Introduction to Lie Algebras and Representation Theory

Nick Backes

GARTS

September 20, 2021

Goal

Humphreys really starts with section 8 (maybe more experienced readers will disagree).

I found sections 1-6 hard. (8 onward too, but whatever).
My goal is to give an outline and some perspective on the first 7 sections that can make a first read a little easier.

Section 7 is really cool. And it comes up all over in mathematics!

Definition

A Lie algebra is a vector space L over a field F with an operation

$$
\begin{aligned}
& L \times L \rightarrow L \\
& (x, y) \mapsto[x y]
\end{aligned}
$$

satisfying
■ [] is bilinear

- $[x x]=0$

■ $[x[y z]]+[y[z x]]+[z[x y]]=0$ This condition is called the Jacobi identity.

First Properties

[] is anticommutative:

$$
\begin{aligned}
{[x+y, x+y] } & =0 \\
{[x x]+[x y]+[y x]+[y y] } & =0 \\
{[x y]+[y x] } & =0 \\
{[x y] } & =-[y x]
\end{aligned}
$$

A Lie algebra homomorphism is a homomorphism of vector spaces that respects the bracket: $\varphi([x y])=[\varphi(x) \varphi(y)]$.

An ideal is a vector subspace I satisfying $[x, i] \in I \forall x \in L, i \in I$.
Quotient Lie algebras, normalizers, centralizers, isomorphism theorems

Examples

Let V be a vector space of dimension n over a field F
$\mathfrak{g l}(V)=\operatorname{End}(V)$. Equivalently,
$\mathfrak{g l}(n, F)=\{n \times n$ matrices with entries in $F\}$. In both cases, the bracket is given by $[x y]=x y-y x$.
$\mathfrak{s l}(V)=\mathfrak{s l}(n, F)=\{x \in \mathfrak{g l}(V) \mid$ Trace $(x)=0\}$.
$\mathfrak{t}(n, F)$ is upper triangular matrices.
$\mathfrak{n}(n, F)$ is the strictly upper triangular matrices.
$\mathfrak{d}(n, F)$ is the diagonal matrices.
Any associative algebra can be made to be a Lie algebra by defining $[x y]=x y-y x$.

Other important ones: symplectic alegbra, orthogonal algebras.

$\mathfrak{s l}(2, F)$

The standard basis of $\mathfrak{s l}(2, F)$ is

$$
\begin{gathered}
x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
{[h x]=2 x,[h y]=-2 y,[x y]=h}
\end{gathered}
$$

Remark: If L is a Lie subalgebra of some $\mathfrak{g l}(V)$ then we call L a linear Lie algebra.

A Word on Lie Groups

A Lie group G is a topological group with a smooth manifold structure.
$G L(n, \mathbb{R}), S L(n, \mathbb{R}), O(n), U(n)$, etc.
Given a Lie group G, the Lie algebra \mathfrak{g} is defined as the tangent space at id. There exists an map exp: $\mathfrak{g} \rightarrow G$ that satisfies a lot of nice properties and is pretty important.

This doesn't really come up at GARTS

Representations

A representation of a Lie algebra L is a pair (φ, V), where φ is a Lie algebra homomorphism

$$
\varphi: L \rightarrow \operatorname{End}(V)
$$

If (φ, V) is a representation of L, then V can be viewed as an L-module by

$$
x . v=\varphi(x)(v)
$$

for $x \in L, v \in V$.

Irreducible Representations

A representation (φ, V) is called irreducible if V has no nontrivial L-invariant subspaces.

A representation is called completely reducible if V can be written as a direct sum of L-invariant subspaces.

Remark: sometimes V will have a L-invariant subspace (say, W), but there may not be another L-invariant subspace \tilde{W} with $V=W \oplus \tilde{W}$.

> Theorem (Schur's Lemma)
> Let (φ, V) be an irreducible representation of L. Let $\alpha \in \operatorname{End}(V)$. If $[\alpha x]=0 \forall x \in \varphi(L)$, then α is a scalar.

Adjoint Representation

For $x \in L$, define a function $a d_{x}: L \rightarrow L$ by $a d_{x}(y)=[x y]$. This function is a derivation.

Then define a representation $a d: L \rightarrow \operatorname{End}(L)$ by $x \mapsto a d_{x}$. This is called the adjoint representation.

