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1 Introduction

Typically the theory of simple Lie algebras is done without a choice of basis that has specified relations.
This is likely due to the fact that there doesn’t seem to be any “natural” choice of root vectors.

However, one can get a highly natural double basis for each root space; that is, a choice of a root vector
and its negative, with structure constants that are natural and easy to compute.

This writeup will explore this double basis, along with some examples of how it can be used to simplify
the theory of simple Lie algebras.

2 Lattices and Central Extensions

Let L be a non-degenerate, positive-definite, even Z-lattice (where even means (α, α) ∈ 2Z for all α ∈ L).
Since

(α, β) =
(α+ β, α+ β)− (α, α)− (β, β)

2
∈ Z

L will also be integral.
Let Φ = {α ∈ L, (α, α) = 2}

Remark 2.1. One should think of L as the root lattice of a simply-laced root system Φ (normalized to have
norm-square 2). If so, the set of vectors of norm 2 in L is precisely Φ (see appendix)

Lemma 2.2. For all α, β ∈ Φ, (α, β) ∈ {−2,−1, 0, 1, 2}. Furthermore, α+ β ∈ Φ ⇐⇒ (α, β) = −1.

Proof. The first part follows from Cauchy-Schwarz

(α, β)2 ≤ (α, α)(β, β) = 4

(with equality only if α = ±β).
And note

(α+ β, α+ β) = 4 + 2(α, β)

so (α+ β, α+ β) = 2 ⇐⇒ (α, β) = −1.

We want a central extension L̂ of L

1→ 〈κ, κ2 = 1〉 → L̂→̄L→ 0

where the image of κ (also called κ) is central in L and for all a, b ∈ L̂

ab = baκ(ā,b̄)

To understand the intended structure of L̂ better (and see why this does describe a central extension),
consider a section

e : L̂→ L, α 7→ eα
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such that ēα = α for all α ∈ L. So we have

L̂ = {eα}α∈L ∪ {κeα}α∈L

Define ε(α, β) : L× L→ F2 (with respect to this choice of section) such that

eαeβ = κε(α,β)eα+β

To be a group, we must have
ε(α+ β, γ) = ε(α, β + γ)

for all α, β, γ ∈ L. And to satisfy our intended commutation relations, we must have

ε(α, β) = ε(β, α) + (α, β)

(where (α, β) is taken mod 2). Let us first show that such a central extension is unique ( somewhat in-
formally). Let {αi} be a base for L. Observe that every element of L̂ can be expressed uniquely in the
form

κj(eα1
)k1(eα2

)k2 . . . eknαn

with j ∈ {0, 1} and each ki ∈ Z.
Furthermore, κ and the eαi generate L̂, and any word involving these generators can be expressed in the

above form using only the commutation relation. Thus L̂ is uniquely determined.
We now show that such a central extension exists. Let {α1, . . . αn} be a base for L. Define ε such that

1. ε(αi, αj) = 0 if i ≥ j

2. ε(αi, αj) = (αi, αj) if j > i, (αi, αj) taken mod 2

3. ε(·, ·) is bilinear

Now let L̂ be the unique unital magma generated by symbols κ and {eα}α∈L with the relations:

1. κ is central and κ2 = 1

2. eαeβ = κ(α,β)eα+β

And defining (eα)−1 = e−ακ
(α,−α), one can verify that these relations make L̂ into a group.

Now via the map ēα = α, 1̄ = 0, we see that L̂ is a central extension of L by 〈κ, κ2 = 1〉.
All that is left to check is the commutation relations. Set

c(α, β) = ε(α, β)− ε(β, α).

