Solutions to Homework 7

Problem \#1 (3 points)

Reflexive:
$\left(a_{1}, a_{2}\right) R\left(a_{1}, a_{2}\right)$ since E_{1} and E_{2} are themselves reflexive and therefore $a_{1} E_{1} a_{1}$ and $a_{2} E_{2} a_{2}$.
Symmetric:

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) R\left(b_{1}, b_{2}\right) & \Leftrightarrow a_{1} E_{1} b_{1} \text { and } a_{2} E_{2} b_{2} \\
& \Leftrightarrow b_{1} E_{1} a_{1} \text { and } b_{2} E_{2} a_{2} \text { (since } E_{1} \text { and } E_{2} \text { are themselves symmetric) } \\
& \Leftrightarrow\left(b_{1}, b_{2}\right) R\left(a_{1}, a_{2}\right)
\end{aligned}
$$

Transitive:
Assume that $\left(a_{1}, a_{2}\right) R\left(b_{1}, b_{2}\right.$ and $\left(a_{1}, a_{2}\right) R\left(c_{1}, c_{2}\right)$. This is true if and only if:

$$
\begin{aligned}
& a_{1} E_{1} b_{1} \text { and } a_{2} E_{2} b_{2} \text { and } a_{1} E_{1} c_{1} \text { and } a_{2} E_{2} c_{2} \\
& \left.\Leftrightarrow b_{1} E_{1} c_{1} \text { and } b_{2} E_{2} c_{2} \text { (by the transitivity of } E_{1} \text { and } E_{2}\right) \\
& \Leftrightarrow\left(b_{1}, b_{2}\right) R\left(c_{1}, c_{2}\right)
\end{aligned}
$$

Therefore, R is an equivalence relation.
Problem \#2 (3 points)
This is not a partial ordering since it is not antisymmetric. Consider $(a, b)=(1,4)$ and $(c, d)=(2,3)$. Then, $(a, b) R(c, d)$ since $1 \leq 2$. But also, $(c, d) R(a, b)$ since $3 \leq 4$. But, $(a, b) \neq(c, d)$.

It can also be easily shown that this is not transitive. Consider $(a, b)=(4,6),(c, d)=(5,2)$, and $(e, f)=(1,3)$. Then we have $(a, b) R(c, d),(c, d) R(e, f)$, but we do NOT have that $(a, b) R(e, f)$.

Problem \#3a (2 points)

An immediate successor of an element a is one such that $a \mid b$ and there does not exist $c \neq$ $b, c \neq a$ such that $a \mid c$ and $c \mid b$.

If $b=p a, p$ prime, then b is an immediate successor. To see this, consider c such that $a \mid c$ and $c \mid p a$.

Since $a \mid c$, then we have that $c=j a$. Now since $j a \mid p a$, we see that $j \mid p$. But the only divisors of p are 1 and p. If $j=1$, then $j a=a$, a contradiction. And if $j=p$, then $j a=p a$, a contradiction.

So, $p a$ is an immediate successor of a for each prime p. Since there are infinitely many primes, we have infinitely many immediate successors.

Problem \#3b (2 points)

We want to show that K is bounded above $\Leftrightarrow K$ is finite.
$" \Rightarrow$ "
K bounded above means that there exists b such that $k \mid b$ for every $k \in K$. By the nature of the expression $k \mid b$, this implies that $k \leq b$ (you can't be something's divisor and be LARGER). Therefore, $k \leq b$ for all $k \in K$. Since there are finitely many numbers less than any natural number b (namely b many of them), K must be finite.
$" \Leftarrow "$
K is finite, so list out its elements as $k_{1}, k_{2}, \ldots, k_{m}$. Then certainly $b=k_{1} k_{2} \ldots k_{m}$ is an upper bound for K, so K is bounded above.

