Abstract: We present a version of the Pontryagin Maximum Principle for control
dynamics with a possibly non smooth, nonlipschitz and even discontinuous right-
hand side. The usual adjoint equation, where state derivatives occur, is replaced
by an integrated form, containing only differentials of the reference flow maps. The
resulting “integrated adjoint equation” leads to “adjoint vectors” that need not be
absolutely continuous, and could be discontinuous and unbounded. We illustrate
this with the “reflected brachistochrone problem,” for which the adjoint vectors
have a singularity at an interior point of the interval of definition of the reference
trajectory.

Keywords: Optimal control, minimum-time control

1. INTRODUCTION

We consider autonomous Lagrangian optimization problems in which it is desired to minimize an
integral $J = \int_{t^-}^{t^+} f_0(\xi(t), \eta(t)) \, dt$, subject to a dynamical constraint $\xi(t) = f(\xi(t), \eta(t))$ and
an endpoint condition $\partial \xi \in S$. Here the state x takes values in an open subset Ω of
\mathbb{R}^n, the control u has values in a set U, S (the “endpoint constraint set”) is a given subset of $\Omega \times \Omega$, (ξ, η) is a trajectory-control pair, i.e., a pair consisting
of an open-loop control η and a corresponding trajectory ξ, $\tau_-(\xi), \tau_+(\xi)$ are the initial and
terminal times of the trajectory ξ, and we write $\partial_\xi \equiv \xi(\tau_-(\xi)), \partial_\tau \equiv \xi(\tau_+(\xi)), \partial_\tau \xi \equiv (\partial_\tau \xi, \partial_\tau \xi)$. Under suitable smoothness conditions on the map $\Omega \times U \ni (x, u) \mapsto F(x, u) \in \mathbb{R}^{n+1} \sim \mathbb{R} \times \mathbb{R}^n$ (where $F(x, u) \equiv (f_0(x, u), f(x, u))$) and the set S (for example, if f_0 and f are class C^1 with respect to x for each u, some extra technical conditions are satisfied for the dependence on u, and S is a

smooth submanifold, or a closed convex set, or, more generally, a set locally equivalent to a closed convex set by means of a diffeomorphism of class C^1) one can write the “adjoint equation”

$$\dot{\pi} = -\pi \cdot \frac{\partial f}{\partial x} + \pi_0 \frac{\partial f_0}{\partial x} \left(= -\frac{\partial H}{\partial x} \right) \quad (1)$$

for a row-vector-valued function $t \mapsto \pi(t) \in \mathbb{R}_n$ and a nonnegative real constant π_0. If we let
$M_H(x, \eta, \pi_0) = \max\{H(x, u, \pi_0, \pi) : u \in U\}$, then the classical Pontryagin Maximum Principle
says that if (ξ, η) is optimal then there exists a nontrivial solution (π_0, π) of (1) for which the
“Hamiltonian maximization condition”

$$H(\xi(t), \eta(t), \pi_0, \pi(t)) = M_H(\xi(t), \pi_0, \pi(t)) \quad (2)$$

holds, as well as the “transversality condition”

$$(v, w) \in C \quad \Rightarrow \quad -\langle \partial_\tau v, \pi \rangle + \langle \partial_\tau \pi, w \rangle \geq 0. \quad (3)$$

Here H is the Hamiltonian, defined by

$$H(x, u, \pi_0, \pi) = p \cdot f(x, u) - \pi_0 f_0(x, u), \quad (4)$$

1 Partially supported by NSF Grant DMS01-03901
and C is the Bouligand tangent cone to S at $\partial \xi$. (Recall that the Bouligand tangent cone to a subset A of \mathbb{R}^m at a point $a \in A$ is the set of all vectors $v \in \mathbb{R}^m$ such that $v = \lim_{h_j \to 0} \frac{a_j - h_j}{h_j}$ for some sequence (a_j) of points of A that converges to a and some sequence (h_j) of positive reals that converges to 0.)

A similar necessary condition can be derived if f and f_0 are just Lipschitz with respect to x (with appropriate conditions on the u-dependence). All that is needed is to replace the adjoint differential equation (1) by the adjoint differential inclusion $\pi(t) \in -\partial_s H_0(\xi(t), \eta(t), \pi_0, \pi(t))$, where we use $\partial_s H(\xi(t), \eta(t), \pi_0, \pi(t))$ to denote the Clarke generalized gradient at the point $\xi(t)$ of the Lipschitz function $x \mapsto H(x, \eta(t), \pi_0, \pi(t))$. In this “nonsmooth maximum principle” the adjoint vector π is still absolutely continuous, as in the classical case.

