can also show the reverse direction - for any simple root system there is an associated simple Lie algebra.

Last time, we saw that any finite dimensional module of a simple Lie algebra is diagonalized by \mathfrak{h} :

$$
V=\bigoplus_{\lambda \in \mathfrak{h}^{*}} V_{\lambda}
$$

and note
$h \cdot\left(x_{\alpha} \cdot v_{\lambda}\right)=\left(x_{\alpha} \cdot h \cdot v_{\lambda}\right)+\left[h, x_{\alpha}\right] \cdot v_{\lambda}=\lambda(h) x_{\alpha} \cdot v_{\lambda}+\alpha(h) x_{a} \cdot v_{\lambda}$
So $x_{\alpha} \cdot V_{\lambda} \subset V_{\lambda+\alpha}$.
Since V_{λ} is also a module for the subalgebra $\mathfrak{s \ell}(2)_{\alpha}$ for each $\alpha \in \Phi$, we must have $\lambda\left(\mathfrak{h}_{\alpha}\right) \in \mathbb{Z}$ for all weights λ in V and $\alpha \in \Phi$.

Here are the 2-dimensional indecomposable root systems:

Let θ be the angle between roots α and β. Then since $\frac{2(\alpha, \beta)}{(\beta, \beta)}=2 \frac{\|\alpha\|}{\|\beta\|} \cos (\theta)$, we have

$$
\frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\beta, \alpha)}{(\alpha, \alpha)}=4 \cos ^{2}(\theta)
$$

In particular, $4 \cos ^{2}(\theta) \in \mathbb{Z}$. So θ must be related (in the pre-calculus sense) to $0, \pi / 6, \pi / 3$, or $\pi / 4$.
Furthermore, if α and β are non-proportional, this forces $\frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in\{0,1,2,3\}$ (and only 0 if they are orthogonal).

Lemma

For non-proportional root α, β, if $(\alpha, \beta)<0$ then $\alpha+\beta \in \Phi$. If $(\alpha, \beta)>0$, then $\alpha-\beta \in \Phi$

Proof.

In both cases, we have $\frac{2(\alpha, \beta)}{(\beta, \beta)} \frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in\{1,2,3\}$. Since both are integral, one must be ± 1. In the first case, one must be -1 and in the second case, one must be 1 . WLOG, let this be fr $\alpha \beta$.
Then $s_{\beta}(\alpha)=\alpha-\operatorname{fr} \alpha \beta \beta=\alpha \pm \beta$ and the conclusion follows.

Now cut Φ by some arbitrary hyperplane that does not intersect any root, and let γ be a vector orthogonal to it. Let Φ^{+}be the roots acute with γ (the positive roots) and Φ^{-}the roots obtuse with γ (the negative roots).
Let $\Delta=\left\{\alpha_{i}\right\}$ be a minimal set of positive roots such that every positive root is a non-negative integral combination of the α_{i}. We call these simple roots.

Lemma

Δ is linearly independent. Thus it is a basis for E for which every root in Φ has either all coeffients non-negative or non-positive (based on whether it's in Φ^{+}or Φ^{-})

We show that vectors in Δ are all mutually non-acute. Then if we had a dependence relation, we could write $\sum c_{i} \alpha_{i}=\sum c_{j} \alpha_{j}$, all coefficients non-negative and distinct simple roots on both sides. But by assumption

$$
\left(\sum c_{i} \alpha_{i}, \sum c_{i} \alpha_{i}\right)=\left(\sum c_{i} \alpha_{i}, \sum c_{j} \alpha_{j}\right) \leq 0
$$

so $\sum c_{j} \alpha_{j}=0$ by positive definiteness (in otherwords, this expression says a non-negative sum of simple roots is 0). But such a sum must have a positive inner product with γ as all $\left(\gamma, \alpha_{i}\right)>0$, leading to a contradiction. So we just need to show that all $\left(\alpha_{i}, \alpha_{j}\right) \leq 0$.

Suppose otherwise - $\left(\alpha_{i}, \alpha_{j}\right)>0$. Then we know $\alpha_{i}-\alpha_{j}$ and $\alpha_{j}-\alpha_{i}$ are roots. Suppose $\alpha_{i}-\alpha_{j}$ is positive without loss of generality. Then by assumption $\alpha_{i}-\alpha_{j}$ is a non-negative integral combination of simple roots $\alpha_{i}-\alpha_{j}=\sum c_{k} \alpha_{k}$. So any time we see α_{i}, we can replace it with $\alpha_{j}+\sum c_{k} \alpha_{k}$, so the $\alpha_{i} \in \Delta$ is not needed. This contradicts minimality.

This also shows that $\mathbb{Z} \Delta=\mathbb{Z} \Phi$. Since the former is linearly independent, this means the roots form a lattice.
The matrix $A=\left[\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{j}, \alpha_{j}\right)}\right]$ is called a Cartan Matrix for this Root system (some define it to be the transpose of this). By construction, we will have

■ 2 s on the diagonal all off-diagonal entries in $\{0,-1,-2,-3\}$
■ Os symmetric

- If $a_{i, j} \in\{-2,-3\}, a_{j, i}=-1$
- A positive definite

To an $n \times n$ Cartan matrix, we associate a graph on n nodes called the Dynkin Diagram as follows:

- If $a_{i, j}=0$, no edges between nodes i and j.
- If $a_{i, j}=a_{j, i}=-1$, draw 1 edge between nodes i and j
- If $a_{i, j}-n<-1$, draw n edges between nodes i and j, and an arrow from node i to node j.

The Dynkin Diagrams of all indecomposable root systems are as follows:

