1. Let S be the statement

“If a_1, b_1, a_2, b_2 are arbitrary real numbers, then $a_1 b_1 + a_2 b_2 \leq \sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}$.”

i. Write S is formal language.

ANSWER.

$$(\forall a_1, b_1, a_2, b_2 \in \mathbb{R}) a_1 b_1 + a_2 b_2 \leq \sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}$$

ii. Prove S.

PROOF:

Let a_1, a_2, b_1, b_2 be arbitrary real numbers.

We will prove that $a_1 b_1 + a_2 b_2 \leq \sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}$.

We will do a proof by contradiction.

Assume $\sim a_1 b_1 + a_2 b_2 \leq \sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}$.

Then $a_1 b_1 + a_2 b_2 > \sqrt{a_1^2 + a_2^2}\sqrt{b_1^2 + b_2^2}$.

Therefore $(a_1 b_1 + a_2 b_2)^2 > (a_1^2 + a_2^2)(b_1^2 + b_2^2)$.

On the other hand,

$$(a_1 b_1 + a_2 b_2)^2 = a_1^2 b_1^2 + a_2^2 b_2^2 + 2a_1 b_1 a_2 b_2,$$

and

$$(a_1^2 + a_2^2)(b_1^2 + b_2^2) = a_1^2 b_1^2 + a_2^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2.$$

Therefore

$$a_1^2 b_1^2 + a_2^2 b_2^2 + 2a_1 b_1 a_2 b_2 > a_1^2 b_1^2 + a_2^2 b_2^2 + a_1^2 b_2^2 + a_2^2 b_1^2.$$

Hence

$$2a_1 b_1 a_2 b_2 > a_2^2 b_2^2 + a_2^2 b_1^2,$$

so that

$$0 > a_1^2 b_2^2 + a_2^2 b_1^2 - 2a_1 b_1 a_2 b_2,$$

But

$$a_1^2 b_2^2 + a_2^2 b_1^2 - 2a_1 b_1 a_2 b_2 = (a_1 b_2 - a_2 b_1)^2,$$

and then

$$0 > (a_1 b_2 - a_2 b_1)^2.$$

However, $x^2 \geq 0$ for all $x \in \mathbb{R},$

so, in particular,

$$(a_1 b_2 - a_2 b_1)^2 \geq 0,$$
from which it follows that
\[\sim 0 > (a_1 b_2 - a_2 b_1)^2. \]

Hence
\[0 > (a_1 b_2 - a_2 b_1)^2 \wedge \sim 0 > (a_1 b_2 - a_2 b_1)^2, \]
which is a contradiction.

Hence \(a_1 b_1 + a_2 b_2 \leq \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}. \)

Since this has been proved for arbitrary real numbers \(a_1, a_2, b_1, b_2, \) it follows that
\[(\forall a_1, b_1, a_2, b_2 \in \mathbb{R}) a_1 b_1 + a_2 b_2 \leq \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}, \]
and our proof is complete.

2. Prove that the function \(f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \) defined by
\[f(m, n) = 2^{m-1}(2n - 1) \quad \text{for} \quad (m, n) \in \mathbb{N} \times \mathbb{N} \]
is a bijection from \(\mathbb{N} \times \mathbb{N} \) to \(\mathbb{N} \).

PROOF:
We have to prove that \(f \) is injective and that \(f \) is onto \(\mathbb{N} \).

First we prove that \(f \) is injective.

Let \((m, n), (m', n')\) be two arbitrary members of \(\mathbb{N} \times \mathbb{N} \).
Assume \(f(m, n) = f(m', n') \).
We want to prove that \((m, n) = (m', n')\).

Since \(f(m, n) = f(m', n') \), it follows that \(2^{m-1}(2n - 1) = 2^{m'-1}(2n' - 1) \).

Suppose \(m' > m \).
Then \(2^{m-1}(2n - 1) = 2^{m'-1}(2n' - 1) = 2^{m'-m}2^{m-1}(2n' - 1) \), so \(2n - 1 = 2^{m'-m}(2n' - 1) \).
Since \(m' > m \), the number \(2^{m'-m}(2n' - 1) \) is even.
So \(2^{m'-m}(2n' - 1) \) is not odd.
On the other hand, \(2n - 1 \) is odd.
But \(2n - 1 = 2^{m'-m}(2n' - 1) \), so the number \(2n - 1 \) is both odd and not odd, which is a contradiction.

So \(m' > m \)
A similar argument shows that \(m > m' \).

