Solutions to Homework 5

Problem \#1 (2 points)

Base case, $\mathrm{n}=1$:

$$
\begin{aligned}
& \sum_{i=1}^{1} i^{3}=1 \\
& {\left[\frac{1(1+1)}{2}\right]^{2}=1 \sqrt{ }}
\end{aligned}
$$

Assume, the equation holds up to some n, then:

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{3} & =\sum_{i=1}^{n} i^{3}+(n+1)^{3} \\
& =\left[\frac{n(n+1)}{2}\right]^{2}+(n+1)^{3} \\
& =\frac{n^{2}(n+1)^{2}}{4}+\frac{4(n+1)^{3}}{4} \\
& =\frac{(n+1)^{2}\left(n^{2}+4(n+1)\right)}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} \\
& =\left[\frac{(n+1)(n+2)}{2}\right]^{2}
\end{aligned}
$$

Thus showing by induction that $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}, \forall n \in \mathbb{N}$.

Problem \#2 (2 points)

Base case, $n=1$:

$$
a_{1}=\frac{9^{1}-5^{1}}{2}=\frac{4}{2}=2 \sqrt{ }
$$

Assume the equation holds up to some n, then:

$$
\begin{aligned}
a_{n+1} & =7 a_{n}+9^{n}+5^{n} \\
& =\frac{7\left(9^{n}-5^{n}\right)}{2}+9^{n}+5^{n} \\
& =\frac{7 \cdot 9^{n}+2 \cdot 9^{n}-7 \cdot 5^{n}+2 \cdot 5^{n}}{2} \\
& =\frac{9 \cdot 9^{n}-5 \cdot 5^{n}}{2} \\
& =\frac{9^{n+1}-5^{n+1}}{2}
\end{aligned}
$$

Thus showing by induction that $a_{n}=\frac{9^{n}-5^{n}}{2}, \forall n \in \mathbb{N}$, when defined by this recursion.

Problem \#3 (3 points)

Base case, $\mathrm{n}=1, \mathrm{n}+1=2$:

$$
\begin{aligned}
& a_{1}=2^{1}-1=1 \sqrt{ } \\
& a_{2}=2^{2}-1=3 \sqrt{ }
\end{aligned}
$$

Assume the equation holds up to some $\mathrm{n}, \mathrm{n}+1$, then:

$$
\begin{aligned}
a_{n+2} & =3 a_{n+1}-2 a_{n} \\
& =3\left(2^{n+1}-1\right)-2\left(2^{n}-1\right) \\
& =3 \cdot 2^{n+1}-3-2 \cdot 2^{n}+2 \\
& =3 \cdot 2^{n+1}-2^{n+1}-1 \\
& =2 \cdot 2^{n+1}-1 \\
& =2^{n+2}-1
\end{aligned}
$$

Thus showing by induction that $a_{n}=2^{n}-1, \forall n \in \mathbb{N}$, when defined by this recursion.

Problem \#4 (3 points)

Base case, $\mathrm{n}=1$, a 2×2 square grid with a square removed can obviously be covered by an L-shaped tile.

Assume that we can cover a $2^{n} \times 2^{n}$ square grid. Then, for a $2^{n+1} \times 2^{n+1}$ square grid, we can divide it into 4 quadrants, all of size $2^{n} \times 2^{n}$. Now the tile we remove must fall into one of these quadrants, so by our assumption we can cover this quadrant. For the remaining 3 quadrants, we can place an L-shaped tile in the middle that straddles all 3 remaining quadrants. Now, covering these quadrants is identical to covering a $2^{n} \times 2^{n}$ square grid with one square removed, which again we know we can do by our assumption.

Thus, we have shown by induction that for any $n \in \mathbb{N}$, we can cover a $2^{n} \times 2^{n}$ square grid with one square removed by L-shaped tiles.

