BGG category ${\mathcal O}$ and BGG resolution

Jishen Du

March 21, 2022

- $lue{1}$ Basics of BGG category $\mathcal O$
 - Definitions
 - Construction of the Verma module $M(\lambda)$
 - Harish-Chandra theorem
- 2 BGG resolution
 - Maximal submodule $N(\lambda)$ of Verma module $M(\lambda)$, $\lambda \in \Lambda_+$
 - BGG resolution
 - Applications

Background setting and notations

- Let $\mathfrak g$ be a finite dimensional semisimple Lie algebra over $\mathbb C$, with triangular decomposition $\mathfrak g=\mathfrak n_-+\mathfrak h+\mathfrak n_+$, universal enveloping algebra $U(\mathfrak g)$, root system $\Phi\subset\mathfrak h^*$, simple roots (base) $\Delta=\{\alpha_1,...,\alpha_l\}$, and positive roots Φ_+ .
- Let $\mathfrak{b} := \mathfrak{n}_+ + \mathfrak{h}$ be the (standard) Borel subalgebra of \mathfrak{g} .
- For any root $\alpha \in \Phi$, let s_{α} be the reflection through α , i.e. $s_{\alpha}(\lambda) := \lambda \frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\alpha$. The Weyl group is defined to be the group generated by reflections through simple roots, i.e. $W = \langle s_{\alpha_i} | i = 1, \ldots, I \rangle$.
- s_{α_i} is called a simple reflection.

Background setting and notations

• Partial order on \mathfrak{h}^* : for $\lambda, \mu \in \mathfrak{h}^*$, $\lambda \leq \mu$ iff

$$\lambda - \mu = \sum_{i=1}^{\ell} a_i \alpha_i, \quad a_i \in \mathbb{Z}_{\geq 0}.$$

• Dot action. Let $\rho := \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha_i$. For any $\lambda \in \mathfrak{h}^*$, $w \in W$, define the dot action:

$$w \cdot \lambda = w(\lambda + \rho) - \rho.$$

Background setting and notations

- Length. For $w \in W$, write $\ell(w) = n$ if $w = s_1 \dots s_n$ with s_i simple reflection and n as small as possible; such an expression is called reduced.
- Bruhat order on W. If $w_1 = s_{\alpha}w_2$, with $\alpha \in \Phi_+$ and $\ell(w_1) < \ell(w_2)$, we write $w_1 \stackrel{s_{\alpha}}{\to} w_2$. Define w < w' if $w = w_1 \to w_2 \to \cdots \to w_n = w'$.

Consider the category ${\mathcal C}$ of finite dimensional ${\mathfrak g}$ -modules. We know that

$$\mathcal{C} = \bigoplus_{\lambda \in \Lambda_+} \mathcal{C}_{\lambda}$$

where \mathcal{C}_{λ} is a full subcatgeory of \mathcal{C} with $\operatorname{Obj}(\mathcal{C}_{\lambda}) = \{L(\lambda)^{\oplus n} \mid n \geq 0.\}$ By schur lemma, we know $\operatorname{Hom}(L(\lambda), L(\mu)) = 0$ if $\lambda \neq \mu$, and $\operatorname{End}(L(\lambda)) = \mathbb{C} \operatorname{id}_{L(\lambda)}$

Basics of BGG category $\mathcal O$

Definition 1 (BGG category).

The BGG category \mathcal{O} is defined to be the full subcategory of $U(\mathfrak{g})$ -Mod whose objects are the modules M satisfying the following three conditions:

- $(\mathcal{O}1)$ M is finitely generated.
- $(\mathcal{O}2)$ M is \mathfrak{h} -diagonalizable, i.e. there exists a basis of M consisting of common eigenvectors of \mathfrak{h} . That is,

$$M=\bigoplus_{\lambda\in\mathfrak{h}^*}M_{\lambda},$$

where $M_{\lambda} := \{ v \in M \mid h.v = \lambda(h)v, \ \forall h \in \mathfrak{h} \}.$

• (O3) M is locally \mathfrak{n}_+ -finite, i.e. $U(\mathfrak{n}_+).v$ is finite dimensional, $\forall v \in M$.

Highest weight module

Definition 2 (Maximal vector).

Let $M \in U(\mathfrak{g})$ -Mod, $\lambda \in \mathfrak{h}^*$. A nonzero vector $v \in M_{\lambda}$ is called a maximal vector of weight λ if $\mathfrak{n}_+.v = 0$.

Definition 3 (Highest weight module).

 $M \in \mathcal{O}$ is called a highest weight module(h.w.m.) with highest weight $\lambda \in \mathfrak{h}^*$ if it is generated by a maximal vector. That is, there exists a nonzero $v^+ \in M_{\lambda}$, such that $M = U(\mathfrak{g}).v^+$.

Any highest weight module is in category \mathcal{O} .

Construction of the Verma module $M(\lambda)$

Fix $\lambda \in \mathfrak{h}^*$, let $\mathbb{C}_{\lambda} = \mathbb{C}v_{\lambda}$ be a one dimensional \mathfrak{b} -module such that

$$\mathfrak{n}_+.v_\lambda=0, h.v_\lambda=\lambda(h)v_\lambda, \forall h\in\mathfrak{h}.$$

Define $M(\lambda) = \operatorname{Ind}_{U(\mathfrak{b})}^{U(\mathfrak{g})} \mathbb{C}_{\lambda} = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$ to be the induced module from $U(\mathfrak{b})$ -Mod to $U(\mathfrak{g})$ -Mod.

Construction of the Verma module $M(\lambda)$

Verma module $M(\lambda)$ is an h.w.m. of highest weight λ with maximal vector $1 \otimes v_{\lambda}$. For any h.w.m. $M = U(\mathfrak{g}).v^{+}$ of highest weight λ , M is a quotient of M_{λ} : $1 \otimes v_{\lambda} \mapsto v^{+}$. Notice:

$$\begin{aligned} \operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda),M) &= \operatorname{Hom}_{U(\mathfrak{g})} \left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}} \mathbb{C}_{\lambda}, M \right) \\ &\cong \operatorname{Hom}_{U(\mathfrak{b})} \left(\mathbb{C}_{\lambda}, \operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}} M \right) \\ &= \left\{ v \in M_{\lambda} \mid v \text{ is a maximal vector or } 0 \right\}. \end{aligned}$$

Theorem 4.

Let $M = U(\mathfrak{g}).v^+$ be an h.w.m., then M has a unique maximal submodule.

Proof.

For any submodule N of M, N=M iff $v^+\in N$ iff $N_\lambda\neq 0$. So, one can prove $\sum_{N\subseteq M}N\subsetneq M$ is the unique maximal submodule of M. Notice:

$$\left(\sum_{N \subseteq M} N\right)_{\lambda} = \sum_{N \subseteq M} N_{\lambda} = \sum_{N \subseteq M} 0 = 0.$$

As a corollary, we know that there is a unique simple h.w.m. of weight λ . Namely, $L(\lambda) := M(\lambda)/N(\lambda)$, where $N(\lambda)$ is the maximal submodule of $M(\lambda)$.

Also, every simple module S is an h.w.m. So we know $S \cong L(\lambda)$ for some $\lambda \in \mathfrak{h}^*$.

Define $Z(\mathfrak{g})\subset U(\mathfrak{g})$ to be the center of $U(\mathfrak{g})$. We know that $[Z(\mathfrak{g}),U(\mathfrak{h})]=0$ implies $Z(\mathfrak{g}).M_\lambda\subset M_\lambda,\ \forall\lambda\in\mathfrak{h}^*.$ For an h.w.m. $M=U(\mathfrak{g}).v$ of weight λ , we know $M_\lambda=\mathbb{C}v$. So, $\forall z\in Z(\mathfrak{g}),\ \exists\chi_\lambda(z)\in\mathbb{C}$, such that $z.v=\chi_\lambda(z)v$. This χ_λ is an algebra homomorphism from $Z(\mathfrak{g})$ to \mathbb{C} . Moreover, z acts on M as a scalar multiplication $\chi_\lambda(z)\cdot\mathrm{id}_M$:

$$z.(u.v) = u.(z.v) = u.(\chi_{\lambda}(z)v) = \chi_{\lambda}(z)u.v, \quad \forall u \in U(\mathfrak{g}).$$

Since every h.w.m. of highest weight λ is a quotient of $M(\lambda)$, χ_{λ} is independent of the choice of M.

In fact, every algebra homomorphism χ is equal to χ_{λ} for some λ , i.e. $\mathfrak{h}^* \twoheadrightarrow \operatorname{Hom}_{\operatorname{Alg}}(Z(\mathfrak{g}), \mathbb{C})$.

Let $\chi \in \mathsf{Hom}_{\mathsf{Alg}}(Z(\mathfrak{g}), \mathbb{C})$. Define a full subcategory of \mathcal{O} :

$$\mathcal{O}_{\chi} := \{ M \in \mathcal{O} : M = M^{\chi} \}$$

where

$$M^{\chi} := \{ x \in M : \forall z \in Z(\mathfrak{g}), \exists n \in \mathbb{N}, \text{ s.t. } (z - \chi(z))^n x = 0 \}.$$

Theorem 5.

 $\mathcal{O} = \bigoplus_{\chi} \mathcal{O}_{\chi}$. In other words, $\forall M \in \mathcal{O}$, $M = \bigoplus_{\chi} M^{\chi}$. Also, $\operatorname{Hom}_{\mathcal{O}}(M, N) = \bigoplus_{\chi} \operatorname{Hom}_{\mathcal{O}_{\chi}}(M^{\chi}, N^{\chi})$.

Lemma 6.

Let $\{x_i, y_i | 1 \le i \le n\} \cup \{h_i | 1 \le i \le \ell\}$ be a standard basis of \mathfrak{g} . For all $k \ge 0$, and $1 \le i, j \le \ell$, we have:

(a)
$$\left[x_j, y_i^{k+1}\right] = 0$$
 whenever $j \neq i$.

(b)
$$\left[h_{j}, y_{i}^{k+1}\right] = -(k+1)\alpha_{i}(h_{j})y_{i}^{k+1}.$$

(c)
$$\left[x_i, y_i^{k+1}\right] = -(k+1)y_i^k (k \cdot 1 - h_i).$$

Theorem 7.

Given $\lambda \in \mathfrak{h}^*$ and $\alpha \in \Delta$, suppose $n := \langle \lambda, \alpha^\vee \rangle$ lies in $\mathbb{Z}_{\geq 0}$. If v^+ is a maximal vector of weight λ in $M(\lambda)$, then $y_\alpha^{n+1}.v^+$ is a maximal vector of weight $\mu := \lambda - (n+1)\alpha < \lambda$. Thus there exists a nonzero homomorphism $M(\mu) \to M(\lambda)$ whose image lies in the maximal submodule $N(\lambda)$.

A nonzero homomorphism $M(\mu) \to M(\lambda)$ implies $\chi_{\mu} = \chi_{\lambda}$. So, we get a conclusion: if $\lambda \in \Lambda_{+}$, then $\chi_{s_{\alpha} \cdot \lambda} = \chi_{\lambda}$. By considering the reduced form of $w \in W$, we can show that if $\lambda \in \Lambda$, $\mu \in W \cdot \lambda$, then $\chi_{\lambda} = \chi_{\mu}$.

Theorem 8 (Harish-Chandra).

Suppose $\lambda, \mu \in \mathfrak{h}^*$, then $\chi_{\lambda} = \chi_{\mu}$ if and only if $\lambda \in W \cdot \mu$.

As an important corollary, \mathcal{O} is of finite length (or to say, both Noetherian and Artinian), i.e., every $M \in \mathcal{O}$ has a finite length. Namely, M has a filtration:

$$0=M_0\subset M_1\subset\cdots\subset M_n=M,$$

with each M_i/M_{i-1} simple.

Proof.

- **1** M has a finite filtration with every factor is an h.w.m. Since M is finitely generated, we can assume M is generated by one weight vector: $M = U(\mathfrak{g}).v$. Induction on dim V, where $V := U(\mathfrak{n}_+).v$ is a finite dimensional vector space by the definition of \mathcal{O} .
- Every h.w.m. has a finite length.
 By the Harish-Chandra theorem. (cf. Humphreys, page 28)

For any $M \in \mathcal{O}$, we can define $[M : L(\lambda)]$ to be the multiplicity of $L(\lambda)$.

A natural question: when is $[M(\lambda):L(\mu)] \neq 0$?

- Necessary condition 1: $\mu \leq \lambda$. $[M(\lambda): L(\mu)] \neq 0$ implies $M(\lambda)_{\mu} \neq 0$, so $\mu \leq \lambda$.
- ② Necessary condition 2: $\chi_{\mu} = \chi_{\lambda}$. $[M(\lambda) : L(\mu)] \neq 0$ implies $L(\mu)$ is isomorphic to a subquotient of $M(\lambda)$.

By the Harish-Chandra theorem, condition $2 \Leftrightarrow \mu = W \cdot \lambda$.

Strongly linked

Let $\lambda, \mu \in \mathfrak{h}^*$ and write $\mu \uparrow \lambda$ if $\mu = \lambda$ or there is a root $\alpha > 0$ such that $\mu = s_{\alpha} \cdot \lambda < \lambda$; in other words, $\langle \lambda + \rho, \alpha^{\vee} \rangle \in \mathbb{Z}_{>0}$. More generally, if $\mu = \lambda$ or there exist $\alpha_1, \ldots, \alpha_r \in \Phi^+$ such that

$$\mu = (s_{\alpha_1} \dots s_{\alpha_r}) \cdot \lambda \uparrow (s_{\alpha_2} \dots s_{\alpha_r}) \cdot \lambda \uparrow \dots \uparrow s_{\alpha_r} \cdot \lambda \uparrow \lambda$$

we say that μ is strongly linked to λ and write $\mu \uparrow \lambda$. This is a partial order on \mathfrak{h}^* .

Theorem 9.

Let $\lambda, \mu \in \mathfrak{h}^*$.

(a) (Verma) If $\mu \uparrow \lambda$, then $M(\mu) \hookrightarrow M(\lambda)$; in particular, we know $[M(\lambda) : L(\mu)] \neq 0$.

(b) (BGG) If $[M(\lambda) : L(\mu)] \neq 0$, then $\mu \uparrow \lambda$.

Theorem 10.

If $\lambda \in \Lambda^+$, the unique maximal submodule $N(\lambda)$ of $M(\lambda)$ is the sum of the submodules $M(s_{\alpha_i} \cdot \lambda)$ for $1 < i < \ell$.

We can express this result by an exact sequence:

$$\bigoplus_{w \in W, \ell(w) = 1} M(w \cdot \lambda) \to M(\lambda) \to L(\lambda) \to 0$$

Theorem 11.

If $\lambda \in \Lambda^+$, the unique maximal submodule $N(\lambda)$ of $M(\lambda)$ is the sum of the submodules $M(s_{\alpha_i} \cdot \lambda)$ for $1 \leq i \leq \ell$.

We can express this result by an exact sequence:

????
$$\rightarrow \bigoplus_{w \in W, \ell(w)=1} M(w \cdot \lambda) \rightarrow M(\lambda) \rightarrow L(\lambda) \rightarrow 0$$

The Weyl group W has a unique maximal element w_0 , and $\ell(w_0) = |\Phi_+|$. We define the BGG resolution of $L(\lambda)$ is an exact sequence of the following form.

$$0 \to M(w_0 \cdot \lambda) \xrightarrow{\delta_m} \bigoplus_{\substack{w \in W \\ \ell(w) = |\Phi_+| - 1}} M(w \cdot \lambda) \to \cdots$$

$$\xrightarrow{\delta_2} \bigoplus_{\substack{w \in W \\ \ell(w) = 1}} M(w \cdot \lambda) \xrightarrow{\delta_1} M(\lambda) \xrightarrow{\varepsilon} L(\lambda) \to 0.$$

Theorem 12.

For $\lambda \in \Lambda_+$, there exists a BGG resolution for $L(\lambda)$.

