Representation Theory of $G L_{2}\left(\mathbb{F}_{q}\right)$

Nick Backes

GARTS

February 28, 2022

Outline

- Review some facts about representations of finite groups
- Find the irreducible representations of many subgroups of $G L_{2}$.
- Induce these representations to $G L_{2}$ and then decompose those into irreducibles.
- Find the remaining irreducible representations.

Representations of Finite Groups

Let G be a finite group.

The number of irreducible representations equals the number of conjugacy classes of G. Their dimensions satisfy

$$
\sum\left(\operatorname{dim} \rho_{i}\right)^{2}=|G|
$$

The number of characters (1-dimensional representations) of G is equal to $\left(G: G^{\prime}\right)$, where G^{\prime} is the commutator subgroup of G.

Representations of G can be decomposed into a direct sum of irreducibles. In particular, irreducible representations of finite groups have complements.

Bilinear Form on Representations

Let ρ be a representation of G. Then V_{ρ} can be given the structure of a $\mathbb{C}[G]$-module.

Define a symmetric bilinear (w.r.t. direct sum) form on the representations of G by

$$
\left(\rho, \rho^{\prime}\right)=\operatorname{dim} \operatorname{Hom}_{\mathbb{C}[G]}\left(V_{\rho}, V_{\rho^{\prime}}\right)
$$

By Schur's lemma, if ρ and ρ^{\prime} are irreducible, then
$\left(\rho, \rho^{\prime}\right)= \begin{cases}1 & \rho=\rho^{\prime} \\ 0 & \rho \neq \rho^{\prime}\end{cases}$
Thus, in general, this form is the number of common irreducible subrepresentations, counted with multiplicity, between ρ and ρ^{\prime}.

Induced Representaion

Let $H<G$ and let τ be a representation of H.
Let $V=\left\{f: G \rightarrow V_{\tau} \mid f(h g)=\tau(h) f(g) \forall h \in H, g \in G\right\}$
Such a function is determined by its values on a set of representatives of $H \backslash G$.

Let $s, g \in G$ and define an action of G on V by $(s f)(g)=f(g s)$. This is the induced representation $\operatorname{Ind}_{H}^{G} V_{\tau}$. Also denoted $\operatorname{Ind}_{H}^{G} \tau$.

Transitivity: $\operatorname{Ind}_{J}^{G} \operatorname{Ind}_{H}^{J} V_{\tau}=\operatorname{Ind}_{H}^{G} V_{\tau}$
Frobenius Reciprocity: if ρ is a representation of G, then $\operatorname{Hom}_{\mathbb{C}[G]}\left(\operatorname{Ind}_{H}^{G} V_{\tau}, V_{\rho}\right) \simeq \operatorname{Hom}_{\mathbb{C}[H]}\left(V_{\tau}, \operatorname{Res}_{H}^{G} V_{\rho}\right)$. In particular, $\left(\operatorname{Ind}_{H}^{G} \tau, \rho\right)=\left(\tau, \operatorname{Res}_{H}^{G} \rho\right)$

Dimension

We can embed V_{τ} into $V=\operatorname{Ind}_{H}^{G} \tau$. Let $w \in V_{\tau}$. Define $f_{w} \in V$ by

$$
f_{w}(g)= \begin{cases}\tau(g) w & g \in H \\ 0 & g \notin H\end{cases}
$$

Let R be a set of representatives of $H \backslash G$. Write $G=\cup_{r \in R} r H$ as a decomposition of G into left cosets of H.

For $f \in V$, define

$$
f_{r}(g)= \begin{cases}f(g) & g \in H r^{-1} \\ 0 & g \neq H r^{-1}\end{cases}
$$

Then $f=\sum_{r \in R} f_{r}$. It follows that $V=\oplus_{r \in R} r V_{\tau}$ $\operatorname{dim} \operatorname{Ind}_{H}^{G} \tau=(G: H) \operatorname{dim} V_{\tau}$

$G L_{2}(k)$

Let $k=\mathbb{F}_{q}$. We have the following subgroups of $G L_{2}(k)=G$

- $U=\left\{\left(\begin{array}{ll}1 & \beta \\ 0 & 1\end{array}\right)\right\} \simeq k^{+} \quad A=\left\{\left(\begin{array}{cc}\alpha & 0 \\ 0 & 1\end{array}\right)\right\} \simeq k^{*}$
- $B=\left\{\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right)\right\}$ Notice $\alpha, \delta \in k^{*}$ and $\beta \in k$.
- $P=\left\{\left(\begin{array}{ll}\alpha & \beta \\ 0 & 1\end{array}\right)\right\}$
- $D=\left\{\left(\begin{array}{ll}\alpha & 0 \\ 0 & \delta\end{array}\right)\right\}$
- $Z=\left\{\left(\begin{array}{ll}\alpha & 0 \\ 0 & \alpha\end{array}\right)\right\}$
- $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Conjugacy Classes

