Solutions to Homework 3

Problem \#1 Choose $x \in(A \cup B) \backslash(A \cap B)$ arbitrarily, then:

$$
\begin{aligned}
x \in(A \cup B) \backslash(A \cap B) & \Leftrightarrow(x \in A \cup B) \text { and } n o t(x \in A \cap B) \\
& \Leftrightarrow(x \in A \text { or } x \in B) \text { and } \text { not }(x \in A \text { and } x \in B) \\
& \Leftrightarrow(x \in A \text { or } x \in B) \text { and }(x \notin A \text { or } x \notin B) \\
& \Leftrightarrow(x \in A \text { and } x \notin A) \text { or }(x \in A \text { and } x \notin B) \text { or }(x \in B \text { and } x \notin A) \text { or }(x \in B \text { and } x \notin B) \\
& \quad \text { Note that we cannot have }(x \in A \text { and } x \notin A) \text { and likewise for B } \\
& \Leftrightarrow(x \in A \text { and } x \notin B) \text { or }(x \in B \text { and } x \notin A) \\
& \Leftrightarrow(x \in A \backslash B) \text { or }(x \in B \backslash A) \\
& \Leftrightarrow x \in(A \backslash B) \cup(B \backslash A)
\end{aligned}
$$

Since our choice of x was arbitary, this gives us $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$

Problem \#2a This is false, consider the following counterexample:

$$
\begin{aligned}
& A=\{1\}, B=\{2\}, C=\{3\} \\
& \text { Then, } A \cup(B \backslash C)=\{1,2\} \\
& \text { And, }(A \cup B) \backslash(A \cup C)=\{2\} .
\end{aligned}
$$

Problem \#2b This is true by the following proof. Choose $x \in A \cap(B \backslash C)$ arbitrarily, then:

$$
\begin{aligned}
x \in A \cap(B \backslash C) & \Leftrightarrow(x \in A) \text { and }(x \in B \text { and } x \notin C) \\
& \Leftrightarrow x \in A \text { and } x \in B \text { and } x \notin C \\
& \Leftrightarrow(x \in A \text { and } x \in B) \text { and }(x \notin C \text { or } x \notin A)
\end{aligned}
$$

Note that we can add $x \notin A$ since we know this must always be false.

$$
\begin{aligned}
& \Leftrightarrow(x \in A \cap B) \text { and not }(x \in C \text { and } x \in A) \\
& \Leftrightarrow(x \in A \cap B) \text { and not }(x \in A \cap C) \\
& \Leftrightarrow x \in(A \cap B) \backslash(A \cap C)
\end{aligned}
$$

Since our choice of x was arbitrary, this gives us $A \cap(B \backslash C)=(A \cap B) \backslash(A \cap C)$.

Problem \#3a

$$
\begin{aligned}
& \bigcup_{q \in \mathbb{Q}^{+}} D_{q}=\mathbb{R} \text { since }\left(\frac{1}{2}-q, \frac{1}{2}+q\right) \rightarrow(-\infty,+\infty) \text { as } q \rightarrow+\infty \\
& \bigcap_{q \in \mathbb{Q}^{+}} D_{q}=\left\{\frac{1}{2}\right\} \text { since } \frac{1}{2} \in\left(\frac{1}{2}-q, \frac{1}{2}+q\right) \forall q \in \mathbb{Q}^{+}
\end{aligned}
$$

Note that $0 \notin \mathbb{Q}^{+}$.

Problem \#3b

$$
\begin{aligned}
& \bigcup_{q \in \mathbb{Q}} K_{q}=\mathbb{R} \text { since clearly }\left(\mathbb{R} \backslash\left\{q_{1}\right\}\right) \cup\left(\mathbb{R} \backslash\left\{q_{2}\right\}\right)=\mathbb{R} \forall q_{1}, q_{2} \in \mathbb{Q} \\
& \bigcap_{q \in \mathbb{Q}} K_{q}=\mathbb{R} \backslash \mathbb{Q} \text { since each } q \in \mathbb{Q} \text { is missing from exactly one of the } K_{q}{ }^{\prime} \text { s }
\end{aligned}
$$

Problem \#4 Choose $x \in \mathcal{P}(A) \cup \mathcal{P}(B)$ arbitrarily, then:

$$
\begin{align*}
x \in \mathcal{P}(A) \cup \mathcal{P}(B) & \Rightarrow(x \in \mathcal{P}(A)) \text { or }(x \in \mathcal{P}(B)) \tag{1}\\
& \Rightarrow(x \subseteq A) \text { or }(x \subseteq B) \tag{2}\\
& \Rightarrow x \subseteq(A \cup B) \tag{3}\\
& \Rightarrow x \in \mathcal{P}(A \cup B) \tag{4}
\end{align*}
$$

Since our choice of x was arbitrary, we have that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
Note that it is not true that these two are equal. To see this let $A=\{1\}, B=\{2\}, x=\{1,2\}$. Clearly $x \in \mathcal{P}(A \cup B)$, but $x \notin \mathcal{P}(A) \cup \mathcal{P}(B)$.

This proof would not be accurate if we used \Leftrightarrow 's instead of \Rightarrow 's. In particular the proof would break down between steps (2) and (3) by the above example of A, B, and x .

