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Sums of squares

rk(n)=the number of ways of writing n as a sum of k squares.

r2(8) = 4 because 8 = (±2)2 + (±2)2.

Many well known mathematicians of the nineteenth century
including Gauss, Jacobi, Eisenstein, Liouville worked on
finding formula for rk(n) for small values of k . Gauss found
one for k = 3
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Sums of squares

Jacobi proved that

r2(n) = 4(d1(n)− d3(n))

where di (n) is the number of divisors of n congruent to i
(mod 4), and

r4(n) =
∑
d |n

d ̸≡0 (mod 4)

d .

4 / 43



Sums of squares

To prove this, Jacobi used the generating function (now called
Jacobi’s theta function)

θ(z) =
∑
n∈Z

qn
2
= 1 + 2q + 2q4 + 2q9 + · · ·

θ can be defined as a holomorphic function on the upper half
plane H by setting q = e2πiz .

Then

θ2(z) =
∑
m,n

qm
2+n2 =

∞∑
n=0

r2(n)q
n

and

θ4(z) =
∞∑
n=0

r4(n)q
n
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Sums of squares

θ(z) is an example of a modular form.

Definition: Modular forms of weight k for SL(2,Z) are
holomorphic functions on the upper half plane such that

f

(
az + b

cz + d

)
= (cz + d)k f (z)

for all

(
a b
c d

)
∈ SL(2,Z) which is holomorphic at i∞.

If f vanishes at i∞ then we call f a cusp form.
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Sums of squares

Since T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
generate SL(2,Z),

you only need to check the modularity condition for just the
two matrices:

f (z + 1) = f (z), f (−1/z) = zk f (z).

This observation allows us to construct a modular form:

Gk(z) =
∑

(m,n)∈Z2−(0,0)

1

(mz + n)k

defined for k > 2.

This series is called the Eisenstein series.
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Sums of squares

The Eisenstein series Gk(z) has Fourier expansion:

Gk(z) = 2ζ(k) +
2(−2πi)k

(k − 1)!

∑
n≥1

σk−1(n)q
n.

You see the divisor sum function comes up.
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Sums of squares

How can we prove Jacobi’s two-square and four-square
theorem?

The function θ(z) =
∑

n∈Z q
n2 , q = e2πiz satisfies the two

functional equations

θ(z) = θ(z + 1), θ

(
−1

4z

)
=

√
2z

i
θ(z).

θ(z) is a modular form of weight 1/2 for the congruence
subgroup

Γ0(4) =
{(

a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod 4)

}
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Sums of squares

θ2(z) is a modular form of weight 1 and θ4(z) is a modular
form of weight 2.

The space of modular forms of weight k is finite-dimensional
and they are generated by Eisenstein series. For example,

θ4(z) = 8(G2(z)− 2G2(2z)) + 16(G2(2z)− 2G2(4z))

where G2(z) = −G2(z)/(4π
2).

By comparing the coefficient of qn we prove Jacobi’s
theorems.
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Sums of squares

In 1916, Ramanujan found formulas for r20, r22, r24. For r24,
the formula is

r24(n) =

(
16

691
σ11(n)−

32

691
σ11(n/2)

)
+

(
33152

691
(−1)n−1τ(n)− 66536

691
τ(n/2)

)
where

∆(z) =
∑
n≥1

τ(n)qn = q
∏
k≥1

(1− qn)24.
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Sums of squares

Ramanujan studied the modular discriminant
∆(z) =

∑
n≥1 τ(n)q

n and made the following
observations/conjectures:

1 If m and n are coprime then τ(mn) = τ(m)τ(n)
2 If p is prime then τ(pα+2) = τ(p)τ(pα+1)− p11τ(pα)
3 If p is prime then

∣∣τ(p)∣∣ ≤ 2p11/2

12 / 43



Sums of squares

(1) and (2) were proved by Mordell in 1917 and Deligne
proved (3) in 1974.

(1) and (2) are resolved by Hecke operators.

(2) leads to the Euler product of the L-function

L(s,∆) =
∑
n≥1

τ(n)

ns
=
∏
n≥1

1

1− τ(p)p−s + p11−2s
.
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Sums of squares

Jacobi’s θ is also used to derive a functional equation of
Riemann’s ζ-function.

The modular discriminant ∆(z) is related to elliptic curves.

The theory of automorphic forms is an inevitable component
of number theory.
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Representation-theoretic approach

The upper half plane is isomorphic to SL(2,R)/SO(2,R).
So the modular forms are functions on

SL(2,Z)\SL(2,R)/SO(2,R).