This is bilinear as well and on any pair of basis vectors, we have

c(αi, αj) = (αi, αj)

by considering the cases i ≥ j, i < j.
So since c(·, ·) and (·, ·) are bilinear, we have

c(α, β) = (α, β)

where (α, β) is taken mod 2. Finally note

eαeβ = eα+βκ
ε(α,β) = eβeακ

ε(α,β)−ε(β,α) = eβeακ
c(α,β) = eβe

(α,β)
α

and thus we have proven existence.
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3 Realizations of Simply-Laced Lie algebras

Let
Φ̂ = {a ∈ L̂, ā ∈ Φ}

and
H = L⊗ F

For each a ∈ Φ̂, define the symbol xa
Define the vector space

g = H ⊕
∑
a∈Φ̂

Fxa

with the only dependence relation xa = −xκa. We equip a bilinear multiplication [·, ·] on g uniquely defined
by:

[g, g] = 0 for all g ∈ g

[h, xa] = (ā, h)xa for a ∈ Φ, h ∈ H
[xa, xb] = xab if ab ∈ Φ̂

[xa, xa−1 ] = ā

See FLM for a proof that this is really a Lie algebra. One can extend the symmetric bilinear form (·, ·)
from L to H, then to g by setting:

(xa, xb) = 1 ⇐⇒ ab = 1

and if āb 6= 0,
(xa, xb) = 0

The resulting form can be checked to be nondegenerate and g-invariant.
Now, suppose Φ spans H (as will be the case for any root lattice L). View g as a weight module for H.

Then any ideal I ⊂ g is a submodule of g under H, and thus also a weight module.
So we have I = I ∩H ⊕

∑
I ∩Cxa. If I is proper, then we have I ∩H 6= 0 or some xa ∈ I. But if xa ∈ I,

then [xa, xa−1 ] = ā ∈ I.
So I must contain some h. Then since Φ spans H, let α ∈ Φ be such that (α, h) 6= 0, and let a be a

section of α. Since
[h, xa] = (α, h)xa, [h, xa−1 ] = (−α, h)xa, [xa, xa−1 ] = α

we see that the s`(2) xa, xa−1 , α ∈ I, so I is not solvable. Thus g is semisimple.

Remark 3.1. Given a symmetric n× n Cartan matrix A, one can form a lattice with a base {αi} that has
inner product matrix A. The Lie algebra constructed from g as in this section will be the semisimple Lie
algebra with Cartan matrix A.

4 Automorphisms

This section can be skipped for the sake of constructing the simply-laced simple Lie algebras, but will be
important after.

Let σ be an isometry on L. Define:

σ̄ : L̂→ L, a 7→ σ(ā)

Then we have another realization of L̂ as a central extension of L:

1→ 〈κ, κ2 = 1〉,→ L̂
σ̄−→ L→ 1

Now for α ∈ L, let eα be a section of L̂ with respect to the map .̄ Note that eσ−1(α) is then a section of L̂
with respect to the map σ̄. And we have

eσ−1(α)eσ−1(β)(eσ−1(α))
−1(eσ−1(β))

−1 = κ(σ−1(α),σ−1(β)) = κ(α,β) = eαeβ(eα)−1(eβ)−1
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So they have the same commutator map and are thus equivalent central extensions. So we have an auto-
morphism ψ : L̂→ L̂ such that

¯◦ ψ = σ̄.

This map is not unique. To show the extent it is not unique, consider a base {αi} for L and a corresponding
section ai. Then we have a bijection between elements of (Z/2Z)n and automorphisms of L̂ that preserve¯
via

ψt1,...tn(ai) = aiκ
ti , ψ(κ) = κ

and extending.

Lemma 4.1. Let ∆ = {αi} ⊂ Φ, a choice of base of L whose inner product matrix is M with section {ai}.
Let σ be a linear isometry of L such that σ(∆) = ∆. Then we can find a unique automorphism ψ such that
ψ(ai) = aσ(i), ψ(κ) = κ.

Proof. Let ψ1 be some automorphism on L̂ such that σ̄ =¯◦ ψ1. Now for each i we have some ti ∈ Z/2Z we
have ψ1(ai) = aσ(i)κ

ti . Composing with ψt1,...tn will give us the desired automorphism.

