Solutions to Homework 6

Problem \#1 (2 points)

Choose $(x, y) \in A \times(B \cap C)$ arbitrarily. Then we have:

$$
\begin{aligned}
(x, y) \in A \times(B \cap C) & \Leftrightarrow x \in A \text { and } y \in B \cap C \\
& \Leftrightarrow x \in A \text { and }(y \in B \text { and } y \in C) \\
& \Leftrightarrow(x \in A \text { and } y \in B) \text { and }(x \in A \text { and } y \in C) \\
& \Leftrightarrow(x, y) \in A \times B \text { and }(x, y) \in A \times C \\
& \Leftrightarrow(x, y) \in(A \times B) \cap(A \times C)
\end{aligned}
$$

So we have our desired result, $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Problem \#2a (2 points)

Choose $(x, y) \in(A \times B) \cup(C \times D)$ arbitrarily. Then we have:

$$
\begin{aligned}
(x, y) \in(A \times B) \cup(C \times D) & \Rightarrow(x, y) \in(A \times B) \text { or }(x, y) \in(C \times D) \\
& \Rightarrow(x \in A \text { and } y \in B) \text { or }(x \in C \text { and } y \in D) \\
& * \\
& \Rightarrow(x \in A \text { or } x \in C) \text { and }(y \in B \text { or } y \in D) \\
& \Rightarrow(x \in A \cup C) \text { and }(y \in B \cup D) \\
& \Rightarrow(x, y) \in(A \cup C) \times(B \cup D)
\end{aligned}
$$

*(Note for part b, this is the step that we have failed if we tried to use \Leftrightarrow 's)
So, we have our desired results, $(A \times B) \cup(C \times D) \subseteq(A \cup C) \times(B \cup D)$.

Problem \#2b (1 point)

From the hint in part a, it's semi-obvious that we want to choose a set such that we have a unique $x \in A$ and a unique $y \in D$ (or equivalently C and B). So, the simplest such example would be $A=\{1\}, B=\{2\}, C=\{3\}, D=\{4\}$.

Then $(A \times B) \cup(C \times D)=\{(1,2),(3,4)\}$, where as $(A \cup C) \times(B \cup D)=\{(1,2),(1,4),(3,2),(3,4)\}$.

Problem \#3 (2 points)

(i) Reflexive: $(a, b) \sim(a, b)$ because $a b=b a$.
(ii) Symmetric: $(a, b) \sim(c, d) \Leftrightarrow a d=b c \Leftrightarrow c b=d a \Leftrightarrow(c, d) \sim(a, b)$.
(iii) Transitive:

$$
\begin{aligned}
(a, b) \sim & (c, d) \text { and }(a, b) \sim(e, f) \\
& \Rightarrow a d=b c \text { and } a f=b e \\
& \Rightarrow \frac{a}{b}=\frac{c}{d} \text { and } \frac{a}{b}=\frac{e}{f}
\end{aligned}
$$

(remember $b, d, f \neq 0$ by the definition of S)
$\Rightarrow \frac{c}{d}=\frac{e}{f}$
$\Rightarrow c f=d e$
$\Rightarrow(c, d) \sim(e, f)$.
Therefore, \sim is an equivalence relation.

Problem \#4 (3 points)

(i) Reflexive: $a R a$ because $\frac{a}{a}=1 \in \mathbb{Q}$ (also $\left.a-a=0 \in \mathbb{Q}\right)$.
(ii) Symmetric: $a R b \Leftrightarrow \frac{a}{b} \in \mathbb{Q}$ or $a-b \in \mathbb{Q}$.

But, we know that $\frac{a}{b} \in \mathbb{Q} \Leftrightarrow \frac{b}{a} \in \mathbb{Q}$. Also, $a-b \in \mathbb{Q} \Leftrightarrow b-a \in \mathbb{Q}$. So, $a R b \Leftrightarrow b R a$.
(Justification: If $\frac{a}{b}=\frac{p}{q}, p, q \in \mathbb{Z} \backslash\{0\}$, then, $\frac{b}{a}=\frac{q}{p}$. And, if $a-b=\frac{p}{q}$, then, $b-a=\frac{-p}{q}$)
(iii) Transitive: This is where we run into problems and we can show that this is actual NOT an equivalence relation. But, it's "close".

Consider $a R b$ and $a R c$. If $\frac{a}{b}=\frac{p}{q} \in \mathbb{Q}$ and $\frac{a}{c}=\frac{s}{t} \in \mathbb{Q}$, it is easy to see that $\frac{b}{c} \in \mathbb{Q}$. Because $\frac{b}{c}=\frac{a b}{a c}=\frac{a}{c} \frac{b}{a}=\frac{s q}{p t} \in \mathbb{Q}$

Also if $a-b=\frac{p}{q} \in \mathbb{Q}$ and $a-c=\frac{s}{t} \in \mathbb{Q}$, then, $b-c=(b-a)+(a-c)=\frac{-p}{q}+\frac{s}{t}=\frac{-p t+q s}{q t} \in \mathbb{Q}$.
So, in these two special cases we do have that $(a R b$ and $a R c) \Rightarrow b R c$. The problem arises in the third case.

Consider $a=\sqrt{2}, b=2 \sqrt{2}, c=1+\sqrt{2}$. Then, $\frac{a}{b}=\frac{1}{2}$, so $a R b$, and $a-c=\sqrt{2}-(1+\sqrt{2})=-1$, so $a R c$.

But, $\frac{c}{\bar{b}}=\frac{1+\sqrt{2}}{2 \sqrt{2}}=\frac{\sqrt{2}+2}{4}=\frac{\sqrt{2}}{4}+\frac{1}{2}$. But this is not rational since (1)an irrational times a non-zero rational is irrational and (2)an irrational plus a rational is irrational.

And, $b-c=2 \sqrt{2}-(1+\sqrt{2})=\sqrt{2}-1$, which is not rational by property (2) above. So, in this case $a R b$ and $a R c$, but not $b R c$. So, transitivity fails and so this is NOT an equivalence relation.