Gelfand-Graev lift: lifting from H to G = SL(2,R)

F
((

a b
c d

))
= (ci + d)−k f

(
ai + b

ci + d

)
.

F (γg) = F (g) for all γ ∈ Γ = SL(2,Z).
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Representation-theoretic approach

This gives a perspective change from H to a Lie group
G = SL(2,R).
The group G = SL(2,R) acts on the space of functions
L2(Γ\G ) via right regular representation:[

φ(g)f
]
(x) = f (xg).

This is an example of an automorphic representation.
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Automorphic distributions

G=some real Lie group, Γ ⊂ G a discrete subgroup.

Automorphic forms are smooth functions on G that are
Γ-invariant.

Idea: Consider instead the space of distributions, which is the
dual space of the space of smooth functions. Its Γ-invariant
subspace is the space of automorphic distributions for Γ.
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Distributions on R

There are two ways to think of distributions.

Example: the Dirac δ-function

δ0(x) =

{
1, if x = 0

0, otherwise

with the property ∫ ∞

−∞
δ0(x) dx = 1.

Of course, this is not really a function.
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Distributions on R

One way to define distributions is that they are continuous
linear functionals on a space of functions of compact support.

< δ0, ϕ >= ϕ(0).

Another way is that they are sums of ’higher order derivatives’
of continuous functions, even if the functions are not really
differentiable.

δ
(−2)
0 (x) =

{
x , if x > 0

0, otherwise
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Distributions on R

We can think of the derivative as the formal rule for
integration by parts. For ϕ(x) ∈ C∞

c (R), we have∫ ∞

−∞
δ0(x)ϕ(x) dx =

∫ ∞

−∞
δ
(−2)
0 ϕ′′(x) dx =

∫ ∞

0
xϕ′′(x) dx

=
[
xϕ′(x)

]∞
0

−
∫ ∞

0
ϕ′(x) dx

= ϕ(0)

The two definitions are equivalent. I will mainly use the
second definition- distributions act on smooth functions by
integrating against them.
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Automorphic distributions on R

G = SL(2,R), Γ = SL(2,Z), B− is the subgroup of invertible
lower triangular matrices, N is the subgroup of unipotent
upper triangular matrices.

Let λ ∈ C, δ ∈ {±1} be two parameters.

The principal series representation of G = SL(2,R) is the
representation (πλ,δ,Vλ,δ), where

Vλ,δ = {F : G → C | F
(
g
(

a 0
∗ a−1

))
= |a|1−2λ sgn (a)δF (g)}

and
[
πλ,δ(h)f

]
(g) = f (h−1g).
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Automorphic distributions on R

Most of the matrices in G = SL(2,R) can be written as a
product of upper triangular times lower triangular matrices.

If f ∈ Vλ,δ, then

f
((

a b
c d

))
= f

((
1 b/d
0 1

)(
1/d 0
c d

))
= |d |2λ−1 sgn (d)δf

((
1 b/d
0 1

))
Thus if d ̸= 0, f is completely determined by its restriction to
N ≡ R.

24 / 43



Automorphic distributions on R

Restricting functions f ∈ Vλ,δ to R by h(x) = f
(
1 x
0 1

)
, we get

the line model of a principal series representation.

For simplicity we fix δ = 0. The G -action in the line model is

π
((

a b
c d

)−1
)
h(x) = |cx + d |1−2ν h

(
ax + b

cx + d

)
.

This looks like the modular transformation!
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Automorphic distributions on R

Consider the space of distributions V−∞
λ,δ . This is a space of

distributions on R, and G acts on a distribution τ ∈ V−∞
λ,δ by

π
((

a b
c d

)−1
)
τ(x) = |cx + d |1−2ν τ

(
ax + b

cx + d

)
.

An automorphic distribution is a distribution such that

τ(x) = |cx + d |1−2ν τ

(
ax + b

cx + d

)
for all

(
a b
c d

)
∈ Γ.

26 / 43



Forming distributions from modular forms

Let F (z) be a cusp form of weight k for SL(2,Z).
F (z) has distribution boundary values:

τ(x) = τF (x) = lim
y→0+

F (x + iy).

Starting with a q-expansion

F (z) =
∑
n≥1

ann
k−1
2 e2πinz

we can write
τ(x) =

∑
n≥1

ann
k−1
2 e2πinx .
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Forming distributions from modular forms

For sufficiently large j , τ(x) has a continuous j-th
antiderivative:

τ (−j)(x) =
∑
n≥1

(2πin)−jann
k−1
2 e(nx).

