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Outline of the talk

Sums of squares
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Sums of squares

m ri(n)=the number of ways of writing n as a sum of k squares.
m r(8) = 4 because 8 = (+2)2 + (£2)2.
m Many well known mathematicians of the nineteenth century

including Gauss, Jacobi, Eisenstein, Liouville worked on
finding formula for rc(n) for small values of k. Gauss found

one for k=3
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Sums of squares

m Jacobi proved that
r2(n) = 4(d1(n) — ds(n))

where d;(n) is the number of divisors of n congruent to i

(mod 4), and
(i)=Y d

d|n
d#0 (mod 4)
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Sums of squares

m To prove this, Jacobi used the generating function (now called
Jacobi's theta function)

=3 q" =1+29+2¢" +2¢° + -
neZ

m 0 can be defined as a holomorphic function on the upper half
plane H by setting g = €°™72.

m Then -
6%(z) —Zq’" =3 n(n)g"
n=0
and -
0*(z) = Z ra(n)q"
n=0
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Sums of squares

m 0(z) is an example of a modular form.

m Definition: Modular forms of weight k for SL(2,Z) are
holomorphic functions on the upper half plane such that

f (ZIS) — (cz+ d)*f(2)

for all (i 3) € SL(2,Z) which is holomorphic at ico.

m If f vanishes at ico then we call f a cusp form.
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Sums of squares

) 11 0 -1
m Since T = 01 and S = 1 0

you only need to check the modularity condition for just the
two matrices:

m f(z+1) = f(2), f(~1/z) = Z¥f(2).
m This observation allows us to construct a modular form:

1
Gk(2) = > (mz + n)F

(m,n)€Z2—(0,0)

generate SL(2,Z),

defined for k > 2.

m This series is called the Eisenstein series.
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Sums of squares

m The Eisenstein series Gi(z) has Fourier expansion:

k
Gi(z) = 2¢(k) + 2”1’)1 Y ol
n>1

m You see the divisor sum function comes up.
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Sums of squares

m How can we prove Jacobi's two-square and four-square
theorem?

m The function 6(z) =, g™, q = e¥™ satisfies the two
functional equations

0(z) = 6(z+1), 0 (;Zl) - \/2?6’(2).

m (z) is a modular form of weight 1/2 for the congruence
subgroup

Mo(4) = {(gg) €SL(2,Z): c=0 (mod 4)}
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Sums of squares

m 02(z) is a modular form of weight 1 and 6*(z) is a modular
form of weight 2.

m The space of modular forms of weight k is finite-dimensional
and they are generated by Eisenstein series. For example,

0*(2) = 8(Ga(z) — 2G2(22)) + 16(G2(22) — 2G2(42))

where G(z) = —Gy(2)/(472).
m By comparing the coefficient of ¢" we prove Jacobi's
theorems.
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Sums of squares

m In 1916, Ramanujan found formulas for raq, r2, raa. For rag,
the formula is

ra(n) = (61961011(") - (;21011(”/20

where

Az) =) r(ng"=q]](1-q")*

n>1 k>1
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Sums of squares

m Ramanujan studied the modular discriminant
A(z) =) ,~,7(n)q" and made the following
observations/conjectures:
If m and n are coprime then 7(mn) = 7(m)7(n)
If p is prime then 7(p®*2) = 7(p)7(p®*1) — pi7(p®)
If p is prime then |T(p)| < 2pti/2
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Sums of squares

m (1) and (2) were proved by Mordell in 1917 and Deligne
proved (3) in 1974.

m (1) and (2) are resolved by Hecke operators.
m (2) leads to the Euler product of the L-function

T(n 1
L(s,A) = Z ,(75) = H 1—7(p)p=s + pli-2

n>1 n>1
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Sums of squares

m Jacobi's 6 is also used to derive a functional equation of
Riemann’s (-function.

m The modular discriminant A(z) is related to elliptic curves.

m The theory of automorphic forms is an inevitable component
of number theory.
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Outline of the talk

Representation-theoretic approach
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Representation-theoretic approach

The upper half plane is isomorphic to SL(2,R)/SO(2,R).

