Superrigidity and Classification Problems

Simon Thomas

Rutgers University

10th June 2006
Classification problems

Open Question

Is the classification problem for the fields of transcendence degree 8 strictly harder than that for the fields of transcendence degree 1?

Open Question

Does there exist a satisfactory classification of the fields of transcendence degree 1 in terms of suitably chosen complete invariants?

Following Friedman-Stanley and Hjorth-Kechris, we will use the theory of Borel equivalence relations to analyze the isomorphism relations on various classes of countable structures and develop a framework for measuring the complexity of possible complete invariants.
Borel reductions

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y.

(a) $E \leq_B F$ iff there exists a Borel map $f : X \rightarrow Y$ such that

$$x E y \iff f(x) F f(y).$$

In this case, f is called a Borel reduction from E to F.

(b) $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.

(c) $E <_B F$ iff both $E \leq_B F$ and $E \nmid_B F$.

Definition

More generally, $f : X \rightarrow Y$ is a Borel homomorphism from E to F iff

$$x E y \implies f(x) F f(y).$$
Milestones

$E_{K_\sigma} = \text{universal } K_\sigma$

$E_1 = \text{hypersmooth}$

$E_0 = \text{hyperfinite}$

$id_\mathbb{R} = \text{smooth}$

$E_\infty = \text{universal countable}$

Countable Borel equivalence relations
Definition

E_0 is the equivalence relation on $2^\mathbb{N}$ defined by

$$x \ E_0 \ y \quad \text{iff} \quad x(n) = y(n) \text{ for all but finitely many } n.$$

Definition

Let \mathbb{F}_2 be the free group on two generators. Then E_∞ is the equivalence relation on the powerset $\mathcal{P}(\mathbb{F}_2) = 2^{\mathbb{F}_2}$ defined by

$$X \ E_\infty \ Y \quad \text{iff} \quad \text{there exists } g \in \mathbb{F}_2 \text{ such that } gX = Y.$$
Some essentially countable universal equivalence relations

Theorem (Jackson-Kechris-Louveau)

The isomorphism relation on the space of connected locally finite graphs is essentially countable universal.

Theorem (Thomas-Velickovic)

The isomorphism relation on the space of fields of finite transcendence degree is essentially countable universal.

Theorem (Thomas-Velickovic)

The isomorphism relation on the space of finitely generated groups is countable universal.
Let \mathbb{F}_m be the free group on \{x_1, \ldots, x_m\} and let \mathcal{G}_m be the compact space of normal subgroups of \mathbb{F}_m. Since each m-generator group can be realised as a quotient \mathbb{F}_m/N for some $N \in \mathcal{G}_m$, we can regard \mathcal{G}_m as the space of m-generator groups. There are natural embeddings

$$\mathcal{G}_1 \hookrightarrow \mathcal{G}_2 \hookrightarrow \cdots \hookrightarrow \mathcal{G}_m \hookrightarrow \cdots$$

and we can regard

$$\mathcal{G} = \bigcup_{m \geq 1} \mathcal{G}_m$$

as the space of f.g. groups.
A slight digression

Theorem (Champetier-Guirardel)

If G is a finitely generated group, then the following are equivalent:

- G is a limit group in the sense of Sela.
- G is a limit of free groups in some compact space G_m.
- G has the same universal theory as a free group.

Open Question (Grigorchuk)

What is the Cantor-Bendixson rank of G_m?

Open Question (Ghys)

Does there exist a nonatomic \cong-invariant ergodic probability measure on G_m?
The isomorphism relation

Theorem (Champetier)

The isomorphism relation \(\cong \) *on the space* \(\mathcal{G} \) *of f.g. groups is a countable Borel equivalence relation.*

The natural action of the countable group \(\text{Aut}(F_m) \) on \(F_m \) induces a corresponding homeomorphic action on the compact space \(\mathcal{G}_m \) of normal subgroups of \(F_m \). Furthermore, each \(\pi \in \text{Aut}(F_m) \) extends to a homeomorphism of the space \(\mathcal{G} \) of f.g. groups.