Definition 4.2. We call such an automorphism ψ the ∆-preserving lifting of σ to L̂

Theorem 4.3. Let σ be a linear isometery on L and ψ an automorphism on L̂ such that¯◦ ψ = σ̄. Then ψ
lifts to an automorphism Ψ on g.

Proof. We define a map Ψ : g→ g such that:

h 7→ σ(h) for h ∈ H
xa 7→ xψ(a)

One can quickly verify that this is an automorphism by using ¯ψ(a) = σ(ā) and (σ(α), σ(β)) = (α, β). Note
also that as an isometry, σ(K) = K, so mapping φ(α) to φ(σ(α)) is well-defined.

Definition 4.4. We say a linear isometry σ is a diagram automorphism if σ(∆) = ∆.

Definition 4.5. We say a diagram automorphism σ is an orthogonal folding if for all αi ∈ ∆, σ(αi) = αi
or (σ(αi), αi) = 0.

We next prove a lemma that will allow us to show that all root vectors corresponding to roots fixed by
an orthogonal folding σ will be fixed in the corresponding Lie algebra automorphism Ψ.

Lemma 4.6. Let σ be an orthogonal folding and ψ be the ∆-preserving lifting of σ to L̂.
Then for a ∈ L̂, if ¯ψ(a) = ā, then ψ(a) = a.

Proof. Let O1, O2,...Ok be disjoint subsets of {1, 2, ...n} corresponding to orbits of σ on ∆. Express a as:

a = κs
k∏
j=k

( ∏
i∈Oj

ai
cj
)

(the
∏

notation might be a bit dubious due to lack of commutativity, but just pick an ordering in each orbit,
for instance increasing order). Note we can make the exponent of ai cj since all elements of an oribit must
have the same coefficient in an α fixed by σ.

ψ(a) = κs
k∏
j=k

( ∏
i∈Ij

a
cj
σ(i)

)
Now since σ is an orthogonal folding, all the ai for i ∈ Ij commute with eachother (for each j). Thus it is
clear that ψ(a) = a.
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Corollary 4.7. Let σ be an orthogonal folding, α ∈ L, and a ∈ Φ̂ a section of α. If for some k, σk(α) = α,
then ψk(a) = a.

Remark 4.8. The only non-orthogonal folding in the classical theory is the folding of A2n. In the next
section, we will show how to realize the non-simply laced simple Lie algebras as fixed point subalgebras of
lifted diagram automorphisms; we will not need A2n for this since the orthogonal folding of Dn gives the
same fixed point subalgebra – Bn. However, its folding is still interesting to study and relevant because of
the −1-eigenspace of this folding.

Lemma 4.9. Let Φ be the A2n root system with root lattice L and associated Lie algebra g.
Let ∆ = {αi}2ni=1 ⊂ Φ be a base for L such that (αi, αi+1) = −1 and (αi, αj) = 0 if |i− j| > 2. Let σ be

the diagram automorphism defined by σ(αi) = α2n+1−i.
Let ψ be the ∆-preserving lifting of σ to L̂. Then for a ∈ L̂, if ¯ψ(a) = ā, we have ψ(a) = κa

Proof. This can be proven from scratch, but we will assume the reader is familiar with the structure of A2n

and can recognize that the only roots fixed by σ are of the form:

±(αj + αj+1 + . . . α2n−j+1)

It will suffice to show that for any 1 ≤ j ≤ n, and sections ai for each αi,

ψ
(
(aja2n−j+1)(aj+1a2n−j) . . . (anan+1)

)
= κ(aja2n−j+1)(aj+1a2n−j) . . . (anan+1)

Now
ψ(anan+1) = an+1an = κ−1anan+1 = κanan+1.

(This is where the non-orthogality plays a role). And for i < n,

ψ(aia2n−i+1) = κ0a2n−i+1ai = aia2n−i+1

The conclusion follows.