So the modular forms are functions on

SL(2,Z)\SL(2,R)/SO(2, R).

m Gelfand-Graev lift: lifting from H to G = SL(2,R)
2y ko [ai+b
F((Cd)>_(c1+d) f<ci—|—d>'

F(vg) = F(g) forall y € I = SL(2,Z).

16/43



Representation-theoretic approach

m This gives a perspective change from H to a Lie group
G =SL(2,R).

m The group G = SL(2,R) acts on the space of functions
L?(I'\ G) via right regular representation:

[e(8)f] (x) = f(xg).

m This is an example of an automorphic representation.
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Outline of the talk

Automorphic distributions
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Automorphic distributions

m G=some real Lie group, [ C G a discrete subgroup.

m Automorphic forms are smooth functions on G that are
-invariant.

m Idea: Consider instead the space of distributions, which is the
dual space of the space of smooth functions. Its I-invariant
subspace is the space of automorphic distributions for .
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Distributions on R

m There are two ways to think of distributions.

m Example: the Dirac §-function

o) = {1, ifx =0

0, otherwise

with the property

/_Z So(x) dx = 1.

m Of course, this is not really a function.
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Distributions on R

m One way to define distributions is that they are continuous
linear functionals on a space of functions of compact support.

< 607 ¢ >= ¢(0)

m Another way is that they are sums of 'higher order derivatives'’
of continuous functions, even if the functions are not really

differentiable.

0, otherwise

_ x, ifx>0
% ”(x):{
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Distributions on R

m We can think of the derivative as the formal rule for
integration by parts. For ¢(x) € C°(R), we have

[ ot ax = [ a6 Pa )= [ i) o

= [} () — /0 80 dx
— 4(0)

m The two definitions are equivalent. | will mainly use the
second definition- distributions act on smooth functions by
integrating against them.
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Automorphic distributions on R

m G =SL(2,R),  =SL(2,Z), B_ is the subgroup of invertible
lower triangular matrices, N is the subgroup of unipotent
upper triangular matrices.

mLet A€ C, § € {1} be two parameters.

m The principal series representation of G = SL(2,R) is the
representation (7 5, Vi 5), where

Vs = (F: 6> € F (g(2.0)) =l sen(al Fle))

and [ms(h)f] (g) = f(h~'g).
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Automorphic distributions on R

m Most of the matrices in G = SL(2,R) can be written as a
product of upper triangular times lower triangular matrices.

m If f € V), then

F(29) = (347 (09)
=|d|* " sgn (d)’F (((1) b{d))

m Thus if d # 0, f is completely determined by its restriction to
N=R.
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Automorphic distributions on R

m Restricting functions f € V) 5 to R by h(x) = f (}¥), we get
the line model of a principal series representation.

m For simplicity we fix § = 0. The G-action in the line model is

ax+ b
ex+d)

7 ((2)7) b0 =lox-+ a2

m This looks like the modular transformation!
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Automorphic distributions on R

m Consider the space of distributions V/\_go This is a space of
distributions on R, and G acts on a distribution 7 € V by

((25)71) 70 =lex +dl" > (Z‘IZ)

m An automorphic distribution is a distribution such that

ax+3> for all (gg) erl.

_ dl 2v
) =loc-+ a2 (2
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Forming distributions from modular forms

m Let F(z) be a cusp form of weight k for SL(2,Z).

m F(z) has distribution boundary values:

7(x) = 7r(x) = (x + iy).

lim F
y—0+
m Starting with a g-expansion

F(Z) — Z ann%e%rinz

n>1

we can write

T(x) = Z ann% e2minx

n>1
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Forming distributions from modular forms

m For sufficiently large j, 7(x) has a continuous j-th
antiderivative:

D (x) = 3 erin) e’ ().

n>1
m As a consequence of the limit formula, 7 inherits automorphy

from F:
ax+b
cx +d

) = (ex + d)kr(x).