Recall a map ϕ is called nilpotent if $\phi^{n}=0$ for some n.
An element $x \in L$ is called ad-nilpotent if $a d_{x}$ is nilpotent.
Let $L^{0}=L, L^{i+1}=\left[L, L^{i}\right]$. Then we say L is nilpotent if $L^{n}=0$ for some n. Let's not worry about this.

Theorem (Engel's Theorem)

L is nilpotent if and only if x is ad-nilpotent $\forall x \in L$.

Semisimple Lie Algebras

Let $L^{(0)}=L$ and let $L^{(i+1)}=\left[L^{(i)} L^{(i)}\right]$. We call L solvable if $L^{(n)}=0$ for some n.

Proposition: if I and J are ideals of L, and I and J are solvable, then $I+J=\{x+y \mid x \in I, y \in J\}$ is solvable.

Corollary: Let S be a maximal solvable ideal of L. Let I be a different solvable ideal of L. Then $S \subset I+S$, so $I+S=S$ by maximality. Thus there is a unique maximal solvable ideal of L. We call it the radical: Rad L.

Definition: L is called semisimple if $\operatorname{Rad} L=0$.
There are 4 infinite families of semisimple Lie algebras, plus 5 other exceptional Lie algebras.

Semisimple Lie Algebras

Theorem (Cartan's Criterion)

Let L be a linear Lie algebra and assume
$\operatorname{Tr}(x y)=0 \forall x \in[L L], y \in L$. Then L is solvable.
Corollary: If L is not necessarily linear, but $\operatorname{Tr}\left(a d_{x} a d_{y}\right)=0 \forall x \in[L L], y \in L$ then L is solvable.

Proof of corollary: ad L is a linear Lie algebra. Then $\operatorname{Tr}\left(a d_{x} a d_{y}\right)=0$ means that ad L is solvable. The kernel of ad is $Z(L) . Z(L)$ is always solvable. Then

$$
L / Z(L) \simeq \operatorname{ad} L
$$

This implies L is solvable by a property of solvable Lie algebras.

Killing Form

For $x, y \in L$, let

$$
\kappa(x, y)=\operatorname{Tr}\left(a d_{x} a d_{y}\right)
$$

This is a symmetric bilinear form called the Killing form.
κ is called nondegenerate if $\forall x \in L, \exists y \in L$ so that $\kappa(x, y) \neq 0$.
κ is associative: $\kappa([x y], z)=\kappa(x,[y z])$.

Killing Semisimplicity

Theorem

L is semisimple if and only if its killing form is nondegenerate.
Proof idea: Let $S=\{x \in L \mid \kappa(x, y)=0 \forall y \in L\}$. S is an ideal of L. Notice that κ is nondegenerate iff $S=0$.

First suppose L is semisimple. There are no nonzero solvable ideals of L. Let $x \in[S S], y \in L$. Then $\kappa(x, y)=\operatorname{Tr}\left(a d_{x} a d_{y}\right)=0$. Apply the corollary of Cartan's Criterion: S is solvable. Hence it's 0 .

Now κ be nondegenerate, so $S=0$. Let J be a solvable ideal of L. That means $\left[J^{(i)} J^{(i)}\right]=0$ for some nonzero $J^{(i)}$. Let $I=J^{(i)}$.

Let $x \in I, y \in L$. Then $a d_{x} a d_{y}: L \rightarrow I$ and $\left(a d_{x} a d_{y}\right)^{2}: L \rightarrow[I, I]=0$ This shows that $a d_{x} a d_{y}$ is nilpotent, and hence has trace 0 . Therefore $\kappa(x, y)=0$, so $y \in S$ and this shows that $I=0$.

Killing Semisimplicity

Theorem

Let L be semisimple. Then L is a direct sum of simple ideals. This decomposition is unique.

Proof idea: Let's assume L is not simple (since simple implies semisimple). Let I be an ideal of L. Let $I^{\perp}=\{x \in L \mid \kappa(x, y)=0 \forall y \in I\}$.
$I \cap I^{\perp}$ is an ideal of I. And by the definition of I^{\perp}, we have for $x \in I, y \in I \cap I^{\perp}$, that $\kappa(x, y)=\operatorname{Tr}\left(a d_{x} a d_{y}\right)=0$. By the corollary to Cartan's Criterion, $I \cap I^{\perp}$ is solvable, hence 0 . Therefore $L=I \oplus I^{\perp}$. Repeat until each piece is simple.