The purpose of this note is to present, and illustrate with a very classical example, another “nonsmooth” version of the Maximum Principle in which f and f_0 are allowed to be even less smooth than Lipschitz (and could even be discontinuous), and the adjoint vector can fail to be absolutely continuous and can be discontinuous and even unbounded, but is a solution of a perfectly well defined “integrated” version of the adjoint equation.

2. THE MAIN THEOREM

To state our generalization of the maximum principle, we will need some definitions.

If E is a totally ordered set, with ordering \preceq, we use $E^{\leq 2}$ to denote the set of all ordered pairs $(s, t) \in E \times E$ such that $s \preceq t$, and write $E^{\leq 3}$ to denote the set of all ordered triples $(r, s, t) \in E \times E \times E$ such that $r \preceq s \preceq t$.

If S is a set, then I_S will denote the identity map of S. If A, B are sets, then the notations $f : A \rightarrow B$, $f : A \rightarrow B$ will indicate, respectively, that f is a possibly partially defined (abbr. “ppd”) map from A to B and that f is an everywhere defined map from A to B.

Definition 2.1. Let E be a totally ordered set with ordering \preceq, and let Ω be a set. A flow on Ω with time set E is a family $\Phi = \{\Phi_{t,s}\}_{(s,t) \in E^{\leq 2}}$ of ppd functions from Ω to \mathbb{R} such that

(F1) $\Phi_{t,s} \circ \Phi_{s,r} = \Phi_{t,r}$ whenever $(r, s, t) \in E^{\leq 3}$,
(F2) $\Phi_{t,t} = \mathbb{I}$ whenever $t \in E$.

If Φ is a flow on Ω with time set E, a real augmentation of Φ is a family $c = \{c_{t,r}\}_{(s,t) \in E^{\leq 2}}$ of ppd functions from Ω to \mathbb{R} such that

(RA) $c_{t,r}(x) = c_{s,r}(x) + c_{t,s}(\Phi_{s,r}(x))$ whenever $x \in \Omega$ and $(r, s, t) \in E^{\leq 3}$.

A real-augmented flow on Ω with time set E is a pair (Φ, c) such that Φ is a flow on Ω with time set E and c is a real augmentation of Φ. \hfill ∗

To any real-augmented flow (Φ, c) on a set Ω with time set E we can associate a family of mappings $\Phi^{aug}_{t,s} : \Omega^{aug} \rightarrow \Omega^{aug}$—where $\Omega^{aug} = \mathbb{R} \times \Omega$—by letting $\Phi^{aug}_{t,s}(x, \eta) = (x + c_{t,s}(x), \Phi_{t,s}(x))$ for each $(s, t) \in E^{\leq 2}$. Then $\Phi^{aug} = \{\Phi^{aug}_{t,s}\}_{(s,t) \in E^{\leq 2}}$ is a flow on Ω^{aug}.

Definition 2.2. If U is a set, a U-control is a mapping $\eta : [a, b] \rightarrow U$ defined on some nonempty compact subinterval $[a, b]^{\text{def}} = \Delta \text{Dom}(\eta)$ of \mathbb{R}.