Application: Weyl character formula

We can prove the Weyl character formula from the existence of BGG resolution. Write $C_k := \bigoplus_{\substack{w \in W \\ \ell(w) = k}} M(w \cdot \lambda)$, then

$$ch C_k = \sum_{\substack{w \in W \\ \ell(w) = k}} ch M(w \cdot \lambda).$$

We know the alternating sum of dimension of each weight space of C_k is 0. The alternating sum of character should also be 0, i.e.

$$\operatorname{ch} L(\lambda) + \sum_{i=0}^{|\Phi_+|} (-1)^{i+1} \operatorname{ch} C_k = 0$$

$$\operatorname{ch} L(\lambda) = \sum_{i=0}^{|\Phi_{+}|} (-1)^{i} \operatorname{ch} C_{k}$$

$$= \sum_{i=0}^{|\Phi_{+}|} \sum_{\substack{w \in W \\ \ell(w)=i}} (-1)^{i} \operatorname{ch} M(w \cdot \lambda)$$

$$= \sum_{w \in W} (-1)^{\ell(w)} \operatorname{ch} M(w \cdot \lambda).$$

This is the Weyl character formula for finite dimensional irreducible module $L(\lambda)$.

Bott's theorem

compute the dimension of Lie algebra cohomology group: $H^k(\mathfrak{n}_-, L(\lambda)) := \operatorname{Ext}_{\mathfrak{n}^-}^k(\mathbb{C}, L(\lambda))$ (It is actually an \mathfrak{h} -module.)

Theorem 13 (Bott).

If $\lambda \in \Lambda^+$, then dim $H^k(\mathfrak{n}^-, L(\lambda)) = |W^{(k)}|$, where $W^{(k)}$ denotes the set of elements in W having length k.

Proof.

By using property of dual functor (-)*, we know $\operatorname{Ext}_{\mathfrak{n}^{-}}^{k}(\mathbb{C},L(\lambda))\cong\operatorname{Ext}_{\mathfrak{n}^{-}}^{k}(L(\lambda)^{*},\mathbb{C}), L(\lambda)^{*}\cong L(-w_{0}\cdot\lambda).$ We know $\lambda^{*}:=-w_{0}\cdot\lambda\in\Lambda_{+}$ So, $L(\lambda^{*})$ has a BGG resolution, which is a free resolution as $U(\mathfrak{n}_{-})$ -module. By applying functor $\operatorname{Hom}_{\mathfrak{n}_{-}}(-,\mathbb{C})$ to the BGG resolution, then taking the homology, we get $\operatorname{Ext}_{\mathfrak{n}_{-}}^{*}(L(\lambda^{*},\mathbb{C})).$ we can natually identify $\operatorname{Hom}_{\mathfrak{n}_{-}}(M,\mathbb{C})$ with $(M/\mathfrak{n}_{-}M)^{*}$. For M is a Verma module M(u), $M/\mathfrak{n}_{-}M)^{*}\cong\mathbb{C}^{*}=\mathbb{C}$ wis a one

a Verma module $M(\mu)$, $(M/\mathfrak{n}_-M)^*\cong \mathbb{C}_\mu^*=\mathbb{C}_{-\mu}$ is a one dimensional space. Thus, we know dim $\mathrm{Hom}_{\mathfrak{n}_-}(C_k,\mathbb{C})=|W^{(k)}|$. Also, because all $-w\cdot\lambda^*$ are distinct, all maps in this chain are zero.

Other applications of BGG resolution:

- projective dimension & global dimension
- $\textbf{②} \ \, \mathsf{compute} \ \, \mathsf{Ext}^n_{\mathcal{O}} \, \big(M \, \big(w' \cdot \lambda \big) \, , \, M \big(w \cdot \lambda \big) \big), \, \, \mathsf{Ext}^n_{\mathcal{O}} \, \big(M \big(\mu \big), \, M \big(\lambda \big)^{\vee} \big).$

Maximal submodule $N(\lambda)$ of Verma module $M(\lambda)$, $\lambda \in \Lambda_+$ BGG resolution **Applications**

Thank you!