Clearly if \(N, M \in \mathcal{G}_m \) and there exists \(\pi \in \text{Aut}(F_m) \) such that \(\pi(N) = M \), then \(F_m/N \cong F_m/M \). Unfortunately, the converse does not hold.
The isomorphism relation continued

Theorem (Tietze)

If \(N, M \in G_m \), then the following are equivalent:

1. \(\mathbb{F}_m/N \cong \mathbb{F}_m/M \).
2. There exists \(\pi \in \text{Aut}(\mathbb{F}_{2m}) \) such that \(\pi(N) = M \).

Corollary (Champetier)

The isomorphism relation \(\cong \) on the space \(G \) of f.g. groups is the orbit equivalence relation arising from the homeomorphic action of the countable group of finitary automorphisms of the free group \(\mathbb{F}_\infty \) on \(\{x_1, x_2, \ldots, x_m, \ldots\} \).
Essentially free countable Borel equivalence relations

Question

Can the isomorphism relation on \mathcal{G} be realised as the orbit equivalence relation of a free Borel action of a suitably chosen countable group?

Question (Jackson-Kechris-Louveau)

Equivalently, is every countable Borel equivalence relation essentially free? In other words, if E is a countable Borel equivalence relation, does there necessarily exist a free countable Borel equivalence relation F such that $E \sim_B F$?
Torsion-free abelian groups of finite rank

Definition

An additive subgroup $G \leq \mathbb{Q}^n$ has rank n iff G contains n linearly independent elements.

Definition

Let \cong_n denote the isomorphism relation on the standard Borel space $R(\mathbb{Q}^n)$ of torsion-free abelian groups of rank n.

Note that if $A, B \in R(\mathbb{Q}^n)$, then

$$A \cong B \iff \exists g \in GL_n(\mathbb{Q}) \ g(A) = B.$$

In other words, \cong_n is the orbit equivalence relation for the action of $GL_n(\mathbb{Q})$ on the space $R(\mathbb{Q}^n)$.
Some History

- In 1937, Baer gave a satisfactory classification of the rank 1 groups. (In fact, the isomorphism relation is hyperfinite.)
- In 1938, Kurosh and Malcev independently gave an unsatisfactory classification of the higher rank groups.

Problem (Fuchs 1973)

Characterize the torsion-free abelian groups of rank 2 by invariants.

- In 1998, Hjorth proved that the classification problem for the rank 2 groups was strictly harder than that for the rank 1 groups.

Question (Hjorth-Kečkris 1996)

Is the isomorphism relation for the torsion-free abelian groups of rank 2 countable universal?
The much maligned Malcev-Kurosh invariants

- For each prime p, choose some \mathbb{Z}_p-submodule of \mathbb{Q}_p^2 of rank 2

$$A_p = \mathbb{Z}_p v_1 \oplus \mathbb{Z}_p v_2 \text{ for some independent } v_1, v_2 \in \mathbb{Q}_p^2$$

$$= \mathbb{Q}_p v_1 \oplus \mathbb{Z}_p v_2 \text{ for some independent } v_1, v_2 \in \mathbb{Q}_p^2$$

$$= \mathbb{Q}_p^2$$

so that there exists $n \geq 1$ such that $n(\mathbb{Z} \oplus \mathbb{Z}) \leq A_p$ for all p.

- Then every torsion-free abelian group of rank 2 has the form

$$A = \bigcap_p [A_p \cap \mathbb{Q}^2]$$

- Furthermore, if $A, B \in R(\mathbb{Q}^2)$ and $g \in GL_2(\mathbb{Q})$, then

$$g \cdot A = B \iff g \cdot A_p = B_p \text{ for every prime } p.$$
Definition

An abelian group A is said to be p-local iff A is q-divisible for all primes $q \neq p$.

If $A \in R(\mathbb{Q}^2)$ is p-local, then $A_q = \mathbb{Q}_q^2$ for all $q \neq p$ and

$$A_p = \mathbb{Q}_p v_1 \oplus \mathbb{Z}_p v_2$$

if $A \not\cong \mathbb{Q} \oplus \mathbb{Q}, \mathbb{Z}_p \oplus \mathbb{Z}_p$.