Now write $L=L_{1} \oplus L_{2} \oplus \ldots \oplus L_{n}$. Let $/$ be any simple ideal of L. Becuase L is semisimple, it contains no abelian ideals, so $[I L] \neq 0$. Since I is simple, we have $[I L]=I$. Notice

$$
[I L]=\left[I L_{1}\right] \oplus \ldots \oplus\left[I L_{n}\right]
$$

Casimir Element

Assume L is semisimple. Fix a basis $\left(x_{1}, \ldots, x_{n}\right)$ of L. Then κ induces a dual basis $\left(y_{1}, \ldots, y_{n}\right)$ on L satisfying

$$
\kappa\left(x_{i} y_{j}\right)=\delta_{i j}
$$

For $\mathfrak{s l}(2, F)$ the dual basis to (x, h, y) is $(y, h / 2, x)$.
Then $\sum a d_{x_{i}} a d_{y_{i}}=c$ is called the casimir element of the adjoint representation.

This can be done more generally: for a representation φ, replace κ with $\operatorname{Tr}(\varphi(x) \varphi(y)$

In general, $c \notin \operatorname{Image}(\varphi)$. Instead it lives in the enveloping algebra of φ.

Weyl's Theorem

Abstract

Theorem Let L be a semisimple Lie algebra. Let $\phi: L \rightarrow \mathfrak{g l}(V)$ be a finite dimensional representation of L. Then ϕ is completely reducible.

The proof is hard. It does a lot of abstract nonsense to reduce the problem in a couple different ways. First it handles the case where there is an L-invariant space W of codimension 1 . Then it uses the casimir element of the representation to construct a one-dimensional L-invariant subspace of V that complements W. Then it does more abstract nonsense to get the result when there is not an L-invariant space of codimension 1 .

Jordan Decomposition

Recall that $y \in \operatorname{End}(V)$ is called nilpotent if $y^{n}=0$ for some n. We call $z \in \operatorname{End}(V)$ semisimple if it is diagonalizable.

Let $x \in \operatorname{End}(V)$. There is a unique decomposition $x=x_{s}+x_{n}$ where x_{s} is semisimple and x_{n} is nilpotent.
$a d_{x}=a d_{x_{s}}+a d_{x_{n}}$ is the Jordan Decomposition of $a d_{x}$.

Abstract Jordan Decomposition

There is another decomposition we can induce: let L be semisimple. The kernel of ad is $Z(L)$, but since $Z(L)=0$, we have $a d L \simeq L$. It turns out further that $\operatorname{adL} \simeq \operatorname{Der}(L)$, the space of derivations of L. That is, all derivations of L are given by adjoints.

If $X \in \operatorname{DerL}$ and X_{n}, X_{s} are the nilpotent and semisimple parts of X in $\operatorname{End}(L)$, it also turns out that $X_{n}, X_{s} \in \operatorname{Der}(L)$, hence $X_{n}, X_{s} \in a d L$. Thus there are unique $x_{n}, x_{s} \in L$ such that $a d_{x_{n}}=X_{n}$ and $a d_{x_{s}}=X_{s}$. We can then write $x=x_{n}+x_{s}$.

We do not know if L is a linear Lie algebra, so x_{n} and x_{s} need not be endomorphisms of a vector space V. If L is linear, then a corollary to Weyl's Theorem tells us that this new decomposition agrees with the old one.

Corollary to Weyl

Theorem
Let L be semisimple and (φ, V) a representation of L. If $x=x_{n}+x_{s}$ is the abstract Jordan decomposition of x, then $\varphi(x)=\varphi\left(x_{n}\right)+\varphi\left(x_{s}\right)$ is the Jordan decomposition of $\varphi(x)$.

Representations of $\mathfrak{s l}(2, F)$

Let (φ, V) be an irreducible representation of $\mathfrak{s l}(2, F)$.
$\varphi(h)$ is diagonalizable: h is diagonal in the usual basis, hence it is semisimple. The corollary to Weyl's theorem says that $\varphi(h)$ is also semisimple, hence diagonalizable.

Write $V=\oplus V_{\lambda}$ where $\lambda \in F$ is an eigenvalue of $\varphi(h)$ and V_{λ} is the eigenspace.

Call λ weights of h and V_{λ} weight spaces.
For convenience, when $\lambda \in F$ is not an eigenvalue of $\varphi(h)$, let $V_{\lambda}=0$.

