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Abstract. We prove that if U is a nonprincipal ultrafilter over ω, then the

set of normal subgroups of the ultraproduct
Q

U Alt(n) is linearly ordered

by inclusion. We also prove that the number of such ultraproducts up to

isomorphism is either 2ℵ0 or 22ℵ0 , depending on whether or not CH holds.

1. Introduction

If U is a nonprincipal ultrafilter over ω, then it is easily seen that the ultraproduct

GU =
∏

U Alt(n) is not a simple group. However, Elek-Szabó [3] have recently

shown that GU has a unique maximal proper normal subgroup. In this paper,

extending their analysis, we shall prove that the set NU of normal subgroups of

GU is linearly ordered by inclusion. As we shall see later, this result is an easy

consequence of the fact that the set EU = { 〈 gGU 〉 | 1 6= g ∈ GU } of normal

closures of nonidentity elements is linearly ordered by inclusion. More precisely, let

≡U be the convex equivalence relation on the linear order
∏

U{ 1, · · · , n } defined

by

fU ≡U hU iff 0 < limU
f(n)
h(n)

<∞;

and let LU = (
∏

U{ 1, · · · , n } )/≡U , equipped with the quotient linear order. Then

we shall prove that ( EU ,⊂ ) is isomorphic to LU .

In Section 3, we shall compute the number of ultraproducts GU =
∏

U Alt(n)

up to isomorphism. Of course, if CH holds, then each such ultraproduct GU is

saturated and hence is determined up to isomorphism by its first order theory; and

we shall show that (as expected) there are 2ℵ0 many ultraproducts up to elementary

equivalence. On the other hand, arguing as in Kramer-Shelah-Tent-Thomas [5],

we shall prove that if CH fails, then there exists a family {Uα | α < 22ℵ0} of

nonprincipal ultrafilters over ω such that the corresponding linear orders LUα
are
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pairwise nonisomorphic. Hence if CH fails, then there are 22ℵ0 many ultraproducts

GU up to isomorphism.

Finally, in Section 4, we shall briefly consider the currently open problems of

computing the number of universal sofic groups up to isomorphism and elementary

equivalence.

Acknowledgements: After this paper was written, we learned that the results in

Section 2 of this paper had been obtained some years earlier by Allsup-Kaye [1].

2. The normal subgroups of GU

Let U be a nonprincipal ultrafilter over ω and let GU =
∏

U Alt(n). In this

section, we shall prove the following result.

Theorem 2.1. The collection NU of normal subgroups of GU is linearly ordered

by inclusion.

The following easy observation will enable us to focus our attention on the set

EU = { 〈 gGU 〉 | 1 6= g ∈ GU } of normal closures of nonidentity elements.

Lemma 2.2. If G is any group, then the following statements are equivalent.

(a) The set of normal subgroups of G is linearly ordered by inclusion.

(b) The set of normal closures of nonidentity elements of G is linearly ordered

by inclusion.

Proof. Clearly (a) implies (b). Conversely, assume that (b) holds and let N , M be

normal subgroups of G. If for every g ∈ N , there exists h ∈M such that g ∈ 〈hG 〉,

then clearly N 6 M . Otherwise, there exists g ∈ N such that for every h ∈M , we

have that 〈 gG 〉 
 〈hG 〉 and so 〈hG 〉 6 〈 gG 〉, which implies that M 6 N . �

For each π ∈ Alt(n), let supp(π) = {` | π(`) 6= `}. In [3], Elek-Szabó proved that

if g = (πn)U ∈ GU , then

〈 gGU 〉 = GU iff limU
| supp(πn)|

n
> 0.

(This is an immediate consequence of Elek-Szabó [3, Proposition 2.3].) It follows

that MU = { (πn)U ∈ GU | limU
| supp(πn)|

n = 0 } is the unique maximal proper

normal subgroup of GU . This suggests that, in order to understand the normal

closure of an element (πn)U ∈ GU , we should consider the relative growth rate of
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| supp(πn)|. From now on, we adopt the convention that if (πn)U ∈ GU r 1, then

we always choose (πn) such that πn 6= 1 for all n ∈ ω; and the normal closure of

(πn)U will be denoted by N(πn)U .

Definition 2.3. Let � be the quasi-order on GU r 1 defined by

(πn)U � (ϕn)U iff limU
| supp(πn)|
| supp(ϕn)|

<∞.

Proposition 2.4. If (πn)U , (ϕn)U ∈ GU r 1 are nonidentity elements, then

(πn)U ∈ N(ϕn)U ⇐⇒ (πn)U � (ϕn)U .

We shall split the proof of Proposition 2.4 into a sequence of lemmas. We shall

begin by proving the easier implication.