Suppose that $\eta, \bar{\eta}$ are U-controls, $\text{Dom}(\eta) = [a, b]$, $h \in \mathbb{R}$, and $h \geq 0$. We say that $\bar{\eta}$ is obtained from η by \textit{an equal time constant control interval replacement} of length h if (a) $\text{Dom}(\bar{\eta}) = \text{Dom}(\eta)$, and (b) there exist a subinterval J of $[a, b]$ of length h and a $u \in U$ such that $\bar{\eta}(t) = \eta(t)$ whenever $t \in [a, b]\setminus J$ and $\bar{\eta}(t) = u$ whenever $t \in J$. We say that $\bar{\eta}$ is obtained from η by an \textit{interval deletion} of length h if $\text{Dom}(\bar{\eta}) = [a, b \setminus h]$ and there exists α such that (a) $a \leq \alpha \leq b - h$, (b) $\bar{\eta}(t) = \eta(t)$ whenever $a \leq t < \alpha$, and (c) $\bar{\eta}(t) = \eta(t + h)$ whenever $\alpha \leq t < b - h$. Finally, we will say that $\bar{\eta}$ is obtained from η by a \textit{constant control interval insertion} of length h if $\text{Dom}(\bar{\eta}) = [a, b + h]$ and there exist a, u such that $a \leq \alpha \leq b$ and $u \in U$, for which (a) $\bar{\eta}(t) = \eta(t)$ whenever $a \leq t < \alpha$, (b) $\bar{\eta}(t) = \eta(t - h)$ whenever $\alpha + h < t \leq b + h$, and (c) $\bar{\eta}(t) = u$ whenever $a \leq t \leq a + h$. If $m \in \mathbb{Z}$, $h \in \mathbb{R}$, $m \geq 0$, and $h \geq 0$, we say that $\bar{\eta}$ is obtained from η by \textit{an variable time constant control interval operations of total length h} if there exist U-controls $\eta_0, \eta_1, \ldots, \eta_m$ of some nonnegative numbers h_1, \ldots, h_m such that $h = h_1 + \cdots + h_m$, $\eta_0 = \eta$, and $\eta_m = \bar{\eta}$, for which η_j is obtained from η_{j-1}, for $j = 1, \ldots, m$, by either (a) an equal time constant control interval replacement of length h_j, or (b) an interval deletion of length h_j, or (c) a constant control interval insertion of length h_j. If in addition $\bar{\eta}$ can be obtained in this way using only the operation of Item (a), then we say that $\bar{\eta}$ is obtained from η by \textit{a equal time constant control interval operations of total length} h.

An equal time variational neighborhood of a U-control η is a set U of U-controls having the property that whenever $m \in \mathbb{Z}$ and $m \geq 0$ there exists a positive $h(m) \in \mathbb{R}$ such that, whenever a U-control $\bar{\eta}$ is obtained from η by m equal time constant control interval replacements of total length $\leq h(m)$ it follows that $\bar{\eta} \in U$. If, in addition, $h(m)$ can be chosen, for every m, so that
that \(\tilde{\eta} \in \mathcal{U} \) whenever \(\tilde{\eta} \) is obtained from \(\eta \) by \(m \) variable time constant control interval operations of total length \(\leq h(m) \), then we call \(\mathcal{U} \) a variable time variational neighborhood of \(\eta \).

We now consider the optimal control problem described in the introduction, and assume:

(A1) \(n \in \mathbb{Z}, n \geq 0, \Omega \) is open in \(\mathbb{R}^n \), \(U \) is a set, \(a_s, b_s \in \mathbb{R} \), and \(a_s \leq b_s \).

(A2) \(\eta_s \) (the “reference control”) is a \(U \)-control with domain \([a_s, b_s] \).

(A3) \(f, f_0, F \) are maps on \(\Omega \times U \) with values in \(\mathbb{R}^n \), \(\mathbb{R}^{n+1} \) respectively, such that \(F(x, u) = (f_0(x, u), f(x, u)) \) if \(x \in \Omega, u \in U \).

(A4) \(\xi_s : [a_s, b_s] \rightarrow \Omega \) is a trajectory of the system \(\hat{x} = \Phi_t(x, u) \) corresponding to \(\eta_s \) (i.e., \(\xi_s \) is absolutely continuous and satisfies \(\xi_s(t) = f(\xi_s(t), \eta_s(t)) \) for a.e. \(t \in [a_s, b_s] \)).

(A5) \(\eta_s \) is the restriction to \(\eta_s \) of \(\eta \), and \(\eta_s \) is a variable time variational neighborhood of \(\eta \) and \(\eta_s \) is a variable time variational neighborhood of \(\eta_s \).

(A6) \(\mathcal{U} \) is a relatively open subset of \([a_s, b_s] \) such that \(a_s \in \mathcal{E} \) and \(b_s \in \mathcal{E} \), and \((\Phi, c) \) is a real-augmented flow on \(\Omega \) with time set \(E \), for which:

(A7.a) \((\Phi, c) \) is the restriction to \(E \) of the augmented flow of the reference control \((\mathcal{U}, \mathcal{E}, \mathcal{F}) \) such that, if \(x, \tilde{x} \in \Omega, y \in \mathbb{R}, s, t \in E \),

\[
\begin{align*}
\dot{x} & = f_t(x, \eta_s(t)), \quad x(t) = \tilde{x} \quad \text{iff there exists an absolutely continuous curve} \\
\xi_s : [s, t] & \rightarrow \Omega \quad \text{such that} \\
\xi_s(t) & = f_t(\xi_s(t), \eta_s(t)) \quad \forall \ t \in [s, t], \\
\eta_s(t) & = \xi_s(t), \quad \eta_s(t) = \tilde{x},
\end{align*}
\]