There are:

- q-1 classes with repeated eigenvalue $\lambda \in k .\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda\end{array}\right)$
- q-1 classes with repeated eigenvalue $\lambda \in k .\left(\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right)$

■ $(q-1)(q-2) / 2$ classes with distinct eigenvalues $\lambda_{1}, \lambda_{2} \in k$. $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$

- $\left(q^{2}-q\right) / 2$ classes with distinct eigenvalues $\lambda, \bar{\lambda} \in L \backslash k$, where L is the degree 2 field extension of $k .\left(\begin{array}{cc}0 & -N(\lambda) \\ 1 & \operatorname{Tr}(\lambda)\end{array}\right)$

Representations of U

$$
U=\left\{\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)\right\} \simeq k^{+} \quad A=\left\{\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right)\right\} \simeq k^{*}
$$

A acts on U by conjugation, corresponding to the action of k^{*} on k^{+}by multiplication:

$$
\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha^{-1} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \alpha \beta \\
0 & 1
\end{array}\right)
$$

Let ψ be a (nontrivial) character of k^{+}. Then ψ is also a character of U.

For $a \in A$ and $u \in U$, let $\psi_{a}(u)=\psi\left(a u a^{-1}\right)$.
These are inequivalent representations (and are equal to the nontrivial representations of k^{+}). Thus, together with the trivial representation, we have q irreducible representations of U. Since $|U|=q$, this is all of them.

Representations of P

$P=\left\{\left(\begin{array}{ll}\alpha & \beta \\ 0 & 1\end{array}\right)\right\}=U \rtimes A$
If μ is a character of A, then $\widetilde{\mu}(u a):=\mu(a)$ is a character of P. There are $q-1$ such characters of P, which is all of them: $P^{\prime}=U$ and $(P: U)=q-1$.

There is 1 more irreducible representation: $\pi=\operatorname{Ind}_{U}^{P} \psi$. Note $\operatorname{dim} \pi=q-1$
$\operatorname{Res}^{P}{ }_{U} \operatorname{Ind}_{U}^{P} \psi=\oplus \psi_{a}$. (Recall $\left.\psi=\psi_{1}\right)$ This is proven by induced representation bashing. But then, by Frobenius reciprocity, we can show $\operatorname{Ind}_{U}^{P} \psi$ is irreducible:

$$
\left(\operatorname{Ind}_{U}^{P} \psi, \operatorname{Ind}_{U}^{P} \psi\right)=\left(\psi, \operatorname{Res}_{U}^{P} \operatorname{Ind}_{U}^{P} \psi\right)=\left(\psi, \oplus \psi_{a}\right)=1
$$

$\sum \operatorname{dim} \rho^{2}=(q-1)+(q-1)^{2}=|P|$

Induced Representation Bashing

Let $a \in A$. Then define $f_{a} \in \operatorname{Ind}_{U}^{P} \psi$ by $f_{a}\left(a^{\prime}\right)= \begin{cases}1 & a=a^{\prime} \\ 0 & a \neq a^{\prime}\end{cases}$
Claim: f_{a} is an eigenvector of U with eigenvalue ψ_{a}. This means $f_{a}(p u)=\psi_{a}(u) f_{a}(p)$ for all $p \in P, u \in U$.

Write $p=u^{\prime} a^{\prime}$. Then the condition above becomes

$$
f_{a}(p u)=f_{a}\left(u^{\prime} a^{\prime} u\right)=\psi\left(u^{\prime}\right) f_{a}\left(a^{\prime} u\right)=\psi\left(u^{\prime}\right) \psi_{a}(u) f_{a}\left(a^{\prime}\right)
$$

Hence, it suffices to show $f_{a}\left(a^{\prime} u\right)=\psi_{a}(u) f_{a}\left(a^{\prime}\right)$. We calculate:

$$
f_{a}\left(a^{\prime} u\right)=f_{a}\left(a^{\prime} u a^{\prime-1} a^{\prime}\right)=\psi\left(a^{\prime} u a^{\prime-1}\right) f_{a}\left(a^{\prime}\right)=\psi_{a^{\prime}}(u) f_{a}\left(a^{\prime}\right)
$$

If $a=a^{\prime}$ we get the equation we wanted. If $a \neq a^{\prime}$ we get 0 .

