Solutions to Homework 5

Problem #1 (2 points)

Base case, n = 1:
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Assume, the equation holds up to some n, then:
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Thus showing by induction that >  i* = ["("H)] , Vn € N.

Problem #2 (2 points)

Base case, n = 1:




Assume the equation holds up to some n, then:
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Thus showing by induction that a, = %, Vn € N, when defined by this recursion.
Problem #3 (3 points)

Basecase, n=1,n+1=2:
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Assume the equation holds up to some n, n+1, then:
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Thus showing by induction that a,, = 2" — 1, Vn € N, when defined by this recursion.

Problem #4 (3 points)

Base case, n = 1, a 2 x 2 square grid with a square removed can obviously be covered by an

L-shaped tile.

Assume that we can cover a 2" x 2" square grid. Then, for a 2" x 2"*! square grid, we
can divide it into 4 quadrants, all of size 2" x 2". Now the tile we remove must fall into one
of these quadrants, so by our assumption we can cover this quadrant. For the remaining
3 quadrants, we can place an L-shaped tile in the middle that straddles all 3 remaining
quadrants. Now, covering these quadrants is identical to covering a 2" x 2" square grid with

one square removed, which again we know we can do by our assumption.

Thus, we have shown by induction that for any n € N, we can cover a 2" x 2" square grid

with one square removed by L-shaped tiles.