Theorem

The classification problem for the p-local torsion-free abelian groups of rank 2 is Borel bireducible with the orbit equivalence relation of the action of $GL_2(\mathbb{Q})$ on the projective line $\mathbb{Q}_p \cup \{\infty\}$ over the p-adics.
Some applications of Superrigidity

Theorem (Hjorth-Thomas 2004)

If $p \neq q$ are distinct primes, then the classification problems for the p-local and q-local torsion-free abelian groups of rank 2 are incomparable with respect to Borel reducibility.

Theorem (Thomas 2000)

The complexity of the classification problems for the torsion-free abelian groups of rank n increases strictly with the rank n.

Corollary

For each $n \geq 1$, the isomorphism relation for the torsion-free abelian groups of rank n is not countable universal.
A slightly embarrassing question

Question

Is the isomorphism relation on the space of torsion-free abelian groups of finite rank countable universal?

Answer

Clearly not! But why?
Definition

Let E be a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ. Then E is strongly universal iff $E \upharpoonright Y$ is universal for every Borel subset $Y \subseteq X$ with $\mu(Y) = 1$.

Open Question

Does there exist a strongly universal countable Borel equivalence relation?
Borel cocycles

Let G be a countable group and let X be a standard Borel G-space with invariant ergodic probability measure μ. Suppose that the countable group H has a free Borel action on Y and that

$$f : X \to Y$$

is a Borel homomorphism between the corresponding orbit equivalence relations. Then we can define a Borel cocycle

$$\alpha : G \times X \to H$$

by setting

$$\alpha(g, x) = \text{the unique } h \in H \text{ such that } h \cdot f(x) = f(g \cdot x).$$
The cocycle identity

Note that

\[f(x) \xrightarrow{\alpha(g,x)} f(g \cdot x) \xrightarrow{\alpha(h,g \cdot x)} f(hg \cdot x) \]

and hence we have the identity:

\[\alpha(hg, x) = \alpha(h, g \cdot x)\alpha(g, x) \mu\text{-a.e. } x \]

In particular, \(f \) is a permutation group homomorphism iff

\[\alpha(g, x) = \alpha(g) \]

is a group homomorphism.
Cocycle equivalence

\[(X, \mu)\]

\[\beta(g, x) = b(g \cdot x) \alpha(g, x) b(x)^{-1} \quad \mu\text{-a.e } x\]
Popa Superrigidity

- Let G be a countably infinite group and consider the shift action on $2^G = \mathcal{P}(G)$.
- Let μ be the usual product probability measure on 2^G.
- Then μ is G-invariant and G acts ergodically on $(2^G, \mu)$.

Theorem (Popa)

Let Γ be a countably infinite Kazhdan group and let $G = \Gamma \times S$, where S is an arbitrary countable group. If H is any countable group, then every Borel cocycle

$$\alpha : G \times 2^G \rightarrow H$$

is equivalent to a group homomorphism of G into H.
The non-universality proof begins

Let S be a suitably chosen countable group and let

$$G = SL_3(\mathbb{Z}) \times S.$$

Let E be the orbit equivalence relation of the action of G on $(2^G, \mu)$. Suppose that

$$f : 2^G \rightarrow \bigsqcup_{n \geq 1} R(\mathbb{Q}^n)$$

is a Borel reduction from E to the isomorphism relation. After deleting a nullset, we can suppose that

$$f : 2^G \rightarrow R(\mathbb{Q}^n)$$

for some fixed $n \geq 1$.
The quasi-equality relation

Definition

If \(A, B \in R(\mathbb{Q}^n) \), then \(A \) and \(B \) are said to be **quasi-equal**, written \(A \approx_n B \), iff \(A \cap B \) has finite index in both \(A \) and \(B \).

Theorem (Thomas)

The quasi-equality relation \(\approx_n \) is hyperfinite.