Lemma 2.5. If (πn)U , (ϕn)U ∈ GU r 1 and (πn)U ∈ N(ϕn)U , then (πn)U � (ϕn)U .

Proof. If (πn)U ∈ N(ϕn)U , then there exists an integer k ≥ 1 such that (πn)U can

be expressed as a product of k conjugates of (ϕn)±1
U . Hence for U-a.e. n ∈ N, the

permutation πn can be expressed as a product of k conjugates of ϕ±1
n . This implies

that | supp(πn)| ≤ k| supp(ϕn)| and so limU | supp(πn)|/| supp(ϕn)| ≤ k. �

Recall that a permutation σ ∈ Alt(m) is said to be exceptional iff its conjugacy

class σSym(m) splits into two conjugacy classes in Alt(m). It is well-known that this

occurs iff the cycles of σ have distinct odd lengths.

Lemma 2.6. If σ ∈ Alt(m) is a nonexceptional fixed-point-free permutation, then

every element of Alt(m) can be expressed as a product of exactly 4 conjugates of σ.

Proof. This is an immediate consequence of Brenner [2, Theorem 3.05]. �

Lemma 2.7. If (πn)U , (ϕn)U ∈ GU r 1 and (πn)U � (ϕn)U , then (πn)U ∈ N(ϕn)U .

Proof. Suppose that (πn)U � (ϕn)U . As mentioned earlier, Elek-Szabó [3] have

proved that if limU
| supp(ϕn)|

n > 0, then N(ϕn)U = GU . Hence we can suppose

that limU
| supp(ϕn)|

n = 0. Let limU | supp(πn)|/| supp(ϕn)| ≤ k, where k ≥ 2 is

an integer. Then for U-a.e. n ∈ N, we have that | supp(πn)| ≤ k| supp(ϕn)| ≤ n.

Hence there exists a permutation σn ∈ Alt(n) such that the following conditions

are satisfied:
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(a) σn is a product of k conjugates ψ1, · · · , ψk of ϕn.

(b) If 1 ≤ i < j ≤ k, then supp(ψi) ∩ supp(ψj) = ∅.

(c) supp(πn) ⊆ supp(σn).

Regarding σn as an element of Alt(supp(σn)), we see that σn is a nonexceptional

fixed-point-free permutation. Hence, applying Lemma 2.6, it follows that πn is

a product of 4 conjugates of σn and this implies that (πn)U is a product of 4k

conjugates of (ϕn)U . �

Applying Proposition 2.4, it follows that if (πn)U , (ϕn)U ∈ GUr1 are nonidentity

elements, then

N(πn)U = N(ϕn)U iff 0 < limU
| supp(πn)|
| supp(ϕn)|

<∞;

and that ( EU ,⊂ ) is isomorphic to the linear order LU = (
∏

U{ 1, · · · , n } )/≡U .

This completes the proof of Theorem 2.1.

Remark 2.8. Clearly LU has a least element; namely, the ≡U -class containing the

constant functions. If we identify GU with its image under the embedding

GU → Sym(
∏

U
{ 1, · · · , n })

corresponding to the natural action

(πn)U · (`n)U = (πn(`n))U

of GU on
∏

U{ 1, · · · , n }, then the minimal nontrivial normal subgroup of GU is the

group Alt(
∏

U{ 1, · · · , n }) of finite even permutations of
∏

U{ 1, · · · , n }. Hence,

by Scott [7, 11.4.7], since

Alt(
∏

U
{ 1, · · · , n }) 6 GU 6 Sym(

∏
U
{ 1, · · · , n }),

it follows that Aut(GU ) is precisely the normalizer of GU in Sym(
∏

U{ 1, · · · , n }).

Of course, if CH holds, then the ultraproduct GU =
∏

U Alt(n) is saturated and

so |Aut(GU )| = 2ℵ1 .

Question 2.9. Is it consistent that Aut(GU ) =
∏
U Sym(n)?
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3. The number of nonisomorphic ultraproducts

In this section, we shall compute the number of ultraproducts GU =
∏

U Alt(n)

up to isomorphism. If CH holds, then each such ultraproduct is saturated and hence

is determined up to isomorphism by its first order theory. So the following result

implies that if CH holds, then there exist exactly 2ℵ0 ultraproducts
∏

U Alt(n) up

to isomorphism.

Theorem 3.1. There exist 2ℵ0 many ultraproducts
∏

U Alt(n) up to elementary

equivalence.

Proof. For each prime p ≥ 5, let Dp = {n ∈ ω | n ≥ p and n ≡ 0, 1, 2 mod p }.

Claim 3.2. There exists a first order sentence Φp such that for all n ≥ 7,

n ∈ Dp iff Alt(n) � Φp.