(A7.b) if \(s \leq \tilde{s} \leq t \), then the maps \((s, t, x) \mapsto \Phi_{t,s}(x) \) and \((s, t, x) \mapsto c_{t,s}(x) \) are defined and continuous on the neighborhood of \(\{s, \tilde{s}, t, \xi_s(s)\} \), and are differentiable at \((s, \tilde{s}, t, \xi_s(s)) \).

(A7.c) \(\mathcal{U} \) is a variable time variational neighborhood of \(\eta_s \).

We denote \(H_t(\xi_t(t), \eta_t(t), \pi_t, \pi_0(t)) = 0 \) for all \(t \in E_{d\xi f} \).

(C4) \(\mathcal{U} \) is the transversality condition (3) holds.

Remark 2.4. The five conclusions (C1), (C2), (C3), (C4), and (C5) are known, respectively, as the nontriviality condition, the integrated adjoint equation, the Hamiltonian maximization condition, the transversality condition, and the vanishing Hamiltonian condition, and will be referred to by the corresponding acronyms “NTC,” “IAE,” “HMC,” “TC” and “VHC.”

Remark 2.5. Theorem 2.3 contains the classical “smooth” maximum principle because, when \(f \) and \(f_0 \) are of class \(C^1 \) with respect to \(x \) (and satisfy some extra regularity conditions for the dependence on \(u \)) then all our hypotheses hold, and the resulting IAE reduces to the classical adjoint equation by differentiating both sides with respect to \(s \). On the other hand, our result, as stated, clearly does not contain the nonsmooth maximum principle for Lipschitz right-hand sides. There is, however, a more general version, in which suitable “generalized differentials” are used instead of the ordinary differential. This theorem does contain the non-smooth result, which turns out to be a special case corresponding to the choice of the “Warga derive containers” as the concept of generalized differential.

3. THE REFLECTED BRACHISTOCHRON

As an example of a nontrivial application of Theorem 2.3, we let \(\mathcal{P} \) be the minimum time problem for the dynamical law

\[
\dot{x} = u\sqrt{|y|}, \quad \dot{y} = v\sqrt{|y|},
\]

with state \((x, y) \in \mathbb{R}^2 \) and control \((u, v) \in \mathbb{R}^2 \) subject to the control constraint \(u^2 + v^2 \leq 1 \). Given points \(A, B \in \mathbb{R}^2 \), we want to characterize the minimum-time trajectory from \(A \) to \(B \).

Remark 3.1. For minimum time problems such as \(\mathcal{P} \), \(\mathcal{U} \) is a variable time variational neighborhood of \(\eta_s \), and \(f_0(x, u) \equiv 1 \). Then \(c_{t,s}(x) = t - s \), so \(c_{t,s} \) is independent of \(x \), and then the IAE becomes the simpler statement that \(\pi(s) = \pi(t) \Delta \Phi_{t,s}(\xi_s(s)) \) whenever \(s, t \in E \) and \(s \leq t \). Furthermore, if we define \(h(x, u, p) = (p, f(x, u)) \), then the HMC just says that \(h(\xi(t), \eta_s(t), \pi(t)) = h(\xi(t), u, \pi(t)) \) whenever \(t \in E_{d\xi f}, u \in U \). The last conclusion of the theorem then says that the function \(H \rightarrow h(\xi(t), \eta_s(t), \pi(t)) \) is constant and has a nonnegative value.
To solve \mathcal{P}, we use Theorem 2.3 together with the classical (1696-7) results about the solutions of the brachistochrone problem (abbr. “BP”) of Johann Bernoulli. Define closed half-planes H^+, H^-, by $H^+ = \{(x,y)\mid y \geq 0\}$, $H^- = \{(x,y)\mid y \leq 0\}$. Let \mathcal{P}^+, resp. \mathcal{P}^-, be the minimum time problems for curves entirely contained in H^+ (resp. H^-) with endpoints in H^+ (resp. H^-). Define a “v-cycloid” to be an arc which is entirely contained in H^+ or H^- and is either (a) a vertical line segment or (b) a cycloid generated by a point P on a circle Γ that is tangent to the x axis and rolls without slipping. (In particular, if $H = H^+$ or $H = H^-$, and $\xi_* : [0, T] \mapsto H$ is a v-cycloid, then $\xi_*(t) \notin H^+ \cap H^-$ whenever $0 < t < T$.) Then it is well known that the solutions of \mathcal{P}^+ and \mathcal{P}^- are v-cycloids.