Hence \(m' = m \).
Since \(2^{m-1}(2n - 1) = 2^{m'-1}(2n' - 1) \) and \(m' = m \), it follows that \(2n - 1 = 2n' - 1 \)
Hence \(n' = n \).
Since \(m' = m \) and \(n' = n \), we can conclude that \((m', n') = (m, n)\).
So \(f(m, n) = f(m', n') \Rightarrow (m', n') = (m, n) \).

Since \((m, n)\) and \((m', n')\) are arbitrary members of \(\mathbb{N} \times \mathbb{N} \), we have proved that \(f \) is injective.

We now prove that \(f \) is onto \(\mathbb{N} \).

Let \(q \) be an arbitrary natural number.
We want to find \((m, n) \in \mathbb{N} \times \mathbb{N} \) such that \(f(m, n) = q \).
The number \(q \) is either equal to \(1 \) or \(> 1 \).
In the case when \(q = 1 \), we have \(1 = 2^01 = 2^{1-1}(2 \times 1 - 1) \), so \(1 = f(1, 1) \).
Now consider the case when \(q > 1 \).
Then \(q \) is prime or a product of primes.
Let \(\mu \) be the number of prime factors of \(q \) that are equal to \(2 \).
Then \(q = 2^\mu \hat{q} \), where the number \(\hat{q} \) is odd.
Let \(m = \nu + 1 \).
Let \(n \in \mathbb{N} \) be such that \(\hat{q} = 2^n - 1 \).
Then \(q = 2^{m-1}(2n - 1) \).
So \(q = f(m, n) \).
Therefore \(f \) is onto \(\mathbb{N} \), and our proof is complete.
3. The theorem on the greatest common divisor says that “if a, b are integers that are not both zero, and c is the greatest common divisor of a and b, then c is an integer linear combination of a and b.”

i. Give a precise mathematical definition of “greatest common divisor”.

ANSWER: If a, b are integers, the greatest common divisor of a and b is an integer c such that

- c divides a and c divides b,
- if x is any integer that divides a and divides b, then $x \leq c$.

ii. Give a precise mathematical definition of “integer linear combination”.

ANSWER: If a, b are integers, an integer linear combination of a and b is an integer q such that $(\exists u, v \in \mathbb{Z})q = ua + vb$.

iii. Find the greatest common divisor of 15 and 22, and express it as an integer linear combination of 15 and 22.

ANSWER: The greatest common divisor of 15 and 22 is 1, because 15 and 22 have no common positive integer factors other than 1. An expression of 1 as an integer linear combination of 15 and 22 is

$$1 = 3 \times 15 + (-2) \times 22,$$

because $3 \times 15 = 45$, $(-2) \times 22 = 44$, and $45 + (-44) = 1$. (WARNING: In the final exam I am going to use other numbers, not 15 and 22, but they are also going to be easy ones.)

iv. Prove the theorem.

PROOF:

Let S be the set of all positive integers that are linear combinations of a and b. That is, let

$$S = \{n \in \mathbb{Z} : n > 0 \land (\exists u, v \in \mathbb{Z})n = ua + vb\}$$

Then S is nonempty, because $a^2 + b^2 \in S$ (since $a^2 + b^2$ is clearly an integer linear combination of a and b, and $a^2 + b^2$ because of our hypothesis that a and b are not both zero). So by the Well-ordering Principle S has a smallest member c.

We now prove that c is the greatest common divisor of a and b.

We have to prove that

(I) c divides a and b.

(II) If d is any integer that divides both a and b, then $d \leq c$.

First we use the fact that c is a linear combination of a and b to pick integers m, n such that $c = ma + nb$.

We now prove that c divides a.

Using the division theorem, we pick integers q, r such that $a = cq + r$ and $0 \leq r < c$.

Then $a = (ma + nb)q + r$, so $r = (1 - mq)a + (-nq)b$. So r is a linear combination of a and b.

If $r > 0$ it would follow that $r \in S$, so r would be a member of S smaller than c, contradicting the fact that c is the smallest member of S. So $r = 0$.

Then $a = cq$, so c divides a.

The proof that c divides b is similar, so we omit it.

Finally, we prove Property (II) above.

Let d be an integer that divides a and b.

Pick integers u, v such that $a = ud$ and $b = vd$.

Then $c = ma + nb = uda + vdb = (ua + vb)d$, so d divides c.

Therefore, $d \leq c$ (because, if $c = kd, k \in \mathbb{Z}$, then $c = |c| = |k||d| \geq |d| \geq d$, using the fact that $|k| \geq 1$, which follows because $k \in \mathbb{Z}$ and $k \neq 0$; the fact that $k \neq 0$ is a consequence of the equality $c = kd$ and the inequality $c > 0$).

So we have proved (I) and (II).