Representation Theory of $GL_2(\mathbb{F}_q)$

Nick Backes

GARTS

February 28, 2022

- Review some facts about representations of finite groups
- Find the irreducible representations of many subgroups of *GL*₂.
- Induce these representations to GL₂ and then decompose those into irreducibles.
- Find the remaining irreducible representations.

Representations of Finite Groups

Let G be a finite group.

The number of irreducible representations equals the number of conjugacy classes of G. Their dimensions satisfy

$$\sum (\dim
ho_i)^2 = |G|$$

The number of characters (1-dimensional representations) of G is equal to (G : G'), where G' is the commutator subgroup of G.

Representations of G can be decomposed into a direct sum of irreducibles. In particular, irreducible representations of finite groups have complements.

Bilinear Form on Representations

Let ρ be a representation of G. Then V_{ρ} can be given the structure of a $\mathbb{C}[G]$ -module.

Define a symmetric bilinear (w.r.t. direct sum) form on the representations of G by

$$(
ho,
ho') = \dim \operatorname{Hom}_{\mathbb{C}[G]}(V_{
ho},V_{
ho'})$$

By Schur's lemma, if ρ and ρ' are irreducible, then $(\rho, \rho') = \begin{cases} 1 & \rho = \rho' \\ 0 & \rho \neq \rho' \end{cases}$

Thus, in general, this form is the number of common irreducible subrepresentations, counted with multiplicity, between ρ and ρ' .

Induced Representaion

Let H < G and let τ be a representation of H.

Let
$$V = \{f : G \rightarrow V_{\tau} \mid f(hg) = \tau(h)f(g) \forall h \in H, g \in G\}$$

Such a function is determined by its values on a set of representatives of $H \setminus G$.

Let $s, g \in G$ and define an action of G on V by (sf)(g) = f(gs). This is the induced representation $\operatorname{Ind}_{H}^{G}V_{\tau}$. Also denoted $\operatorname{Ind}_{H}^{G}\tau$.

$$\mathsf{Transitivity:} \ \mathsf{Ind}_J^G\mathsf{Ind}_H^J V_\tau = \mathsf{Ind}_H^G V_\tau$$

Frobenius Reciprocity: if ρ is a representation of G, then $\operatorname{Hom}_{\mathbb{C}[G]}(\operatorname{Ind}_{H}^{G}V_{\tau}, V_{\rho}) \simeq \operatorname{Hom}_{\mathbb{C}[H]}(V_{\tau}, \operatorname{Res}_{H}^{G}V_{\rho})$. In particular, $(\operatorname{Ind}_{H}^{G}\tau, \rho) = (\tau, \operatorname{Res}_{H}^{G}\rho)$

Dimension

We can embed V_{τ} into $V = \operatorname{Ind}_{H}^{G} \tau$. Let $w \in V_{\tau}$. Define $f_{w} \in V$ by

$$f_w(g) = egin{cases} au(g)w & g \in H \ 0 & g \notin H \end{cases}$$

Let *R* be a set of representatives of $H \setminus G$. Write $G = \bigcup_{r \in R} rH$ as a decomposition of *G* into left cosets of *H*.

For $f \in V$, define

$$f_r(g) = egin{cases} f(g) & g \in Hr^{-1} \ 0 & g
eq Hr^{-1} \end{cases}$$

Then $f = \sum_{r \in R} f_r$. It follows that $V = \oplus_{r \in R} r V_{\tau}$

 $\dim \operatorname{Ind}_{H}^{G} \tau = (G : H) \dim V_{\tau}$

 $GL_2(k)$

Let $k = \mathbb{F}_q$. We have the following subgroups of $GL_2(k) = G$ $U = \left\{ \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \right\} \simeq k^+ \quad A = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \right\} \simeq k^*$ $\blacksquare B = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \right\} \text{ Notice } \alpha, \delta \in k^* \text{ and } \beta \in k.$ $\bullet P = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & 1 \end{pmatrix} \right\}$ • $D = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} \right\}$ $\blacksquare \ Z = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \right\}$ • $w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Conjugacy Classes

There are:

- q-1 classes with repeated eigenvalue $\lambda \in k$. $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$
- q-1 classes with repeated eigenvalue $\lambda \in k$. $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$
- (q-1)(q-2)/2 classes with distinct eigenvalues λ₁, λ₂ ∈ k. (λ₁ 0 0 λ₂)

 (q² - q)/2 classes with distinct eigenvalues λ, λ̄ ∈ L \ k, where L is the degree 2 field extension of k. (0 -N(λ) 1 Tr(λ)

Representations of U

$$U = \left\{ \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \right\} \simeq k^{+} \qquad A = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \right\} \simeq k^{*}$$

A acts on U by conjugation, corresponding to the action of k^* on k^+ by multiplication:

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \alpha\beta \\ 0 & 1 \end{pmatrix}$$

Let ψ be a (nontrivial) character of k^+ . Then ψ is also a character of U.