5 Realizations of non-simply-laced simple Lie algebras

For this section, take L to be the root lattice of some simply-laced indecomposable root system Φ and let
∆ = {αi} be a base for Φ in the usual sense (that is, all roots in Φ can be expressed as a non-negative or
non-positive combinations of roots in ∆). Call roots in ∆ simple roots.

σ will be a diagram automorphism with ∆-preserving lifting ψ. Ψ will be the corresponding automorphism
on g

We will also implicitly use the isomorphism H → H∗, h 7→ (h, ·) to identify functionals on H (e.g.
roots) with vectors in H. Likewise we will identify Hσ with Hσ,∗ via this map.

Definition 5.1. Let
Hσ = {α ∈ H,σ(α) = α}, nσ = dim(Hσ)

Let p denote the order of σ (determined by its order on ∆), pα the order of σ on α ∈ Φ, and pa the order
of σ on a ∈ Φ̂.

Definition 5.2. For α ∈ Φ, let

ασ =
α+ σ(α) + ...σpα−1(α)

pα

Note since σ preserves positive roots, we always have σα 6= 0
and for a ∈ L̂, set

xσa = xa + Ψ(xa) + ...Ψpa−1(xa)

Remark 5.3. By their definitions, we can see that ψ also has order p on L̂. Furthermore, the only possible
values for p can be checked experimentally to be 2 or 3, so pα and pa are always either 1 or p.

Thus for any a ∈ Φ̂ we have three possibilities:
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1. pa = 1, pā = 1

2. pa = p, pā = p

3. pa = p, pā = 1

Now lemma 4.6 has shown that if σ is orthogonal and pā = 1, we must have pa = 1.
Furthermore, by lemma 4.9, we have that if σ is the non-orthogonal A2n folding and pā = 1, then

ψ(a) = κa (so pa = 2).

This gives us the following lemma:

Lemma 5.4. If σ(ā) 6= ā, then pa = pā = p. In particular,

xσa = xa + Ψ(xa) + ...Ψp−1(xa) = xa + xψ(a) + . . . xψp−1(a)

and all summands are linearly independent.
If σ(ā) = ā and σ is orthogonal, we have

xσa = xa

If on the other hand σ(ā) = ā and σ is the A2n folding, we have

xσa = xa + xκa = xa − xa = 0

Now let gΨ be the fixed point subalgebra of Ψ. We have

gΨ = Hσ ⊕
∑
a∈Φ̂

xσa

What are the roots of gΨ? For h ∈ Hσ, we have

[h, xσa ] = [h,

pa∑
i=1

xψi(a)] =

pa∑
i=1

(h, σi(ā))xψi(a) = (h, ā)xσa = (h, āσ)xσa

since
(h, σ(α)) = (σ−1(h), α) = (h, α)

and if xσa 6= 0, pa = p.
Set

∆σ = {ασ}α∈∆

Φσ = {ασ}α∈Φ

Φσ,o = {ασ}α∈Φ,σ(α)6=α

Φσ,f = {α}α∈Φ,σ(α)=α = Φσ \ Φσ,o

and let ΦΨ be the root system of gΨ

Since σ preserves ∆ and ∆ is a basis for H, ∆σ is a basis for Hσ (recall the identification of H with H∗).
Let {Oj} be the set of orbits of σ on ∆. If α and β are in the same orbit, we have ασ = βσ, so let

αOj = αJσ for some αJ ∈ Oj .
If σ is orthogonal, ΦΨ = Φσ since for each α ∈ Φ with section a ∈ L̂, xσa is a non-zero vector with root

ασ.
If σ is the nonorthogonal folding of A2n, we have Φσ = ΦΨ since we must exclude the roots fixed by σ.