m For these reasons, we call 7 the automorphic distribution
attached to F.
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Automorphic distributions on R

m Riemann studied the function

sin(2mwn®x
o) = 3 emTx)

n
n>1

which is continuous but fails to be differentiable at " most”
points.

m Hardy proved that the function is nondifferentiable at
irrationals. In fact, ¢(x) is non-differentiable except at points
x = p/2q with p and g odd. At those, the derivative equals
to —m.
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Automorphic distributions on R

m The function is actually the automorphic distribution attached
to the Jacobi theta function

0(2) — Z e27rin22
neZ

m The automorphic distributions have a really interesting
analytic behavior.
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The automorphic distribution attached to Jacobi #-function

Figure: ¢(x), the antiderivative of the automorphic distribution attached
to 0(2)
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The automorphic distribution attached to Jacobi #-function
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Figure: p(x) near the origin
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The automorphic distribution attached to the modular
discriminant

-1.x1078 |
—2.x1078 |

3 %1076 F

-4 x1070F

Figure: Imaginary part of T(A_7)(x)

33/43



Outline of the talk

Zeros of L-functions on the critical line
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The mechanism of the Hardy-Littlewood method

m For an L-function L(s) = a,n—* of interest, construct a
real-valued function Z(t) of the form

Z(t) = x(1/2 4 it)V20(1/2 + it).

m If L(1/2 + it) does not vanish on t € [T,2T] then

/ZTZ(t)dt —/2T\Z(t)\ dt.
T

T
m If the RHS is > T and the LHS is o(T) as T — oo then the
L-function has infinitely many zeros on the critical line.
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The mechanism of the Hardy-Littlewood method

m For L-functions of holomorphic modular forms, Z(t) is
constructed from the Mellin transform of the corresponding
modular forms:

Mf(s) = /OIOo fF(y)y**dy

which is a product of the L-function and some [-factors.

m The most difficult part is finding the bound of the LHS.
Typically, the bound requires cancellation of the exponential
sum

Z ame(mx) =0o(T), as T — oc.
m<T
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A distributional framework

m We write Z(t) as Mellin transform of automorphic
distributions instead of automorphic forms.

m In certain arithmetic instances, this gives a quick proof that

the integral
2T
/ Z(t)dt
-

decays rapidly as T — oo.

m This uses the notion of a distribution vanishing to infinite
order.
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A distributional framework

m A distribution can be written (locally) as a higher order
derivative of a continuous function.

m Roughly speaking, if the continuous function vanishes to a
high order at a point p, then we say that the distribution
vanishes to a high order at p.

m The automorphic distribution attached to a cusp form
vanishes to infinite order at every rational point.
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A distributional framework

m The local presentation of distributions vanishing to order
m > 0 at 0 can be used to bound integrals against certain test
functions.

Suppose that o is a distribution that vanishes to order m > 0 at 0
and let ¢ be a bump function near 0. Then

/00 o(x) (To(Tx)) dx = O(T~™) (1)

—00

as T — oo.
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A distributional framework

m By constructing the real-valued function Z(t) using
automorphic distributions and using the Lemma, we can give
a quick prove that the integral

2T
/ Z(t)dt
-

decays rapidly as T — 0.
m This completely avoids the use of exponential sums.

m This makes the method particularly effective in taking care of
complications due to half-integral weights or additive twists.
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A distributional framework

Theorem (K. 2020)

Let k € 37, k > 1 and let F(z) be a cusp form of weight k with
respect to the congruence subgroup T'o(N). Whose Fourier
coefficients satisfy a; € R and a; # 0.

a. If N is a perfect square and F(z) is an eigenfunction of the
involution Wy, then the L-function of F(z) has infinitely
many zeros on the critical line.

b. If 2 € Q is a cusp [o(N)-equivalent to ico such that p?> =1
(mod q) then the additively twisted L-function

27rmsn
p/q E :a,,

n>1

has infinitely many zeros on the critical line.
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Thank you!
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