For
$$a \in A$$
 and $u \in U$, let $\psi_a(u) = \psi(aua^{-1})$.

These are inequivalent representations (and are equal to the nontrivial representations of k^+). Thus, together with the trivial representation, we have q irreducible representations of U. Since |U| = q, this is all of them.

Representations of P

$$P = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & 1 \end{pmatrix} \right\} = U \rtimes A$$

If μ is a character of A, then $\tilde{\mu}(ua) := \mu(a)$ is a character of P. There are q - 1 such characters of P, which is all of them: P' = Uand (P : U) = q - 1.

There is 1 more irreducible representation: $\pi = \text{Ind}_U^P \psi$. Note $\dim \pi = q - 1$

 $\operatorname{Res}_{U}^{P}\operatorname{Ind}_{U}^{P}\psi = \oplus \psi_{a}$. (Recall $\psi = \psi_{1}$) This is proven by induced representation bashing. But then, by Frobenius reciprocity, we can show $\operatorname{Ind}_{U}^{P}\psi$ is irreducible:

$$(\operatorname{Ind}_{U}^{P}\psi, \operatorname{Ind}_{U}^{P}\psi) = (\psi, \operatorname{Res}_{U}^{P}\operatorname{Ind}_{U}^{P}\psi) = (\psi, \oplus\psi_{a}) = 1$$
$$\sum \dim \rho^{2} = (q-1) + (q-1)^{2} = |P|$$

Induced Representation Bashing

Let
$$a \in A$$
. Then define $f_a \in \operatorname{Ind}_U^P \psi$ by $f_a(a') = egin{cases} 1 & a = a' \ 0 & a
eq a' \end{cases}$

Claim: f_a is an eigenvector of U with eigenvalue ψ_a . This means $f_a(pu) = \psi_a(u)f_a(p)$ for all $p \in P$, $u \in U$.

Write p = u'a'. Then the condition above becomes

$$f_a(pu) = f_a(u'a'u) = \psi(u')f_a(a'u) = \psi(u')\psi_a(u)f_a(a')$$

Hence, it suffices to show $f_a(a'u) = \psi_a(u)f_a(a')$. We calculate:

$$f_{a}(a'u) = f_{a}(a'ua'^{-1}a') = \psi(a'ua'^{-1})f_{a}(a') = \psi_{a'}(u)f_{a}(a')$$

If a = a' we get the equation we wanted. If $a \neq a'$ we get 0.

We have found a 1-dimensional subspace of $\operatorname{Res}_U^P \operatorname{Ind}_U^P \psi$. If we do this for each $a \in A$, then we get q - 1 linearly independent subspaces, and hence $\operatorname{Res}_U^P \operatorname{Ind}_U^P \psi = \oplus \psi_a$

Notice that if $\operatorname{Res}_U^P \operatorname{Ind}_U^P \psi = \oplus \psi_a$, then π is independent of the choice of ψ .

Characters of B

$$B = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} \right\} = U \rtimes D = Z \rtimes P. |B| = q(q-1)^2.$$

Also $B' = U.$ Recall $w = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
If μ_1 and μ_2 are characters of k^* , then $\mu(\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}) = \mu_1(\alpha)\mu_2(\delta)$
is a character of B . This gives all $(q-1)^2$ characters of B .

Remark: If μ is a character of B, then there is another character μ_w defined by $\mu_w(b) = \mu(wbw^{-1})$.

$$\mu_{w}\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix} = \mu_{1}(\delta)\mu_{2}(\alpha)$$

Note $\mu = \mu_w$ if and only if $\mu_1 = \mu_2$.

Other representations of B

Now we use that $B = Z \rtimes P$.

Z has q - 1 characters χ , given by the characters of k^* . A character $\tilde{\chi}$ can be defined on B by $\tilde{\chi}(zp) = \chi(z)$

Recall P has the q-1 dimensional representation π . Then $\tilde{\pi}(zp) = \pi(p)$ is a q-1 dimensional representation of B.

 $(\tilde{\chi} \otimes \tilde{\pi})(zp) = \tilde{\chi}(z)\tilde{\pi}(p)$ is a q-1 dimensional representation of B, and is irreducible. Letting χ vary gives q-1 such representations.

$$\sum \dim(\rho)^2 = (q-1)^2 + (q-1)(q-1)^2 = q(q-1)^2 = |B|$$

Jacquet Module

Now we will induce characters from B to G and identify the irreducible subrepresentations.

There is a great tool called the Jacquet Module for identifying the irreducibles.

