Solutions to Homework 6

Problem #1 (2 points)

Choose $(x, y) \in A \times (B \cap C)$ arbitrarily. Then we have:

$$\begin{aligned} (x,y) \in A \times (B \cap C) \Leftrightarrow x \in A \text{ and } y \in B \cap C \\ \Leftrightarrow x \in A \text{ and } (y \in B \text{ and } y \in C) \\ \Leftrightarrow (x \in A \text{ and } y \in B) \text{ and } (x \in A \text{ and } y \in C) \\ \Leftrightarrow (x,y) \in A \times B \text{ and } (x,y) \in A \times C \\ \Leftrightarrow (x,y) \in (A \times B) \cap (A \times C) \end{aligned}$$

So we have our desired result, $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Problem #2a (2 points)

Choose $(x, y) \in (A \times B) \cup (C \times D)$ arbitrarily. Then we have:

$$\begin{aligned} (x,y) \in (A \times B) \cup (C \times D) \Rightarrow (x,y) \in (A \times B) \text{ or } (x,y) \in (C \times D) \\ \Rightarrow (x \in A \text{ and } y \in B) \text{ or } (x \in C \text{ and } y \in D) \\ * \Rightarrow (x \in A \text{ or } x \in C) \text{ and } (y \in B \text{ or } y \in D) \\ \Rightarrow (x \in A \cup C) \text{ and } (y \in B \cup D) \\ \Rightarrow (x,y) \in (A \cup C) \times (B \cup D) \end{aligned}$$

*(Note for part b, this is the step that we have failed if we tried to use \Leftrightarrow 's)

So, we have our desired results, $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.

Problem #2b (1 point)

From the hint in part a, it's semi-obvious that we want to choose a set such that we have a unique $x \in A$ and a unique $y \in D$ (or equivalently C and B). So, the simplest such example would be $A = \{1\}, B = \{2\}, C = \{3\}, D = \{4\}.$

Then $(A \times B) \cup (C \times D) = \{(1, 2), (3, 4)\}$, where as $(A \cup C) \times (B \cup D) = \{(1, 2), (1, 4), (3, 2), (3, 4)\}$.

Problem #3 (2 points)

- (i) Reflexive: $(a, b) \sim (a, b)$ because ab = ba.
- (ii) Symmetric: $(a, b) \sim (c, d) \Leftrightarrow ad = bc \Leftrightarrow cb = da \Leftrightarrow (c, d) \sim (a, b).$
- (iii) Transitive:

$$(a,b) \sim (c,d) \text{ and } (a,b) \sim (e,f)$$

$$\Rightarrow ad = bc \text{ and } af = be$$

$$\Rightarrow \frac{a}{b} = \frac{c}{d} \text{ and } \frac{a}{b} = \frac{e}{f}$$

(remember $b, d, f \neq 0$ by the definition of S)

$$\Rightarrow \frac{c}{d} = \frac{e}{f}$$

$$\Rightarrow cf = de$$

$$\Rightarrow (c,d) \sim (e,f).$$

Therefore, \sim is an equivalence relation.

Problem #4 (3 points)

(i) Reflexive: aRa because ^a/_a = 1 ∈ Q (also a − a = 0 ∈ Q).
(ii) Symmetric: aRb ⇔ ^a/_b ∈ Q or a − b ∈ Q.
But, we know that ^a/_b ∈ Q ⇔ ^b/_a ∈ Q. Also, a − b ∈ Q ⇔ b − a ∈ Q. So, aRb ⇔ bRa.
(Justification: If ^a/_b = ^p/_q, p,q ∈ Z \ {0}, then, ^b/_a = ^q/_p. And, if a − b = ^p/_q, then, b − a = ^{-p}/_q)
(iii)Transitive: This is where we run into problems and we can show that this is actual NOT an equivalence relation. But, it's "close".

Consider aRb and aRc. If $\frac{a}{b} = \frac{p}{q} \in \mathbb{Q}$ and $\frac{a}{c} = \frac{s}{t} \in \mathbb{Q}$, it is easy to see that $\frac{b}{c} \in \mathbb{Q}$. Because $\frac{b}{c} = \frac{ab}{ac} = \frac{a}{c} \frac{b}{a} = \frac{sq}{pt} \in \mathbb{Q}$

Also if
$$a-b = \frac{p}{q} \in \mathbb{Q}$$
 and $a-c = \frac{s}{t} \in \mathbb{Q}$, then, $b-c = (b-a) + (a-c) = \frac{-p}{q} + \frac{s}{t} = \frac{-pt+qs}{qt} \in \mathbb{Q}$.

So, in these two special cases we do have that $(aRb \text{ and } aRc) \Rightarrow bRc$. The problem arises in the third case.

Consider $a = \sqrt{2}, b = 2\sqrt{2}, c = 1 + \sqrt{2}$. Then, $\frac{a}{b} = \frac{1}{2}$, so aRb, and $a - c = \sqrt{2} - (1 + \sqrt{2}) = -1$, so aRc.

But, $\frac{c}{b} = \frac{1+\sqrt{2}}{2\sqrt{2}} = \frac{\sqrt{2}+2}{4} = \frac{\sqrt{2}}{4} + \frac{1}{2}$. But this is not rational since (1)an irrational times a non-zero rational is irrational and (2)an irrational plus a rational is irrational.

And, $b - c = 2\sqrt{2} - (1 + \sqrt{2}) = \sqrt{2} - 1$, which is not rational by property (2) above. So, in this case *aRb* and *aRc*, but not *bRc*. So, transitivity fails and so this is NOT an equivalence relation.