Representations of $\mathfrak{s l}(2, F)$

Proposition

Let $v \in V_{\lambda}$. Then $\varphi(x)(v) \in V_{\lambda+2}$ and $\varphi(y)(v) \in V_{\lambda-2}$
For ease of notation, denote $\varphi(x)(v)$ by $x . v$

$$
\begin{aligned}
& h \cdot x \cdot v=x \cdot h \cdot v+[h x] \cdot v=x \cdot \lambda v+2 x \cdot v=(\lambda+2) x \cdot v \\
& h \cdot y \cdot v=y \cdot h \cdot v+[h y] \cdot v=y \cdot \lambda v-2 y \cdot v=(\lambda-2) y \cdot v
\end{aligned}
$$

Maximal Vectors

Remark: there must exist a weight λ such that $\lambda+2=0$. Call $v \in V_{\lambda}$ a maximal vector if this is the case.

Let v_{0} be a maximal vector in the space $V_{\lambda_{0}}$. Define $v_{i}=\frac{1}{i!} y^{i} \cdot v_{0}$. Then

$$
y \cdot v_{i}=(i+1) v_{i+1}
$$

By the last slide, $v_{i} \in V_{\lambda_{0}-2 i}$. Whence,

$$
h . v_{i}=\left(\lambda_{0}-2 i\right) v_{i}
$$

Maximal Vectors

Now we compute that $x . v_{i}=\left(\lambda_{0}-i+1\right) v_{i-1}$ by induction.

$$
\begin{aligned}
x . v_{i} & =\frac{1}{i} x \cdot y \cdot v_{i-1} \\
i x . v_{i} & =[x y] \cdot v_{i-1}+y \cdot x \cdot v_{i-1} \\
& =h \cdot v_{i-1}+y \cdot x \cdot v_{i-1} \\
& =\left(\lambda_{0}-2 i+2\right) v_{i-1}+\left(\lambda_{0}-i+2\right) y \cdot v_{i-2} \\
& =\left(\lambda_{0}-2 i+2\right) v_{i-1}+\left(\lambda_{0}-i+2\right)(i-1) v_{i-1} \\
& =i\left(\lambda_{0}-i+1\right) v_{i-1} \\
x . v_{i} & =\left(\lambda_{0}-i+1\right) v_{i-1}
\end{aligned}
$$

Maximal Vectors

Summary: given a maximal vector v_{0}, there is a set of v_{i} satisfying
■ $y . v_{i}=(i+1) v_{i+1}$
■ $h . v_{i}=\left(\lambda_{0}-2 i\right) v_{i}$

- $x . v_{i}=\left(\lambda_{0}-i+1\right) v_{i-1}$

The 2nd one implies the v_{i} are linearly independent. But then only finitely many v_{i} can be nonzero. Let $v_{m} \neq 0$ but $v_{m+1}=0$.

Then $\operatorname{span}\left(v_{0}, \ldots, v_{m}\right)$ is a $\mathfrak{s l}(2, F)$-invariant subspace of V. (We can see it's $\mathfrak{s l}(2, F)$-invariant because we can see how $\mathfrak{s l}(2, F)$ acts on it above.) Since (φ, V) is an irreducible representation, $\operatorname{span}\left(v_{0}, \ldots, v_{m}\right)=V$

Maximal Vectors

Consider $x \cdot v_{m+1}=\left(\lambda_{0}-m\right) v_{m}$. Since $v_{m+1}=0$ and $v_{m} \neq 0$, we conclude $\lambda_{0}=m$.
$\lambda_{0}=m=\operatorname{dim}(V)-1$ is an integer. We call it the highest weight of V. Each weight space of an irreducible representation is 1-dimensional. V admits weights $-m,-m+2, \ldots, m-2, m$.

The maximal vector we chose is unique up to scalars.
By Weyl's Theorem, general representations of $\mathfrak{s l}(2, F)$ are direct sums of irreducible representations described in this way.

Applications

Actions of $\mathfrak{s l}(2, F)$ appear a lot.
Raising and lowering operators
Quantum mechanics. Spinors?
The root space decomposition of a semisimple Lie algebra admits triples which generate subalgebras isomorphic to $\mathfrak{s l}(2, F)$. Knowing how the adjoint representation of these subalgebras act is helpful.

References

Humphreys, James E.
Introduction to Lie Algebras and Representation Theory