As a consequence of the limit formula, τ inherits automorphy
from F :

τ

(
ax + b

cx + d

)
= (cx + d)kτ(x).

For these reasons, we call τ the automorphic distribution
attached to F .
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Automorphic distributions on R

Riemann studied the function

φ(x) =
∑
n≥1

sin(2πn2x)

n2

which is continuous but fails to be differentiable at ”most”
points.

Hardy proved that the function is nondifferentiable at
irrationals. In fact, φ(x) is non-differentiable except at points
x = p/2q with p and q odd. At those, the derivative equals
to −π.
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Automorphic distributions on R

The function is actually the automorphic distribution attached
to the Jacobi theta function

θ(z) =
∑
n∈Z

e2πin
2z

The automorphic distributions have a really interesting
analytic behavior.
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The automorphic distribution attached to Jacobi θ-function

Figure: φ(x), the antiderivative of the automorphic distribution attached
to θ(z)

31 / 43



The automorphic distribution attached to Jacobi θ-function

Figure: φ(x) near the origin
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The automorphic distribution attached to the modular
discriminant

Figure: Imaginary part of τ
(−7)
∆ (x)

33 / 43



Outline of the talk

1 Sums of squares

2 Representation-theoretic approach

3 Automorphic distributions
Distributions on R
Automorphic distributions on R

4 Zeros of L-functions on the critical line
Hardy-Littlewood method
A distributional framework

34 / 43



The mechanism of the Hardy-Littlewood method

For an L-function L(s) = ann
−s of interest, construct a

real-valued function Z (t) of the form

Z (t) = χL(1/2 + it)−1/2L(1/2 + it).

If L(1/2 + it) does not vanish on t ∈ [T , 2T ] then∣∣∣∣∣
∫ 2T

T
Z (t) dt

∣∣∣∣∣ =
∫ 2T

T

∣∣Z (t)∣∣ dt.
If the RHS is ≫ T and the LHS is o(T ) as T → ∞ then the
L-function has infinitely many zeros on the critical line.
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The mechanism of the Hardy-Littlewood method

For L-functions of holomorphic modular forms, Z (t) is
constructed from the Mellin transform of the corresponding
modular forms:

Mf (s) =

∫ i∞

0
f (y)y s−1 dy

which is a product of the L-function and some Γ-factors.

The most difficult part is finding the bound of the LHS.
Typically, the bound requires cancellation of the exponential
sum ∑

m≤T

ame(mx) = o(T ), as T → ∞.
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A distributional framework

We write Z (t) as Mellin transform of automorphic
distributions instead of automorphic forms.

In certain arithmetic instances, this gives a quick proof that
the integral ∫ 2T

T
Z (t) dt

decays rapidly as T → ∞.

This uses the notion of a distribution vanishing to infinite
order.
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A distributional framework

A distribution can be written (locally) as a higher order
derivative of a continuous function.

Roughly speaking, if the continuous function vanishes to a
high order at a point p, then we say that the distribution
vanishes to a high order at p.

The automorphic distribution attached to a cusp form
vanishes to infinite order at every rational point.
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A distributional framework

The local presentation of distributions vanishing to order
m ≥ 0 at 0 can be used to bound integrals against certain test
functions.

Lemma

Suppose that σ is a distribution that vanishes to order m ≥ 0 at 0
and let ϕ be a bump function near 0. Then∫ ∞

−∞
σ(x)

(
Tϕ(Tx)

)
dx = O(T−m) (1)

as T → ∞.
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A distributional framework

By constructing the real-valued function Z (t) using
automorphic distributions and using the Lemma, we can give
a quick prove that the integral∫ 2T

T
Z (t) dt

decays rapidly as T → ∞.

This completely avoids the use of exponential sums.

This makes the method particularly effective in taking care of
complications due to half-integral weights or additive twists.
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A distributional framework

Theorem (K. 2020)

Let k ∈ 1
2Z, k ≥ 1 and let F (z) be a cusp form of weight k with

respect to the congruence subgroup Γ0(N). Whose Fourier
coefficients satisfy ai ∈ R and a1 ̸= 0.

a. If N is a perfect square and F (z) is an eigenfunction of the
involution WN , then the L-function of F (z) has infinitely
many zeros on the critical line.

b. If p
q ∈ Q is a cusp Γ0(N)-equivalent to i∞ such that p2 ≡ 1

(mod q) then the additively twisted L-function

Lp/q(s) =
∑
n≥1

ane
2πin p

q n−s

has infinitely many zeros on the critical line.
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Thank you!
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