Solutions to Homework 4

Problem \#1 (2 points)

Base case, $\mathrm{n}=1$:

$$
\begin{aligned}
& \sum_{i=1}^{1} i^{2}=1 \\
& \frac{1(1+1)(2(1)+1)}{6}=1 \sqrt{ }
\end{aligned}
$$

Assume the equation holds up to some n, then:

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{2} & =(n+1)^{2}+\sum_{i=1}^{n} i^{2} \\
& =(n+1)^{2}+\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{(n+1)\left(2 n^{2}+n+6 n+6\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

Thus showing by induction that $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \forall n \in \mathbb{N}$.

Problem \#2 (3 points)

Base case, $\mathrm{n}=1$ (Note, that it varies by who you ask whether or not 0 is a natural number. The book defines \mathbb{N} as NOT containing 0 (p. 96), so I followed this convention. However, I did not penalize if people chose 0 as a base case here):

$$
\begin{aligned}
& 1+x^{1}=x+1 \\
& \frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{x-1}=x+1 \sqrt{ }
\end{aligned}
$$

Assume the equation holds up to some n , then:

$$
\begin{aligned}
1+x+x^{2}+\ldots+x^{n}+x^{n+1} & =\frac{x^{n+1}-1}{x-1}+x^{n+1} \\
& =\frac{x^{n+1}-1+x^{n+2}-x^{n+1}}{x-1} \\
& =\frac{x^{n+2}-1}{x-1}
\end{aligned}
$$

Thus showing by induction that $1+x+\ldots+x^{n}=\frac{x^{n+1}-1}{x-1}$.
Problem \#3 (2 points)

Base case, $\mathrm{n}=1$:

$$
\begin{aligned}
& \sum_{i=1}^{1} \frac{1}{(i+2)(i+3)}=\frac{1}{12} \\
& \frac{1}{3}-\frac{1}{1+3}=\frac{1}{12} \sqrt{ }
\end{aligned}
$$

Assume the equation holds up to some n, then:

$$
\begin{aligned}
\sum_{i=1}^{n+1} \frac{1}{(i+2)(i+3)} & =\frac{1}{(n+3)(n+4)}+\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)} \\
& =\frac{1}{(n+3)(n+4)}+\frac{1}{3}-\frac{1}{n+3} \\
& =\frac{1}{3}+\frac{1-(n+4)}{(n+3)(n+4)} \\
& =\frac{1}{3}+\frac{-n-3}{(n+3)(n+4)} \\
& =\frac{1}{3}-\frac{1}{n+4}
\end{aligned}
$$

Thus showing by induction that $\sum_{i=1}^{n} \frac{1}{(i+2)(i+3)}=\frac{1}{3}-\frac{1}{n+3}$.

Problem \#4 (3 points)

Base case, 1 set:

$$
A_{1} \subseteq A_{1} \sqrt{ }
$$

Assume the statement holds up to some n, then, for sets $A_{1}, A_{2}, \ldots, A_{n}, A_{n+1}$:
There exists $k, 1 \leq k \leq n$, such that $A_{k} \subseteq A_{i} \forall i, 1 \leq i \leq n$.
Now, for the set A_{n+1}, there are two distinct possibilities:
(1) $A_{k} \subseteq A_{n+1}$, in which case $A_{k} \subseteq A_{i} \forall i, 1 \leq i \leq \mathbf{n}+\mathbf{1}$ or
(2) $A_{n+1} \subseteq A_{k}$ (and obviously $A_{n+1} \subseteq A_{n+1}$), in which case $A_{n+1} \subseteq A_{i} \forall i, 1 \leq i \leq n+1$

Problem \#2.4.13, Towers of Hanoi (3 points)

Base case, 1 disk:
Obviously it only takes 1 move to transfer 1 disk, and

$$
2^{1}-1=1 \sqrt{ }
$$

Assume the solution for the puzzle is true up to n disks, then for $n+1$ disks:
It takes $2^{n}-1$ moves to transfer the top n disks (by induction)
It takes 1 move to transfer the $(n+1)^{\text {st }}$ (largest) disk to the remaining open peg
It takes another $2^{n}-1$ moves to transfer again the top n disks to the same peg as the largest
So, the entire sequence takes $\left(2^{n}-1\right)+1+\left(2^{n}-1\right)=2 * 2^{n}-1=2^{n+1}-1$ moves. Thus showing by induction that n disks can be transferred in $2^{n}-1$ moves.