Notation: for a character μ of B, let $\hat{\mu} = \text{Ind}_{B}^{G}\mu$. dim $\hat{\mu} = q + 1$.

If ρ is a representation of G, let $J(\rho) = \{ \nu \in V_{\rho} \mid \forall u \in U, \ \rho(u)\nu = \nu \}$

B acts on $J(\rho)$. Indeed, $\rho(u)\rho(b)\nu = \rho(b)\rho(b^{-1}ub)\nu = \rho(b)\nu$. The last step follows because $U \trianglelefteq B$, hence $b^{-1}ub \in U$.

In general, $J(\rho)$ is not a representation of G.

Dimension of Jacquet Module

Lemma: If μ is a character of B, then dim $J(\hat{\mu}) = 2$

Proof: recall

$$V_{\hat{\mu}} = \{f: G
ightarrow \mathbb{C} \mid f(bg) = \mu(b)f(g)\}$$

Also recall the action is given by (hf)(g) = f(gh) for $g, h \in G$. In particular, the Jacquet module condition is (uf)(g) = f(gu) = f(g) Thus,

$$J(\mu) = \{f: G \to \mathbb{C} \mid f(bg) = \mu(b)f(g), f(gu) = f(g)\}$$

In particular, $f(b) = \mu(b)f(1)$, $f(bwu) = \mu(b)f(w)$

Recall the Bruhat decomposition: $G = B \cup BwU$. Now we see f is determined by f(1) and f(w), hence $J(\mu)$ is 2-dimensional.

Why the Jacquet Module is Neat

Lemma: Let ρ be a representation of G. $J(\rho) \neq 0$ if and only if $(\rho, \hat{\mu}) \neq 0$ for some character μ of B.

Proof idea: D = B/U is abelian and acts on $J(\rho)$, so $J(\rho)$ splits into a sum of characters. Hence, there is a character μ of B and $\nu \in J(\rho)$ so that, $\forall b \in B$, we have $\rho(b)\nu = \mu(b)\nu$. Thus, $(\operatorname{Res}_B^G \rho, \mu) \neq 0$, hence by Frobenius reciprocity $(\rho, \hat{\mu}) \neq 0$.

The converse is similar. Assume $(\rho, \hat{\mu}) \neq 0$, so there exists $\nu \in V_{\rho}$ so that $\rho(b)\nu = \mu(b)\nu$. Since μ is trivial on U, we moreover have $\nu \in J(\rho)$, which is thus nonzero.

Corollary: If ρ is an irreducible representation of G, then $J(\rho) \neq 0$ if and only if $\rho \leq \hat{\mu}$ for some character μ of B.

Corollary: $\hat{\mu}$ has at most 2 irreducible components.

Remarks

Recall that a character μ of B is given by 2 characters μ_1, μ_2 of k^* . If $\mu_1 = \mu_2$, then $\hat{\mu}$ has a 1-dimensional component. The proof idea is that the representation only depends on det(b).

Notice that $\mu_1 = \mu_2$ is equivalent to $\mu = \mu_w$.

 $\hat{\mu}$ has at most one 1-dimensional component, since $\dim(\hat{\mu}) = q+1$

 $\operatorname{Res}_{P}\hat{\mu} = \operatorname{Res}_{P} J(\hat{\mu}) \oplus V_{\pi}$. The proof idea is that since *B* acts on $J(\hat{\mu})$, so does *P*. Then $J(\hat{\mu})$ has a complement, which is q-1 dimensional. One can show the complement has no 1-dimensional components, hence it must be π .

More remarks

Lemma: If $\hat{\mu}$ is reducible, then $\hat{\mu}$ has a 1-dimensional component and $\mu=\mu_{\rm w}.$

Proof idea: write $V_{\hat{\mu}} = V_{\tau} \oplus V_{\omega}$. Then since $V_{\pi} \subset \operatorname{Res}_{P} \hat{\mu}$, without loss of generality, $V_{\pi} \subset \operatorname{Res}_{P} V_{\tau}$. But since $V_{\tau} \subset V_{\hat{\mu}}$, we know $0 \neq J(\tau) \subset J(\hat{\mu}) \cap V_{\tau}$. In particular, $V_{\pi} \neq \operatorname{Res}_{P} V_{\tau}$. Since dim $V_{\pi} = q - 1$ and dim $V_{\hat{\mu}} = q + 1$, we have that dim $V_{\tau} = q$ and dim $V_{\omega} = 1$.

Lemma: If μ and μ' are distinct characters of B, then $(\hat{\mu}, \hat{\mu'}) \neq 0$ if and only if $\mu_w = \mu'$.

Corollary: $\hat{\mu} = \hat{\mu'}$ if and only if $\mu = \mu'$ or $\mu_w = \mu'$.