We now solve \mathcal{P}. Let $\xi_* : [0, T] \mapsto \mathbb{R}^2$ be a solution of \mathcal{P} with endpoints A, B. If ξ_* is entirely contained in H^+ or H^-, then ξ_* is a solution of \mathcal{P}^+ or of \mathcal{P}^-, so ξ_* is a v-cycloid. So all we need is to determine the minimum-time trajectories ξ_* that are not entirely contained in H^+ or H^-. Fix one such ξ_*. Then there exist a τ such that $0 < \tau \leq T$ and $\xi_*(\tau) \in H^+ \cap H^-$. It is then easy to show that τ is unique. (If τ was not unique, let t_1 be the smallest t such that $\xi_*(t) \in H^+ \cap H^-$.)

Then $0 < t_1 < t_2 \leq T$, and $\xi_*(t_1), \xi_*(t_2) \in H^+ \cap H^-$ for $t_1 < t_2$. Assume, without loss of generality, that $\xi_*(t) \in H^+$ for $0 \leq t \leq t_1$. The set $S = \{t \in [t_1, t_2] : \xi_*(t) \notin H^+ \cap H^-\}$ is open, so it is a union of a finite or countable set \mathcal{I} of pairwise disjoint open intervals, each of which is of the form $[\alpha, \beta [$, with $t_1 \leq \alpha < \beta \leq t_2$, $\xi_*(\alpha) \in H^+ \cap H^-$, and $\xi_*(\beta) \in H^+ \cap H^-$. If I is one of those intervals, then either $\xi_*(t) \in H^+ \cap H^-$ for all $t \in I$ or $\xi_*(t) \in H^- \cap H^+$ for all $t \in I$. In the latter case, we may replace the restriction of ξ_* to I by its reflection with respect to the x axis without changing the time. If we do this for all $I \in \mathcal{I}$, we obtain a new trajectory ξ_* that goes from A to B in the same time as ξ_*, and such that $\xi_*(t) \in H^+ \cap H^-$ for all $t \in I$ for all $I \in \mathcal{I}$. Then the restriction ξ_* of ξ_* to the interval $[0, t_2]$ is a time-optimal trajectory that goes from A to $\xi_*(t_2)$ and is entirely contained in H^+. Hence ξ_* is a v-cycloid, and $\xi_*(t)$ can only belong to the x axis when t is one of the endpoints of $[0, t_2]$. Since $\xi_*(t_1) \in H^+ \cap H^-$, it follows that $t_1 = t_2$. A similar argument shows that $t_2 = T$.

Hence both A and B belong to $H^+ \cap H^-$. It then follows that ξ_* is a solution of \mathcal{P} with endpoints A, B. So $\xi_*(t) \notin H^+ \cap H^-$ whenever $0 < t < T$, and this implies, given our construction of ξ_* from ξ by reflections, that ξ_* is either ξ itself or its reflection with respect to the x axis. In either case, ξ_* is entirely contained in one of the half-planes H^+, H^-, which is a contradiction.)

Let τ be the unique τ such that $0 < \tau \leq T$ and $\xi_*(\tau) \in H^+ \cap H^-$. Then $0 < \tau < T$ and the points A and B belong to different sides of the x axis. (Indeed, if $\tau = 0$ then $\xi_*(t)$ would belong to one of H^+, H^- whenever $0 < t < T$, so ξ_* would be entirely contained in H^+ or H^-. A similar contradiction would arise if $\tau = T$. So $0 < \tau < T$. If A and B were both in H^+, then $\xi_*(t) \in H^+$ for $0 \leq t < \tau$ and also for $\tau < t < T$, so once again ξ_* would be entirely contained in H^+. A similar contradiction arises if $A \in H^-$ and $B \in H^-$. So without loss of generality we may assume that $A \in H^+ \setminus H^-$ and $B \in H^+ \setminus H^-$. Then $\xi_*(t) \in H^+ \setminus H^-$ whenever $0 \leq t < \tau$ and $\xi_*(t) \in H^- \setminus H^+$ whenever $\tau < t < T$. So ξ_* is the concatenation of two time-optimal curves $\xi^+_\tau : [0, \tau] \mapsto H^+, \xi^-_\tau : [\tau, T] \mapsto H^-$. Then ξ^+_τ and ξ^-_τ are v-cycloids contained in H^+ and H^-. Let us assume that ξ^+_τ and ξ^-_τ are both arcs of cycloids. Let C_τ be the point where ξ_* crosses the x axis, so $C_\tau = \xi_*(\tau)$. Then the necessary conditions of the classical maximum principle do not determine C_τ, because they only apply on the intervals $\tau \leq T$, and say nothing about what happens at time τ, when our controlled dynamics is not of class C^1. We will now show how Theorem 2.3 yields an extra condition that determines C_τ.