Note we still have ∆σ ⊂ ΦΨ for this folding.
In particular, All these together show:

Lemma 5.5. ∆σ is a base for the root system of gΨ
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Proof. We have shown that ΦΨ always contains ∆σ and thus spans Hσ. Furthermore, since every vector in
Φ is a non-negative or non-positive combination of vectors in ∆, one can show that every vector in Φσ is a
non-negative or non-positive combination of vectors in ∆σ.

Theorem 5.6. gΨ is semisimple

Proof. Let I be a non-zero ideal of gΨ.
Since Hσ acts ad-semisimply on gΨ, it acts semisimply on any gΨ module. In particular, I is Hσ graded.
Now we can show that I intersects Hσ. If not, it contains a vector x lying in some ασ ∈ Φσ root space.
We have not yet shown that each root space is 1-dimensional, so it is possible to have representatives

from distinct root orbits {β1, β2, . . . βk} with all βσi = ασ.
Write x =

∑
cix

σ
bi

where for each i, b̄i = βi.
Then if j is such that cj 6= 0, we have

[x, xσ
b−1
j

] = pαα
σ + r

where r lies in a sum of root spaces. Since Hσ acts semisimply, we can thus conclude ασ ∈ I.
Let h 6= 0 be a non-zero vector in I ∩Hσ. Since the root system spans Hσ, we have some root βσ with

(h, βσ) 6= 0, so if b is such that b̄ = β,

[h, xσb ] = (h, βσ)xσb 6= 0

[h, xσb−1 ] = (h,−βσ)xσb 6= 0

[h, xσb−1 ]
Now since [xσb , x

σ
b−1 ] is a non-zero multiple of βσ, we have

{βσ, xσb , xσb−1 ∈ I

so I cannot be solvable. Thus g is semisimple.

Thus, ΦΨ is a crystallographic root system and each root space is 1-dimensional.
We know it has base ∆σ, so we can determine what this root system is.
First we will try to understand the simple coroots. Let

hOi =
2αOi

(αOi , αOi)

Lemma 5.7. If σ is an orthogonal folding, we have

hOi = αi + σ(αi) + . . . σpα−1(αi)

Proof. If αOi ∈ Φσ,f , then αOi has norm-square 2, so hOi = αOi
On the other hand, if αOi ∈ Φσ,o, then since σ is orthogonal, we have

(αOi , αOi) =
2pα
p2
α

=
2

pα

so
hOi = pααOi = αi + σ(αi) + . . . σpα−1

The Cartan matrix Aσ of gΨ is determined by

Ai,j = αOj (hOi)

Remark 5.8. We know this is a Cartan matrix for a semisimple Lie algebra, so we know in particular that
the Ai,j are integral.
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These are the Dynkin Diagrams that result:
Next, we consider what happens for Φ = A2n. Label the simple roots {αi} as before such that (αi, αi+1) =

−1 and (αi, αj) = 0 if |i− j| > 2.
For 1 ≤ i ≤ n, let Oi = {αi, α2n+1−i}. Then Oi contains an orbit of non-orthogonal roots for each i < n,

but the roots in On are not orthogonal.
Accordingly, we have hOi = αi + α2n+1−i for i < n and hOn = 2(αn + αn+1).
We get the resulting Dynkin diagram:
Thus gΨ is Bn.

Remark 5.9. Recall that for this folding only, ΦΨ = Φσ,o, whereas for all the orthogonal foldings, ΦΨ =
Φσ = Φσ,o ∪ Φσ,f .

Let’s investigate the “excluded roots” Φσ,f . These are of the form

β = ±(αj + αj+1 + . . . α2n−j + α2n−j+1).

For this choice of sign and j, consider the root

β′ = ±(αj + αj+1 + . . . αn)

We have 2β′σ = βσ. And β′σ ∈ Φσ,o has norm-square 1/2; i.e. it has the same norm as the short simple
root αOn . In this way, each vector in Φσ,f is twice a short root in Φσ,o = Bn.

Thus Φσ is actually the BCn non-reduced root system.