Putting it together

If μ and μ' are characters of ${\it B},$ then

• dim
$$\hat{\mu} = q + 1$$

- $\hat{\mu}$ has at most 2 irreducible components.
- if $\mu \neq \mu_w$, then $\hat{\mu}$ is irreducible.
- If $\mu = \mu_w$, then $\hat{\mu}$ is reducible, and is the sum of a character and a *q*-dimensional representation.

$$\hat{\mu} = \hat{\mu'}$$
 if and only if $\mu = \mu'$ or $\mu_w = \mu'$.

This gives the following irreducible representations of G:

- q-1 characters of G, as the 1-dimensional components of $\hat{\mu}$ when $\mu = \mu_w$.
- q-1 representations that are q-dimensional.
- (q-1)(q-2)/2 representations that are q+1 dimensional.

Comparing the irreducible representations that we have found with the conjugacy classes of G, we are missing $(q^2 - q)/2$ irreducible representations.

An irreducible representation of G that is not a component of $\hat{\mu}$ for any character μ of B is called cuspidal.

Suppose ρ is cuspidal. Then $J(\rho) = 0$. Further, $\operatorname{Res}_{P}(\rho)$ cannot have any 1-dimensional components, else they would make $J(\rho) \neq 0$. Hence, $\operatorname{Res}_{P}(\rho) = n\pi$ for some *n*, and dim $\operatorname{Res}_{P}(\rho) = n(q-1)$.

Lemma: If ρ is cuspidal, then dim $\rho = q - 1$. And if $\text{Res}_P \rho = \pi$, then ρ is irreducible and cuspidal.

Proof: counting dimensions, $|G| = q(q+1)(q-1)^2 = (q-1) + (q-1)q^2 + \frac{1}{2}(q-1)(q-2)(q+1)^2 + \sum_{\rho} \dim(\rho)^2$. This equation is satisfied only if dim $\rho = q-1$ for each cuspidal ρ .

Because π is irreducible, so is ρ . Since the components of $\hat{\mu}$ have dimension 1, q, or q + 1, but dim $\rho = q + 1$, it follows that ρ is not a component of $\hat{\mu}$, and is hence cuspidal.

To exhibit cuspidal representations, we will need a character of L, the degree 2 field extension of k.

If $\alpha \in L$, define $N\alpha = \alpha \bar{\alpha}$ and $Tr\alpha = \alpha + \bar{\alpha}$. Both are surjective.

If χ is a character of k^* , then $\tilde{\chi}(\alpha) = \chi(N\alpha)$ is a character of L. Such characters are called decomposable.

If ν is a non-decomposable character of L, then $\sum_{N\alpha=x} \nu(\alpha) = 0$

$Generating \ G$

$$w' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, z = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, s = w'z$$

G is generated as the free group on B and w' with relations

$$w' \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix} w'^{-1} = \begin{pmatrix} \delta & 0 \\ 0 & \alpha \end{pmatrix}$$
$$w'^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$s^{3} = 1$$

Explicit Cuspidal Representation

Let ν be a non-decomposable character of L and let ψ be a character of k^+ . Let $V = \{f : k^* \to \mathbb{C}\}$

The idea is to define a representation ρ on B and w' such that it respects the necessary relations, and so that the restriction to P is π .

$$\left(\rho\begin{pmatrix}\alpha&\beta\\0&\delta\end{pmatrix}f\right)(x)=\nu(\delta)\psi(\beta\delta^{-1}x)f(\alpha\delta^{-1}x)$$

Let $j: k^* \to \mathbb{C}$ by $j(u) = \frac{1}{q} \sum_{Nt=u} \psi(t+\overline{t})\nu(t)$. Then define

$$(\rho(w')f)(x) = \sum_{y \in k^*} \nu(y^{-1})j(xy)f(y)$$

Remarks

Showing this representation as defined is indeed a representation, and that its restriction to P is π , is a lot of unenlightening computations.

elements of L [×]	conjugacy classes	characters of L [×] ,K [×]	irr. repr. of G	dim of repr.	nc. of elements
aEK [×]	c _l (α) c ₂ (α)	υ ₁ εχ (κ [×])	[°] (ייין) (ייין)	1 q	q-1 q-1
α,βΕΚ [×] α≠β	c ₃ (α,β)	^ν ι, ^ν 2 ^{εχ(K[×])}	^e ("1,"))	q+1	1/2(q-1)(q-2)
λ ε L [×] -Κ [×]	c ₄ (λ)	ν ε Χ(L [×])-Χ(K [×])	۴ _v	q-1	$\frac{1}{2}(q^2-q)$

However, there is this cool table.

References

Piatetski-Shapiro, Ilya

Complex Representations of GL(2,K) for Finite Fields K