Our first step is to embed ξ_* in a flow arising from a feedback control law. The arcs ξ^τ_Γ, ξ^-_Γ, are parts of full cycloid arcs Ξ^τ_Γ, Ξ^-_Γ, such that Ξ^τ_Γ goes from a point Q^τ on the x axis to the point C_τ and has the property that all the other points of Ξ^τ_Γ belong to $H^+ \setminus H^-$, while Ξ^-_Γ goes from C_τ to a point Q^-_Γ on the x axis and is such that all the other points of Ξ^-_Γ belong to $H^- \setminus H^+$. Write $Q^\tau = (\alpha^\tau, 0)$, $Q^-_\Gamma = (\alpha^-, 0)$, $C_\tau = (\alpha^0, 0)$.

The arcs Ξ^τ_Γ, Ξ^-_Γ, are the loci of points P^τ, P^-, attached to rolling circles Γ^τ, Γ^-, of radii R^τ, R^-, and then $|\alpha^0 - \alpha^\tau| = 2\pi R^\tau$ and $|\alpha^0 - \alpha^-| = 2\pi R^-$. Parametric equations for Ξ^τ_Γ can be written using as parameter the abscess α of the point where the rolling circle Γ^τ intersects the x axis $H^+ \cap H^-$. Then α takes values in the interval $I^\tau = [\min(\alpha^0, \alpha^\tau), \max(\alpha^0, \alpha^\tau)]$, which has length $2\pi R^\tau$. If we let $\theta^\tau = (R^\tau - 1)(\alpha^0 - \alpha^\tau)$, then the position of P^τ for a given value of α is $\Xi^\tau_\Gamma(\alpha) = (\alpha - R^\tau \sin \theta, R^\tau (1 - \cos \theta))$. (The circle Γ^τ rolls from left to right if $\alpha^\tau < \alpha^0$, and from right to left if $\alpha^0 < \alpha^\tau$.)

The midpoint μ^τ of the interval I^τ is given by $\mu^\tau = \frac{1}{2}(\alpha^0 + \alpha^\tau)$. We let Q^μ be the point where μ^τ intersects the x axis when $\alpha = \mu^\tau$, so that $Q^\tau = (\mu^\tau, 0)$. We define parametrized trajectories $\Xi^\mu_{\sigma, \bar{\sigma}}$, for each σ in a neighborhood
$N^+ = [1 - \varepsilon_1^+, 1 + \varepsilon_2^+]$ of 1 (where $\varepsilon_1^+, \varepsilon_2^+$ are chosen so that $0 < \varepsilon_1^+ < 1$ and $0 < \varepsilon_2^+$), by letting $\Xi^{\alpha}_{+\sigma}(\alpha) = \tilde{Q}^+ + \sigma(\Xi^{\alpha}_{+\sigma})(\alpha - \tilde{Q}^+)$ whenever $\alpha \in I^+$. Then each $\Xi^{\alpha}_{+\sigma}$ is an arc of cycloid, generated exactly like Ξ, with R^+ replaced by σR^+, and having contact points $Q^{+\sigma}$, $C^{+\sigma}$ with the x axis, where $Q^{+\sigma} = \tilde{Q}^+ + \sigma(\Xi^{\alpha}_{+\sigma})(\alpha - \tilde{Q}^+)$ and $C^{+\sigma} = \tilde{Q} + \sigma(\Xi^{\alpha}_{+\sigma})(a_0^\alpha - \tilde{Q}^+)$, so that $Q^{+\sigma}$ and $C^{+\sigma}$ are given by $Q^{+\sigma} = \left((1 - \sigma)\mu^+ + \sigma \alpha^+, 0 \right)$.

