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Goal

Humphreys really starts with section 8 (maybe more experienced
readers will disagree).

I found sections 1-6 hard. (8 onward too, but whatever).

My goal is to give an outline and some perspective on the first 7
sections that can make a first read a little easier.

Section 7 is really cool. And it comes up all over in mathematics!
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Definition

A Lie algebra is a vector space L over a field F with an operation

L× L→ L

(x , y) 7→ [xy ]

satisfying

[ ] is bilinear

[xx ] = 0

[x [yz ]] + [y [zx ]] + [z [xy ]] = 0 This condition is called the
Jacobi identity.
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First Properties

[ ] is anticommutative:

[x + y , x + y ] = 0

[xx ] + [xy ] + [yx ] + [yy ] = 0

[xy ] + [yx ] = 0

[xy ] = −[yx ]

A Lie algebra homomorphism is a homomorphism of vector spaces
that respects the bracket: ϕ([xy ]) = [ϕ(x)ϕ(y)].

An ideal is a vector subspace I satisfying [x , i ] ∈ I ∀x ∈ L, i ∈ I .

Quotient Lie algebras, normalizers, centralizers, isomorphism
theorems
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Examples

Let V be a vector space of dimension n over a field F

gl(V ) = End(V ). Equivalently,
gl(n,F ) = {n × n matrices with entries in F}. In both cases, the
bracket is given by [xy ] = xy − yx .

sl(V ) = sl(n,F ) = {x ∈ gl(V )| Trace(x) = 0}.

t(n,F ) is upper triangular matrices.
n(n,F ) is the strictly upper triangular matrices.
d(n,F ) is the diagonal matrices.

Any associative algebra can be made to be a Lie algebra by
defining [xy ] = xy − yx .

Other important ones: symplectic alegbra, orthogonal algebras.
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sl(2,F )

The standard basis of sl(2,F ) is

x =

(
0 1
0 0

)
y =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
[hx ] = 2x , [hy ] = −2y , [xy ] = h

Remark: If L is a Lie subalgebra of some gl(V ) then we call L a
linear Lie algebra.
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A Word on Lie Groups

A Lie group G is a topological group with a smooth manifold
structure.

GL(n,R),SL(n,R),O(n),U(n), etc.

Given a Lie group G , the Lie algebra g is defined as the tangent
space at id. There exists an map exp: g→ G that satisfies a lot of
nice properties and is pretty important.

This doesn’t really come up at GARTS
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Representations

A representation of a Lie algebra L is a pair (ϕ,V ), where ϕ is a
Lie algebra homomorphism

ϕ : L→ End(V )

If (ϕ,V ) is a representation of L, then V can be viewed as an
L-module by

x .v = ϕ(x)(v)

for x ∈ L, v ∈ V .
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Irreducible Representations

A representation (ϕ,V ) is called irreducible if V has no nontrivial
L-invariant subspaces.

A representation is called completely reducible if V can be written
as a direct sum of L-invariant subspaces.

Remark: sometimes V will have a L-invariant subspace (say, W ),
but there may not be another L-invariant subspace W̃ with
V = W ⊕ W̃ .

Theorem (Schur’s Lemma)

Let (ϕ,V ) be an irreducible representation of L. Let α ∈ End(V ).
If [αx ] = 0 ∀x ∈ ϕ(L), then α is a scalar.
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Adjoint Representation

For x ∈ L, define a function adx : L→ L by adx(y) = [xy ]. This
function is a derivation.

Then define a representation ad : L→ End(L) by x 7→ adx . This is
called the adjoint representation.

Recall a map φ is called nilpotent if φn = 0 for some n.

An element x ∈ L is called ad-nilpotent if adx is nilpotent.

Let L0 = L, Li+1 = [L, Li ]. Then we say L is nilpotent if Ln = 0 for
some n. Let’s not worry about this.

Theorem (Engel’s Theorem)

L is nilpotent if and only if x is ad-nilpotent ∀x ∈ L.
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Semisimple Lie Algebras

Let L(0) = L and let L(i+1) = [L(i)L(i)]. We call L solvable if
L(n) = 0 for some n.

Proposition: if I and J are ideals of L, and I and J are solvable,
then I + J = {x + y |x ∈ I , y ∈ J} is solvable.

Corollary: Let S be a maximal solvable ideal of L. Let I be a
different solvable ideal of L. Then S ⊂ I + S , so I + S = S by
maximality. Thus there is a unique maximal solvable ideal of L.
We call it the radical: Rad L.

Definition: L is called semisimple if Rad L = 0.