For the sake of twisted affine Lie algebras, it will be helpful to consider the other eigenspaces of Ψ on g
Let gΨ,ω be the eigenspace of Ψ on g with eigenvalue ω (ω a p-th root of unity except 1).
Let

xσ,ωa = xa + ωΨ(xa) + . . . ωp−1Ψp−1(xa)

and for each i, let
αωOi = β + ωσ(β) + . . . ωp−1σp−1(beta)

for some choice of β in each αOi .
Then gΨ,ω will be spanned by these xσ,ωa and αωOi .
Now observe that αωOi 6= 0 precisely when αOi ∈ Φσ,o.
Likewise, we have xσ,ωa 6= 0 if ā is not fixed by σ. If σ is orthogonal, then by lemma 4.6 (along with the

fact that 1 + ω + . . . ωp−1 = 0), we have xσ,ωa = 0 if ā is fixed by σ.
On the other hand, if σ is the non-orthogonal folding of A2n, by lemma 4.9, xσ,−1

a 6= 0 if ā is fixed by σ.
Since gΨ,ω is a gΨ module, we can view these as root vectors of Hσ acting on gΨ,ω. By a counting

argument, all non-zero roots of gΨ,ω have dimension 1.

6 Weyl Group

In section 2, we showed how any automorphism of a simply-laced root system Φ could lift non-uniquely to
an automorphism of the associated Lie algebra. We also identified special automorphisms known as Diagram
automorphisms.

There is another important subgroup of automorphisms knows as the Weyl Group W . This is the group
generated by the reflections:

sα : Φ→ Φ, x 7→ x− 2(α, x)

(α, α)
α

for each α ∈ L.
The Weyl group is actually generated by the simple reflections si = sαi . Note si(αj) = αj−Ai,jαi where

A is the Cartan matrix.
The Weyl group can also be defined analogously for non-simply laced root systems. Here we have shown

how to realize all non-simply laced root systems in the form Φσ where Φ is simply-laced and σ is orthogonal.
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Lemma 6.1. Let sOi =
∏
α ∈ Oisα. Note by orthogonality the order of this product does not matter. Then

sOi commutes with σ and

sOi(αOj ) = αOj − αOj (hOi)αOi = αOj −Aσi,jαOi

Proof. We have

sOi(x) = x−
∑
α∈Oi

2(α, x)

(α, α)
α = x−

∑
α∈Oi

(α, x)α

And since σ permutes the roots in Oi and preserves the inner product, we have

sOi(σ(x)) = σ(x)−
∑
α∈Oi

(α, σ(x))α

= σ(x)−
∑
α∈Oi

(α, x)σ(α)

= σ(sOi(x))

so σ commutes with each sOi .
Now

sOi(αOj ) = αOj −
p−1∑
t=0

|Oi|−1∑
s=0

(ασs(i), ασt(j))

p
ασs(i)

for some i ∈ Oi, j ∈ Oj . We have

p−1∑
t=0

|Oi|−1∑
s=0

(ασs(i), ασt(j))

p
ασs(i) =

p−1∑
t=0

|Oi|−1∑
s=0

(ασ(i), ασt−s(j))

p
ασs(i)

=

p−1∑
t=0

|Oi|−1∑
s=0

(αi, ασt(j))

p
ασs(i)

=

|Oi|−1∑
s=0

(αi, αOj )ασs(i)

=

|Oi|−1∑
s=0

(αOi , αOj )ασs(i)

= (αOi , αOj )hOi

= (αOj , hOi)αOi

= −Ai,jαOi

This shows that the simple reflections of the Weyl group Wσ of Φσ are the sOi , so these generate Wσ.
Therefore Wσ ⊂W and Wσ commutes with σ.

Lemma 6.2. Let σ be an orthogonal folding of Φ and α ∈ Φ. Then there exists a w ∈ Wσ such that
(wα)σ = w(ασ) = ασi for some αi ∈ ∆.