Then, if we let $S^+ = \{\Xi^{\alpha}_{+\sigma}(\alpha) : \sigma \in N^+, \alpha \in I^+\}$, the set S^+ is clearly the homeomorphic image of the rectangle $R^+ \times I^+$ under the map $\Psi^+: R^+ \to H^+$ given by $\Psi^+ (\sigma, \alpha) \overset{\text{def}}{=} \Xi^{\sigma}_{\alpha}(\alpha)$. Furthermore, the two images $\Psi^+ (N^+ \times \{\alpha^+\})$, $\Psi^+ (N^+ \times \{\alpha^0\})$, are subintervals of the x axis, while the images of all the points of R^+ that do not belong to $N^+ \times \{\alpha^+, \alpha^0\}$ lie in the open half-plane H^+. The map Ψ^+ is real analytic, and the partial derivatives $\frac{\partial \Psi^+}{\partial \sigma}$, $\frac{\partial \Psi^+}{\partial \alpha}$, are given by the formulas

$$
\frac{\partial \Psi^+}{\partial \sigma} = \sigma \Xi^{\alpha}_{+\sigma}(\alpha), \quad \frac{\partial \Psi^+}{\partial \alpha} = \Xi^{\alpha}_{+\sigma}(\alpha) - \tilde{Q}^+,
$$

where $\Xi^{\alpha}_{+\sigma}(\alpha) = \left(1 - \cos \theta, \sin \theta \right)$. If J^+ is the Jacobian determinant of Ψ^+ with respect to σ and α then a simple calculation shows that $J^+ = 0$ if $\alpha = \alpha^+$ or $\alpha = \alpha^0$. So

Ψ^+ is a real analytic diffeomorphism on the set $N^+ \times \text{Interior}(I^+)$. We now analyze the time parameter along the curves $\Xi^{\alpha}_{+\sigma}$. Let $\delta^+ = +1$ if $\alpha^+ < \alpha^0$ (i.e., if I^+ rolls from left to right, so time increases as α increases, i.e., $dt/\sigma > 0$), and $\delta^+ = -1$ if $\alpha^+ > \alpha^0$ (i.e., if I^+ rolls from right to left, in which case $dt/\sigma < 0$). If $\Xi^{\alpha}_{+\sigma}(\alpha) = (x(\alpha), y(\alpha))$, then it is easy to see that $dt = -2\sigma(R^{-\frac{1}{2}})^{\frac{1}{2}} \delta^+ \sigma d\alpha$. It follows that

δ^+ the time along the curve $\Xi^{\alpha}_{+\sigma}$ from $\Xi^{\alpha}_{+\sigma}(\alpha_1)$ to $\Xi^{\alpha}_{+\sigma}(\alpha_2)$ is $2\sigma(R^+)^{-\frac{1}{2}} \delta^+ (\alpha_2 - \alpha_1)$. A similar construction works for Ξ^-. In this case, the parametric equations turn out to be $\Xi^- = \left((\alpha - R^+ \sin \theta, -R^+(1 - \cos \theta) \right)$, where the variable α now takes values in the interval $I^- = [\min(\alpha^0, \alpha^-), \max(\alpha^0, \alpha^-)]$ (which has length $2\pi R^+$), and $\theta = \frac{\alpha - \alpha^-}{R^+}$. The circle I^- rolls from left to right if $\alpha^- < \alpha^-$, and from right to left if $\alpha^- > \alpha^0$. (Notice that I^- rolls from left to right iff it rotates counterclockwise, whereas I^+ rolls from left to right iff it rotates clockwise.)

The midpoint of I^- is $\mu^- = \frac{1}{2}(\alpha^- + \alpha^0)$. We let $\bar{Q}^- = (\mu^-, 0)$. We then define parametrized arcs $\Xi^{\alpha}_{+\sigma}$, for σ in a neighborhood $N^- = [1 - \varepsilon_1^-, 1 + \varepsilon_2^-]$ of 1 (where $0 < \varepsilon_1^- < 1$ and $0 < \varepsilon_2^-$), by letting $\Xi^{\alpha}_{-\sigma}(\alpha) = \bar{Q}^- + \sigma(\Xi^{\alpha}_{-\sigma})(\alpha - \bar{Q}^-)$ for $\alpha \in I^-$. Then each $\Xi^{\alpha}_{-\sigma}$ is an arc of cycloid, having contact points $Q^{-\sigma}$, $C^{-\sigma}$ with the x axis, where $Q^{-\sigma} = \bar{Q}^- + \sigma(\Xi^{\alpha}_{-\sigma})(\alpha - \bar{Q}^-)$ and $C^{-\sigma} = \bar{Q} + \sigma(\Xi^{\alpha}_{-\sigma})(a_0^\alpha - \bar{Q}^-)$, so that $Q^{-\sigma}$ and $C^{-\sigma}$ are given by $Q^{-\sigma} = \left((1 - \sigma)\mu^- + \sigma \alpha^-, 0 \right)$.