There are 4 infinite families of semisimple Lie algebras, plus 5
other exceptional Lie algebras.
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Semisimple Lie Algebras

Theorem (Cartan’s Criterion)

Let L be a linear Lie algebra and assume
Tr(xy) = 0 ∀x ∈ [LL], y ∈ L. Then L is solvable.

Corollary: If L is not necessarily linear, but
Tr(adx ady ) = 0 ∀x ∈ [LL], y ∈ L then L is solvable.

Proof of corollary: ad L is a linear Lie algebra. Then
Tr(adx ady ) = 0 means that ad L is solvable.
The kernel of ad is Z (L). Z (L) is always solvable. Then

L/Z (L) ' ad L

This implies L is solvable by a property of solvable Lie algebras.
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Killing Form

For x , y ∈ L, let
κ(x , y) = Tr(adx ady )

This is a symmetric bilinear form called the Killing form.

κ is called nondegenerate if ∀x ∈ L,∃y ∈ L so that κ(x , y) 6= 0.

κ is associative: κ([xy ], z) = κ(x , [yz ]).
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Killing Semisimplicity

Theorem

L is semisimple if and only if its killing form is nondegenerate.

Proof idea: Let S = {x ∈ L|κ(x , y) = 0 ∀y ∈ L}. S is an ideal of
L. Notice that κ is nondegenerate iff S = 0.

First suppose L is semisimple. There are no nonzero solvable ideals
of L. Let x ∈ [SS ], y ∈ L. Then κ(x , y) =Tr(adx ady ) = 0. Apply
the corollary of Cartan’s Criterion: S is solvable. Hence it’s 0.

Now κ be nondegenerate, so S = 0. Let J be a solvable ideal of L.
That means [J(i)J(i)] = 0 for some nonzero J(i). Let I = J(i).

Let x ∈ I , y ∈ L. Then adx ady : L→ I and
(adx ady )2 : L→ [I , I ] = 0 This shows that adx ady is nilpotent,
and hence has trace 0. Therefore κ(x , y) = 0, so y ∈ S and this
shows that I = 0.
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Killing Semisimplicity

Theorem

Let L be semisimple. Then L is a direct sum of simple ideals. This
decomposition is unique.

Proof idea: Let’s assume L is not simple (since simple implies
semisimple). Let I be an ideal of L. Let
I⊥ = {x ∈ L|κ(x , y) = 0 ∀y ∈ I}.

I ∩ I⊥ is an ideal of I . And by the definition of I⊥, we have for
x ∈ I , y ∈ I ∩ I⊥, that κ(x , y) = Tr(adx ady ) = 0. By the corollary
to Cartan’s Criterion, I ∩ I⊥ is solvable, hence 0. Therefore
L = I ⊕ I⊥. Repeat until each piece is simple.

Now write L = L1 ⊕ L2 ⊕ ...⊕ Ln. Let I be any simple ideal of L.
Becuase L is semisimple, it contains no abelian ideals, so [IL] 6= 0.
Since I is simple, we have [IL] = I . Notice

[IL] = [IL1]⊕ ...⊕ [ILn]
15 / 28



Casimir Element

Assume L is semisimple. Fix a basis (x1, ..., xn) of L. Then κ
induces a dual basis (y1, ..., yn) on L satisfying

κ(xiyj) = δij

For sl(2,F ) the dual basis to (x , h, y) is (y , h/2, x).
Then

∑
adxi adyi = c is called the casimir element of the adjoint

representation.

This can be done more generally: for a representation ϕ, replace κ
with Tr(ϕ(x)ϕ(y)

In general, c /∈ Image(ϕ). Instead it lives in the enveloping algebra
of ϕ.
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Weyl’s Theorem

Theorem

Let L be a semisimple Lie algebra. Let φ : L→ gl(V ) be a finite
dimensional representation of L. Then φ is completely reducible.

The proof is hard. It does a lot of abstract nonsense to reduce the
problem in a couple different ways. First it handles the case where
there is an L-invariant space W of codimension 1. Then it uses the
casimir element of the representation to construct a
one-dimensional L-invariant subspace of V that complements W .
Then it does more abstract nonsense to get the result when there
is not an L-invariant space of codimension 1.
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Jordan Decomposition

Recall that y ∈ End(V ) is called nilpotent if yn = 0 for some n.
We call z ∈ End(V ) semisimple if it is diagonalizable.