Furthermore, σ will have the same order on α as it does on αi and the coroot hσα = α+σ(α)+. . . σpα−1(α)

Proof. Since Φσ is a root system with Weyl group Wσ and simple roots of the form ασi (also expressed αOi
here), the first statement is a standard result about root systems.

Now we have
wα+ σ(wα) + . . . σp−1(wα) = αi + σ(αi) + . . . σp−1(αi)

Since Wσ ⊂W , wα must be a root, and since σ preserves positivity, wα must be positive. Then comparing
heights on both sides of the equation, we see that wα must be simple.
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Now if αi, αj are simple and ασi = ασj , we must have αi and αj in the same σ orbit since the simple roots
form a basis and are closed under σ.

Therefore, wα and αi are in the same σ orbit. So σ is the same order on αi as it does on wα. And since
w commutes with σ, it also has this same order on α.

Now since σ is orthogonal and αi is simple, (ασi , α
σ
i ) = 2

pαi
. And since w preserves length, we have

(ασ, ασ) =
2

pαi
=

2

pα

Thus,

hσα =
2ασ

(ασ, ασ)
=

2ασ

2/pα
= pαα

σ = α+ σ(α) + . . . σpα−1(α)

7 Chevalley Bases

In section 3, we showed how to construct any simply-laced simple Lie algebra from a positive definite even
lattice L and central extension L̂ which comes from the form on L. Set Φ = L2 and let ∆ be a base for Φ
in the usual sense.

Let P be a set of representative sections for each α ∈ Φ = L2 in L̂. Then the following is a Chevalley
basis for g:

∆ ∪ {xa}a∈P
Now recall from section 4 that any non-simply-laced simple lie algebra can realized as the fixed points of

an automorphism Ψ on a simply-laced simple Lie algebra g, where Ψ restricts to an orthogonal folding σ on
∆.

Let P be a set of representative sections in L̂ for one root in each orbit of σ on Φ.
The following is a Chevalley basis for gΨ:

{hOi}ni=1 ∪ {xσa}a∈P

It is worthwhile to show what some of these structure constants are. We know how hOi acts on root
vectors (and these are integral since the Cartan matrix has integral entries), so we only focus on the brackets
of root vectors.

We will ignore choices of section for the root vectors as these just introduce minus signs. We also only
For the simply laced case, note we have:

[xa, xa−1 ] = ā

which is an integral combination of the {α} ∈ ∆}.
And clearly, if ab ∈ L̂2, we have

[xa, xb] = xab

and 0 otherwise
For the non-simply laced case, we have

[xσa , x
σ
a−1 ] = hσā

and we know all coroots are integral combinations of the simple coroots.
Next, consider a non-zero

[xσa , x
σ
b ]

and assume without loss of generality that āb ∈ Φ.
If ā is fixed by σ, we have

[xσa , x
σ
b ] = [xa, x

σ
b ] = xσab

since (ā, σ(b̄)) = (ā, b̄).
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Of course, we have the same result if b̄ is fixed by σ. This just leaves the case of when both ā and b̄ have
orbit of size p:

[xa + Ψ(xa) + . . .Ψp−1(xa), xb + Ψ(xb) + . . .Ψp−1(xb)]

this must be a multiple of xσab. Now xσab has pāb terms. So if this has m non-zero cross terms, then we have

[xa + Ψ(xa) + . . .Ψp−1(xa), xb + Ψ(xb) + . . .Ψp−1(xb)] =
m

pāb
xσab

How can m be more easily computed? Observe we have

m = (hσā , h
σ
b̄ ) = p(āσ, hσb̄ )

Putting all this together, if [xσa , x
σ
b ] 6= 0, we have

[xσa , x
σ
b ] = xσab

unless ā and b̄ are not fixed by σ (i.e. ā and b̄ are short) in which case we have

[xσa , x
σ
b ] =

pāσ(hσ
b̄
)

pāb
xσab
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