More Bashing

We have found a 1-dimensional subspace of $\operatorname{Res}_{U}^{P} \operatorname{Ind}_{U}^{P} \psi$. If we do this for each $a \in A$, then we get $q-1$ linearly independent subspaces, and hence $\operatorname{Res}_{U}^{P} \operatorname{Ind}_{U}^{P} \psi=\oplus \psi_{a}$

Notice that if $\operatorname{Res}_{U}^{P} \operatorname{Ind}{ }_{U}^{P} \psi=\oplus \psi_{a}$, then π is independent of the choice of ψ.

Characters of B

$B=\left\{\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right)\right\}=U \rtimes D=Z \rtimes P .|B|=q(q-1)^{2}$.
Also $B^{\prime}=U$. Recall $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
If μ_{1} and μ_{2} are characters of k^{*}, then $\mu\left(\left(\begin{array}{cc}\alpha & \beta \\ 0 & \delta\end{array}\right)\right)=\mu_{1}(\alpha) \mu_{2}(\delta)$ is a character of B. This gives all $(q-1)^{2}$ characters of B.

Remark: If μ is a character of B, then there is another character μ_{w} defined by $\mu_{w}(b)=\mu\left(w b w^{-1}\right)$.

$$
\mu_{w}\left(\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right)\right)=\mu_{1}(\delta) \mu_{2}(\alpha)
$$

Note $\mu=\mu_{w}$ if and only if $\mu_{1}=\mu_{2}$.

Other representations of B

Now we use that $B=Z \rtimes P$.
Z has $q-1$ characters χ, given by the characters of k^{*}. A character $\widetilde{\chi}$ can be defined on B by $\widetilde{\chi}(z p)=\chi(z)$

Recall P has the $q-1$ dimensional representation π. Then $\widetilde{\pi}(z p)=\pi(p)$ is a $q-1$ dimensional representation of B.
$(\widetilde{\chi} \otimes \widetilde{\pi})(z p)=\widetilde{\chi}(z) \widetilde{\pi}(p)$ is a $q-1$ dimensional representation of B, and is irreducible. Letting χ vary gives $q-1$ such representations.
$\sum \operatorname{dim}(\rho)^{2}=(q-1)^{2}+(q-1)(q-1)^{2}=q(q-1)^{2}=|B|$

Jacquet Module

Now we will induce characters from B to G and identify the irreducible subrepresentations.

There is a great tool called the Jacquet Module for identifying the irreducibles.

Notation: for a character μ of B, let $\hat{\mu}=\operatorname{Ind}_{B}^{G} \mu . \operatorname{dim} \hat{\mu}=q+1$.
If ρ is a representation of G, let
$J(\rho)=\left\{\nu \in V_{\rho} \mid \forall u \in U, \rho(u) \nu=\nu\right\}$
B acts on $J(\rho)$. Indeed, $\rho(u) \rho(b) \nu=\rho(b) \rho\left(b^{-1} u b\right) \nu=\rho(b) \nu$.
The last step follows because $U \unlhd B$, hence $b^{-1} u b \in U$.
In general, $J(\rho)$ is not a representation of G.

Dimension of Jacquet Module

Lemma: If μ is a character of B, then $\operatorname{dim} J(\hat{\mu})=2$
Proof: recall

$$
V_{\hat{\mu}}=\{f: G \rightarrow \mathbb{C} \mid f(b g)=\mu(b) f(g)\}
$$

Also recall the action is given by $(h f)(g)=f(g h)$ for $g, h \in G$. In particular, the Jacquet module condition is
$(u f)(g)=f(g u)=f(g)$ Thus,

$$
J(\mu)=\{f: G \rightarrow \mathbb{C} \mid f(b g)=\mu(b) f(g), f(g u)=f(g)\}
$$

In particular, $f(b)=\mu(b) f(1), f(b w u)=\mu(b) f(w)$
Recall the Bruhat decomposition: $G=B \cup B w U$. Now we see f is determined by $f(1)$ and $f(w)$, hence $J(\mu)$ is 2-dimensional.

Why the Jacquet Module is Neat

Lemma: Let ρ be a representation of $G . J(\rho) \neq 0$ if and only if $(\rho, \hat{\mu}) \neq 0$ for some character μ of B.

Proof idea: $D=B / U$ is abelian and acts on $J(\rho)$, so $J(\rho)$ splits into a sum of characters. Hence, there is a character μ of B and $\nu \in J(\rho)$ so that, $\forall b \in B$, we have $\rho(b) \nu=\mu(b) \nu$. Thus, $\left(\operatorname{Res}_{B}^{G} \rho, \mu\right) \neq 0$, hence by Frobenius reciprocity $(\rho, \hat{\mu}) \neq 0$.