Let x ∈ End(V ). There is a unique decomposition x = xs + xn
where xs is semisimple and xn is nilpotent.

adx = adxs + adxn is the Jordan Decomposition of adx .
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Abstract Jordan Decomposition

There is another decomposition we can induce: let L be
semisimple. The kernel of ad is Z (L), but since Z (L) = 0, we have
adL ' L. It turns out further that adL ' Der(L), the space of
derivations of L. That is, all derivations of L are given by adjoints.

If X ∈ DerL and Xn,Xs are the nilpotent and semisimple parts of
X in End(L), it also turns out that Xn,Xs ∈ Der(L), hence
Xn,Xs ∈ adL. Thus there are unique xn, xs ∈ L such that
adxn = Xn and adxs = Xs . We can then write x = xn + xs .

We do not know if L is a linear Lie algebra, so xn and xs need not
be endomorphisms of a vector space V . If L is linear, then a
corollary to Weyl’s Theorem tells us that this new decomposition
agrees with the old one.
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Corollary to Weyl

Theorem

Let L be semisimple and (ϕ,V ) a representation of L. If
x = xn + xs is the abstract Jordan decomposition of x, then
ϕ(x) = ϕ(xn) + ϕ(xs) is the Jordan decomposition of ϕ(x).
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Representations of sl(2,F )

Let (ϕ,V ) be an irreducible representation of sl(2,F ).

ϕ(h) is diagonalizable: h is diagonal in the usual basis, hence it is
semisimple. The corollary to Weyl’s theorem says that ϕ(h) is also
semisimple, hence diagonalizable.

Write V = ⊕Vλ where λ ∈ F is an eigenvalue of ϕ(h) and Vλ is
the eigenspace.

Call λ weights of h and Vλ weight spaces.

For convenience, when λ ∈ F is not an eigenvalue of ϕ(h), let
Vλ = 0.
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Representations of sl(2,F )

Proposition

Let v ∈ Vλ. Then ϕ(x)(v) ∈ Vλ+2 and ϕ(y)(v) ∈ Vλ−2

For ease of notation, denote ϕ(x)(v) by x .v

h.x .v = x .h.v + [hx ].v = x .λv + 2x .v = (λ+ 2)x .v

h.y .v = y .h.v + [hy ].v = y .λv − 2y .v = (λ− 2)y .v
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Maximal Vectors

Remark: there must exist a weight λ such that λ+ 2 = 0. Call
v ∈ Vλ a maximal vector if this is the case.

Let v0 be a maximal vector in the space Vλ0 . Define vi = 1
i!y

i .v0.
Then

y .vi = (i + 1)vi+1

By the last slide, vi ∈ Vλ0−2i . Whence,

h.vi = (λ0 − 2i)vi
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Maximal Vectors

Now we compute that x .vi = (λ0 − i + 1)vi−1 by induction.

x .vi =
1

i
x .y .vi−1

ix .vi = [xy ].vi−1 + y .x .vi−1

= h.vi−1 + y .x .vi−1

= (λ0 − 2i + 2)vi−1 + (λ0 − i + 2)y .vi−2

= (λ0 − 2i + 2)vi−1 + (λ0 − i + 2)(i − 1)vi−1

= i(λ0 − i + 1)vi−1

x .vi = (λ0 − i + 1)vi−1
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Maximal Vectors

Summary: given a maximal vector v0, there is a set of vi satisfying

y .vi = (i + 1)vi+1

h.vi = (λ0 − 2i)vi

x .vi = (λ0 − i + 1)vi−1

The 2nd one implies the vi are linearly independent. But then only
finitely many vi can be nonzero. Let vm 6= 0 but vm+1 = 0.

Then span(v0, ..., vm) is a sl(2,F )-invariant subspace of V . (We
can see it’s sl(2,F )-invariant because we can see how sl(2,F ) acts
on it above.) Since (ϕ,V ) is an irreducible representation,
span(v0, ..., vm) = V
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Maximal Vectors

Consider x .vm+1 = (λ0 −m)vm. Since vm+1 = 0 and vm 6= 0, we
conclude λ0 = m.

λ0 = m = dim(V )− 1 is an integer. We call it the highest weight
of V . Each weight space of an irreducible representation is
1-dimensional. V admits weights −m,−m + 2, ...,m − 2,m.

The maximal vector we chose is unique up to scalars.

By Weyl’s Theorem, general representations of sl(2,F ) are direct
sums of irreducible representations described in this way.
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Applications

Actions of sl(2,F ) appear a lot.

Raising and lowering operators

Quantum mechanics. Spinors?

The root space decomposition of a semisimple Lie algebra admits
triples which generate subalgebras isomorphic to sl(2,F ). Knowing
how the adjoint representation of these subalgebras act is helpful.
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