For each \(A \in R(\mathbb{Q}^n) \), let \([A] \) be the \(\approx_n \)-class containing \(A \). We shall consider the induced action of \(GL_n(\mathbb{Q}) \) on

\[
X = \{ [A] \mid A \in R(\mathbb{Q}^n) \}
\]

of \(\approx_n \)-classes. (Of course, \(X \) is not a standard Borel space.)
Stabilizers of \approx_n-classes

Definition

For each $A \in R(\mathbb{Q}^n)$, the ring of quasi-endomorphisms is

$$\text{QE}(A) = \{ \varphi \in \text{Mat}_n(\mathbb{Q}) \mid (\exists m \geq 1) \ m\varphi \in \text{End}(A) \}.$$

Clearly $\text{QE}(A)$ is a \mathbb{Q}-subalgebra of $\text{Mat}_n(\mathbb{Q})$; and so there are only countably many possibilities for $\text{QE}(A)$.

Definition

$\text{QAut}(A)$ is the group of units of the \mathbb{Q}-algebra $\text{QE}(A)$.

Lemma (Thomas)

If $A \in R(\mathbb{Q}^n)$, then $\text{QAut}(A)$ is the setwise stabilizer of $[A]$ in $\text{GL}_n(\mathbb{Q})$.

Simon Thomas (Rutgers University) Logic and Mathematics 2006 10th June 2006
Defining the cocycle

For each \(x \in 2^G \), let \(A_x = f(x) \in R(\mathbb{Q}^n) \).

After deleting a nullset and slightly adjusting \(f \), we can suppose that the setwise stabilizer of each \([A_x]\) is a fixed subgroup \(L \leq GL_n(\mathbb{Q}) \).

Note that the quotient group \(H = N_{GL_n(\mathbb{Q})}(L)/L \) acts freely on the corresponding set \(Y = \{[A] \mid QAut(A) = L\} \) of \(\approx_n \)-classes.

Hence we can define a corresponding Borel cocycle

\[
\alpha : G \times 2^G \to H
\]

by setting

\[
\alpha(g, x) = \text{the unique } h \in H \text{ such that } h \cdot [A_x] = [A_{g \cdot x}].
\]
A suitably chosen S

- Let S be a countable simple nonamenable group which does not embed into any of the countably many possibilities for H.
- By Popa, after deleting a nullset and slightly adjusting f, we can suppose that
 \[\alpha : G = SL_3(\mathbb{Z}) \times S \to H \]
 is a homomorphism.
- Since $S \leq \ker \alpha$, it follows that $f : 2^G \to R(\mathbb{Q}^n)$ is a Borel homomorphism from the S-action on 2^G to the hyperfinite quasi-equality \approx_n-relation.
- Since S is nonamenable, it follows that μ-almost all x are mapped to a single \approx_n-class, which is a contradiction.
Another application of Popa Superrigidity

Definition

If G is a countably infinite group, let

$$\mathcal{C}_G = \{ x \in \mathcal{P}(G) | g \cdot x \neq x \text{ for all } 1 \neq g \in G \}$$

and let F_G be the orbit equivalence relation of G on \mathcal{C}_G.

It is easily checked that \mathcal{C}_G has μ-measure 1.
Essentially free countable Borel equivalence relations

Theorem

If E is a free countable Borel equivalence relation, then there exists a countable group G such that $F_G \not\preceq_B E$.

Corollary

E_∞ is not essentially free.

- Suppose that E can be realised by a free Borel H-action on X and let $G = \text{SL}_3(\mathbb{Z}) \times S$, where S is any countable simple group which does not embed into H.
- Arguing as above, if $f : (2)^G \to X$ is a Borel reduction, then we can suppose that f is S-invariant.
- Since S acts ergodically on $(2)^G$, it follows that μ-almost all x are mapped to a single point, which is a contradiction.
Some final open questions

Open Question

Is the isomorphism relation \(\cong_n \) for the torsion-free abelian groups of rank \(n \) essentially free?

Open Question

Suppose that \(E \) is a countable Borel equivalence relation on the standard Borel space \(X \) with invariant ergodic probability measure \(\mu \). Does there always exist a Borel subset \(Y \subseteq X \) with \(\mu(Y) = 1 \) such that \(E \upharpoonright Y \) is essentially free?

If so, then there does not exist a strongly universal countable Borel equivalence relation.