Then, if we let $S^- = \{\Xi^{\alpha}_{+\sigma}(\alpha) : \sigma \in N^-, \alpha \in I^-\}$, it is clear that the set S^- is the homeomorphic image of $R^- \times I^-$ under the smooth map $\Psi^- : R^- \to H^-$ given by $\Psi^-(\sigma, \alpha) \overset{\text{def}}{=} \Xi^{\sigma}_{\alpha}(\alpha)$. The Jacobian determinant of Ψ^- vanishes iff $\alpha = \alpha^-$ or $\alpha = \alpha^0$. Hence

Ψ^- is a diffeomorphism on $N^- \times \text{Interior}(I^-)$. If we let $\delta^- = +1$ if $\alpha^0 < \alpha^-$, i.e., $\alpha^0 < \alpha^0$ (i.e., if I^- rolls from right to left, in which case $dt/\sigma < 0$), then $dt = 2\sigma R^{-\frac{1}{2}}(R^-)^{-\frac{1}{2}} \delta^- \sigma d\alpha$, from which it follows that ($\#\#\#\#\#\#\$) the time along $\Xi^{\alpha}_{-\sigma}$ from $\Xi^{\alpha}_{+\sigma}(\alpha_1)$ to $\Xi^{\alpha}_{+\sigma}(\alpha_2)$ is equal to $2\sigma R^{-\frac{1}{2}}(R^-)^{-\frac{1}{2}} (\alpha_2 - \alpha_1)$. We now combine the two constructions by letting $\Xi^\sigma\alpha_2$, for each $\sigma \in I^+$, the concatenation of $\Xi^{\alpha}_{+\sigma}$ and $\Xi^{\alpha}_{-\sigma}$ where $\bar{\sigma}$ is chosen so that $C^{+\sigma} = C^{-\sigma}$. In view of (5) and (6), σ is given in terms of α by $\bar{\sigma} = \zeta(\alpha)$, where

$$
\zeta(\alpha) \overset{\text{def}}{=} \left(\alpha^0 - \mu^- \right)^{-1} (\mu^+ - \mu^- + \sigma(\alpha^0 - \mu^+)).
$$

(We guarantee that the map $I^+ \to \bar{\sigma}$ is bijective by choosing the ε_1^+ and ε_2^+.)

We now study the flow maps $\Phi_{t,s}$ associated to this family of trajectories. Let $S = S^+ \cup S^-$. Given any point $q \in S$, q belongs to the curve $\Xi^\sigma\alpha_2$ for a unique $\alpha \in I^+$. If $s, t \in \mathbb{R}$, and $t \geq s$, then we can follow $\Xi^\sigma\alpha_2$ in the direction of increasing time, starting at q at time s, until we exit S. If t does not exceed the exiting time from S, then $\Phi_{t,s}(q)$ is defined, and equal to the point of $\Xi^\sigma\alpha_2$ attained in this way at time t. We also define the augmentations $c_{t,s}$ by letting $c_{t,s}(q) = t - s$.

In order to apply Theorem 2.3, we take E to be the set $[0, T] \setminus \{ t \}$. In addition, it will also be convenient to embed our reference trajectory Ξ, in the “extended reference trajectory” Ξ, that we parametrize by time in such a way that $\Xi(t) = C_S$, so that $\Xi(t) = \Xi(t)$ for $t \in [0, T]$, and Ξ is defined on the interval $[\tau_1, \tau_2]$, where $\tau_1 = \tilde{t} - 4\pi \sqrt{R^+}$ and $\tau_2 = \tilde{t} + 4\pi \sqrt{R^-}$. Then

(\&) If $\tau_1 < s \leq t \leq \tau_2$, and $s \neq \tilde{t} \neq t$, then $\Phi_{t,s}$ is a real analytic diffeomorphism near Ξ_s.\]
To prove \((\&