The converse is similar. Assume $(\rho, \hat{\mu}) \neq 0$, so there exists $\nu \in V_{\rho}$ so that $\rho(b) \nu=\mu(b) \nu$. Since μ is trivial on U, we moreover have $\nu \in J(\rho)$, which is thus nonzero.

Corollary: If ρ is an irreducible representation of G, then $J(\rho) \neq 0$ if and only if $\rho \leq \hat{\mu}$ for some character μ of B.

Corollary: $\hat{\mu}$ has at most 2 irreducible components.

Remarks

Recall that a character μ of B is given by 2 characters μ_{1}, μ_{2} of k^{*}. If $\mu_{1}=\mu_{2}$, then $\hat{\mu}$ has a 1 -dimensional component. The proof idea is that the representation only depends on $\operatorname{det}(b)$.

Notice that $\mu_{1}=\mu_{2}$ is equivalent to $\mu=\mu_{w}$.
$\hat{\mu}$ has at most one 1-dimensional component, since $\operatorname{dim}(\hat{\mu})=q+1$
$\operatorname{Res}_{P} \hat{\mu}=\operatorname{Res}_{P} J(\hat{\mu}) \oplus V_{\pi}$. The proof idea is that since B acts on $J(\hat{\mu})$, so does P. Then $J(\hat{\mu})$ has a complement, which is $q-1$ dimensional. One can show the complement has no 1-dimensional components, hence it must be π.

More remarks

Lemma: If $\hat{\mu}$ is reducible, then $\hat{\mu}$ has a 1 -dimensional component and $\mu=\mu_{w}$.

Proof idea: write $V_{\hat{\mu}}=V_{\tau} \oplus V_{\omega}$. Then since $V_{\pi} \subset \operatorname{Res}_{P} \hat{\mu}$, without loss of generality, $V_{\pi} \subset \operatorname{Res}_{P} V_{\tau}$. But since $V_{\tau} \subset V_{\hat{\mu}}$, we know $0 \neq J(\tau) \subset J(\hat{\mu}) \cap V_{\tau}$. In particular, $V_{\pi} \neq \operatorname{Res}_{p} V_{\tau}$. Since $\operatorname{dim} V_{\pi}=q-1$ and $\operatorname{dim} V_{\hat{\mu}}=q+1$, we have that $\operatorname{dim} V_{\tau}=q$ and $\operatorname{dim} V_{\omega}=1$.

Lemma: If μ and μ^{\prime} are distinct characters of B, then $\left(\hat{\mu}, \hat{\mu^{\prime}}\right) \neq 0$ if and only if $\mu_{w}=\mu^{\prime}$.

Corollary: $\hat{\mu}=\hat{\mu^{\prime}}$ if and only if $\mu=\mu^{\prime}$ or $\mu_{w}=\mu^{\prime}$.

Putting it together

If μ and μ^{\prime} are characters of B, then

- $\operatorname{dim} \hat{\mu}=q+1$
- $\hat{\mu}$ has at most 2 irreducible components.
- if $\mu \neq \mu_{w}$, then $\hat{\mu}$ is irreducible.
- If $\mu=\mu_{w}$, then $\hat{\mu}$ is reducible, and is the sum of a character and a q-dimensional representation.
- $\hat{\mu}=\hat{\mu}^{\prime}$ if and only if $\mu=\mu^{\prime}$ or $\mu_{w}=\mu^{\prime}$.

This gives the following irreducible representations of G :

- $q-1$ characters of G, as the 1 -dimensional components of $\hat{\mu}$ when $\mu=\mu_{w}$.
- $q-1$ representations that are q-dimensional.

■ $(q-1)(q-2) / 2$ representations that are $q+1$ dimensional.

Cuspidal Representations

Comparing the irreducible representations that we have found with the conjugacy classes of G, we are missing $\left(q^{2}-q\right) / 2$ irreducible representations.

An irreducible representation of G that is not a component of $\hat{\mu}$ for any character μ of B is called cuspidal.

Suppose ρ is cuspidal. Then $J(\rho)=0$. Further, $\operatorname{Res}_{P}(\rho)$ cannot have any 1-dimensional components, else they would make $J(\rho) \neq 0$. Hence, $\operatorname{Res}_{P}(\rho)=n \pi$ for some n, and $\operatorname{dim} \operatorname{Res}_{P}(\rho)=n(q-1)$.