Proof of Claim 3.2. Clearly n ∈ Dp iff Alt(n) contains an element of order p with

at most 2 fixed points. To see that this property is first order definable, first note

that an element π ∈ Alt(n) of order p ≥ 5 has at most 2 fixed points iff there does

not exist a 3-cycle σ ∈ Alt(n) which commutes with π. Also note that if n ≥ 7,

then an element σ ∈ Alt(n) of order 3 is a 3-cycle iff σψσψ−1 has order at most 5

for all ψ ∈ Alt(n). �

Let P = { p ∈ ω | p ≥ 5 is prime }. Then it is enough to check that for each

subset S ⊆ P, the collection DS = {Dp | p ∈ S }∪{ωrDp | p ∈ PrS } has the finite

intersection property. So suppose that p1, · · · , p` ∈ S and that q1, · · · , qm ∈ P r S.

By the Chinese Remainder Theorem, there exists a positive integer n ∈ ω such that

• n ≡ 0 mod pi for all 1 ≤ i ≤ `; and

• n ≡ 3 mod qj for all 1 ≤ j ≤ m.

Clearly n ∈ Dp1 ∩ · · · ∩Dp`
∩ (ω rDq1) ∩ · · · ∩ (ω rDqm

). �

In order to compute the number of nonisomorphic ultraproducts GU when CH

fails, we shall focus our attention on the linearly ordered set ( EU ,⊂ ) of normal

closures of nonidentity elements. Clearly if U , B are nonprincipal ultrafilters over

ω and GU ∼= GB, then ( EU ,⊂ ) ∼= ( EB,⊂ ). Furthermore, in Section 2, we showed

that ( EU ,⊂ ) is isomorphic to LU = (
∏

U{ 1, · · · , n } )/≡U and clearly LU can be
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regarded as an initial segment of (
∏

U ω )/≡U . Hence the following result implies

if CH fails, then there exist 22ℵ0 ultraproducts GU up to isomorphism.

Definition 3.3. If L1, L2 are linear orders, then L1 ≈∗i L2 iff L1 and L2 have

nonempty isomorphic initial segments I1, I2 with |I1|, |I2| > 1.

The requirement that |I1|, |I2| > 1 is needed in Definition 3.3 because of the fact

that each linear order LU = (
∏

U{ 1, · · · , n } )/≡U has a first element; namely, the

≡U -class containing the constant functions.

Theorem 3.4. If CH fails, then there exists a set {Uα | α < 22ℵ0 } of nonprincipal

ultrafilters over ω such that

(
∏

Uα

ω )/≡Uα
6≈∗i (

∏
Uβ

ω )/≡Uβ

for all α < β < 22ℵ0 .

Proof. The proof of Kramer-Shelah-Tent-Thomas [5, Theorem 3.3] goes through

with just one minor change; namely, in the proof of Lemma 4.7, the collection

{Bs,t | s < t ∈ I }, where Bs,t = {n ∈ ω | fs(n) < ft(n)}, is replaced by

{Bs,t,k | s < t ∈ I and 1 ≤ k ∈ ω }, where Bs,t,k = {n ∈ ω | kfs(n) < ft(n)}. �

4. Universal sofic groups

In this final section, we shall briefly consider the currently open problems of com-

puting the number of the universal sofic groups up to isomorphism and elementary

equivalence.

Recall that if U is a nonprincipal ultrafilter over ω and GU =
∏

U Alt(n), then

MU =
{

(πn)U ∈ GU | limU
| supp(πn)|

n
= 0

}
is the unique maximal proper normal subgroup of GU . Let SU = GU/MU . Then

by Elek-Szabó [3], if Γ is a finitely generated group, then the following statements

are equivalent:

• Γ is a sofic group.

• Γ embeds into SU for some (equivalently every) nonprincipal ultrafilter U .
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For this reason, SU is said to be a universal sofic group. (A clear account of the

basic theory of sofic groups can be found in Pestov [6]. It is an important open

problem whether every finitely generated group is sofic.)

It is natural to conjecture that the number of universal sofic groups up to iso-

morphism is either 2ℵ0 or 22ℵ0 , depending on whether or not CH holds. However,

it is currently not even known whether it is consistent that there exist two noniso-

morphic universal sofic groups.

Question 4.1. Compute the number of universal sofic groups up to isomorphism.

In Section 3, simple arithmetic considerations enabled us to construct 2ℵ0 non-

elementarily equivalent ultraproducts
∏

U Alt(n). However, factoring by the maxi-

mal proper normal subgroup MU appears to eliminate all the arithmetic aspects of

the group SU . For example, Glebsky-Rivera [4] have recently shown that if g ∈ SU
and if p is any prime, then there exists h ∈ SU such that hp = g.

Question 4.2. Are all universal sofic groups SU elementarily equivalent?
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