Dimension

Lemma: If ρ is cuspidal, then $\operatorname{dim} \rho=q-1$. And if $\operatorname{Res}_{P} \rho=\pi$, then ρ is irreducible and cuspidal.

Proof: counting dimensions, $|G|=q(q+1)(q-1)^{2}=$ $(q-1)+(q-1) q^{2}+\frac{1}{2}(q-1)(q-2)(q+1)^{2}+\sum_{\rho} \operatorname{dim}(\rho)^{2}$. This equation is satisfied only if $\operatorname{dim} \rho=q-1$ for each cuspidal ρ.

Because π is irreducible, so is ρ. Since the components of $\hat{\mu}$ have dimension $1, q$, or $q+1$, but $\operatorname{dim} \rho=q+1$, it follows that ρ is not a component of $\hat{\mu}$, and is hence cuspidal.

Norms and Traces

To exhibit cuspidal representations, we will need a character of L, the degree 2 field extension of k.

If $\alpha \in L$, define $N \alpha=\alpha \bar{\alpha}$ and $\operatorname{Tr} \alpha=\alpha+\bar{\alpha}$. Both are surjective.
If χ is a character of k^{*}, then $\widetilde{\chi}(\alpha)=\chi(N \alpha)$ is a character of L. Such characters are called decomposable.

If ν is a non-decomposable character of L, then $\sum_{N \alpha=x} \nu(\alpha)=0$

Generating G

$$
w^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), z=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), s=w^{\prime} z
$$

G is generated as the free group on B and w^{\prime} with relations

$$
\begin{gathered}
w^{\prime}\left(\begin{array}{ll}
\alpha & 0 \\
0 & \delta
\end{array}\right) w^{\prime-1}=\left(\begin{array}{ll}
\delta & 0 \\
0 & \alpha
\end{array}\right) \\
w^{\prime 2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
s^{3}=1
\end{gathered}
$$

Explicit Cuspidal Representation

Let ν be a non-decomposable character of L and let ψ be a character of k^{+}. Let $V=\left\{f: k^{*} \rightarrow \mathbb{C}\right\}$

The idea is to define a representation ρ on B and w^{\prime} such that it respects the necessary relations, and so that the restriction to P is π.

$$
\left(\rho\left(\begin{array}{cc}
\alpha & \beta \\
0 & \delta
\end{array}\right) f\right)(x)=\nu(\delta) \psi\left(\beta \delta^{-1} x\right) f\left(\alpha \delta^{-1} x\right)
$$

Let $j: k^{*} \rightarrow \mathbb{C}$ by $j(u)=\frac{1}{q} \sum_{N t=u} \psi(t+\bar{t}) \nu(t)$. Then define

$$
\left(\rho\left(w^{\prime}\right) f\right)(x)=\sum_{y \in k^{*}} \nu\left(y^{-1}\right) j(x y) f(y)
$$

Remarks

Showing this representation as defined is indeed a representation, and that its restriction to P is π, is a lot of unenlightening computations.

However, there is this cool table.

elements of $L^{\text {x }}$	conjugacy classes	characters of L^{x}, k^{*}	$\begin{aligned} & \text { irr. repr } \\ & \text { of } G \end{aligned}$	din: of repr.	no. of elements
$a \in K^{*}$	$\begin{aligned} & c_{1}(\alpha) \\ & c_{2}(\alpha) \end{aligned}$	${ }_{1}^{1} 7 \in X\left(k^{*}\right)$	$\begin{aligned} & \rho\left(\mu_{1}, \mu_{1}\right) \\ & { }^{\rho}\left(\mu_{1}, \mu_{1}\right) \end{aligned}$	1 a	$\begin{aligned} & q-1 \\ & q-1 \end{aligned}$
$\begin{aligned} & \alpha, \beta E K^{\alpha} \\ & \alpha \neq \varepsilon \end{aligned}$	$c_{3}(\alpha, \beta)$	$\begin{aligned} & u_{1}, \mu_{2} \in X\left(K^{x}\right) \\ & u_{1} \neq \mu_{z} \end{aligned}$	${ }^{F}\left(\mu_{1}, \mu_{1}\right)$	$q+1$	$\frac{1}{2}(q-1)(q-2)$
$\lambda \in L^{\times}-K^{x}$	$c_{4}(\lambda)$	$v \in X\left(L^{\times}\right)-X\left(K^{x}\right)$	${ }^{\circ}$	q-1	$\frac{1}{2}\left(q^{2}-q\right)$

References

Piatetski-Shapiro, Ilya
Complex Representations of GL(2,K) for Finite Fields K

