Countable Borel Equivalence Relations
and
The Martin Conjecture

Simon Thomas
Rutgers University
25th August 2008
Definition

A standard Borel space is a complete separable metric space equipped with its σ-algebra of Borel subsets.

Some Examples

- \mathbb{R}, $[0, 1]$, $2^\mathbb{N} = \mathcal{P}(\mathbb{N})$, ...
- If σ is a sentence of $L_{\omega_1\omega}$, then

 $$\text{Mod}(\sigma) = \{ \mathcal{M} = \langle \mathbb{N}, \cdots \rangle \mid \mathcal{M} \models \sigma \}$$

 is a standard Borel space.
Let G be the set of groups with underlying set \mathbb{N}.

We can identify each group $G \in G$ with the graph of its multiplication operation.

Then G is a Borel subset of the Cantor space $2^{\mathbb{N} \times \mathbb{N} \times \mathbb{N}}$ and hence G is a standard Borel space.

For later use, note that if $G, H \in G$, then

$$G \cong H \text{ iff } \exists \pi \in \text{Sym}(\mathbb{N}) \pi[m_G] = m_H.$$
Borel maps

Definition

Let X, Y be standard Borel spaces.

- Then the map $\varphi : X \to Y$ is **Borel** iff $\text{graph}(\varphi)$ is a Borel subset of $X \times Y$.

- Equivalently, $\varphi : X \to Y$ is Borel iff $\varphi^{-1}(B)$ is a Borel set for each Borel set $B \subseteq Y$.

An Analogue of Church’s Thesis

\[\text{EXPLICIT} = \text{BOREL} \]
Analytic and Borel equivalence relations

Definition

Let E be an equivalence relation on the standard Borel space X.

- E is **analytic** iff E is an analytic subset of $X \times X$.
- E is **Borel** iff E is a Borel subset of $X \times X$.

Example

If $G, H \in \mathcal{G}$, then

$$G \cong H \text{ iff } \exists \pi \in \text{Sym}(\mathbb{N}) \quad \pi[m_G] = m_H.$$

Hence $\cong_\mathcal{G}$ is an analytic equivalence relation.

Theorem (Folklore)

The isomorphism relation on \mathcal{G} is analytic but **not** Borel.
The Polish space \mathcal{G}_{fg} of f.g. groups

- A marked group (G, \bar{s}) consists of a f.g. group with a distinguished sequence $\bar{s} = (s_1, \cdots, s_m)$ of generators.

- For each $m \geq 1$, let \mathcal{G}_m be the set of isomorphism types of marked groups $(G, (s_1, \cdots, s_m))$ with m distinguished generators.

- Then there exists a canonical embedding $\mathcal{G}_m \hookrightarrow \mathcal{G}_{m+1}$ defined by

 $$(G, (s_1, \cdots, s_m)) \mapsto (G, (s_1, \cdots, s_m, 1_G)).$$

- And $\mathcal{G}_{fg} = \bigcup \mathcal{G}_m$ is the space of f.g. groups.
The Polish space G_{fg} of f.g. groups

- Let $(G, \bar{s}) \in G_m$ and for each $\ell \geq 1$, let
 \[B_\ell(G, \bar{s}) = \{ g \in G \mid \text{length}_S(g) \leq \ell \}. \]

- The basic open neighborhoods of (G, \bar{s}) in G_m are given by
 \[U_{(G,\bar{s}),\ell} = \{ (H, \bar{t}) \in G_m \mid B_\ell(H, \bar{t}) \cong B_\ell(G, \bar{s}) \}, \quad \ell \geq 1. \]

Example

For each $n \geq 1$, let $C_n = \langle g_n \rangle$ be cyclic of order n. Then:

\[\lim_{n \to \infty} (C_n, g_n) = (\mathbb{Z}, 1). \]
A slight digression

Some Isolated Points
- Finite groups
- Finitely presented simple groups

The Next Stage
- $SL_3(\mathbb{Z})$

Question (Grigorchuk)
What is the Cantor-Bendixson rank of G_{fg}?
The isomorphism relation on G_{fg} is a Borel equivalence relation.

In fact, the isomorphism relation on G_{fg} is a countable Borel equivalence relation.

The Borel equivalence relation E is countable iff every E-class is countable.
Countable Borel equivalence relations

Standard Example
Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E^X_G is a countable Borel equivalence relation.

Theorem (Feldman-Moore)
If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E = E^X_G$.
The Turing equivalence relation

Definition

The *Turing equivalence relation* \equiv_T on $2^\mathbb{N}$ is defined by

$$A \equiv_T B \iff A \leq_T B \; \& \; B \leq_T A,$$

where \leq_T denotes Turing reducibility.

Remark

Clearly \equiv_T is a countable Borel equivalence relation on $2^\mathbb{N}$.

Vague Question

Can \equiv_T be realised as the orbit equivalence relation of a “nice” Borel action of some countable group?
Borel reductions

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

- $E \leq_B F$ iff there exists a Borel map $f : X \to Y$ such that
 \[x \mathrel{E} y \iff f(x) \mathrel{F} f(y). \]

 In this case, f is called a **Borel reduction** from E to F.

- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.

- $E <_B F$ iff both $E \leq_B F$ and $E \not\sim_B F$.

Simon Thomas (Rutgers University)

RIMS Set Theory Workshop

25th August 2008
Some Examples

- Turing equivalence on $2^\mathbb{N}$.
- The isomorphism relations on the space G_{fg} of f.g. groups.
- An interesting theory due to Dougherty, Harrington, Hjorth, Kechris, Jackson, Louveau,...
- Most basic questions remain open.
Definition

The Borel equivalence relation E is smooth iff $E \leq_B \text{id}_{2^\mathbb{N}}$.

Example

The isomorphism relation for countable divisible abelian groups is smooth.

Theorem

The countable Borel equivalence relation E on X is smooth iff X/E is a standard Borel space.
Countable Borel equivalence relations

\[E_\infty = \text{universal} \]

\[E_0 = \text{hyperfinite} \]

\[id_{2^\mathbb{N}} = \text{smooth} \]

Definition

\(E_0 \) is the equivalence relation of eventual equality on the space \(2^\mathbb{N} \) of infinite binary sequences.

Theorem (DJK)

If \(E \) is countable Borel, then \(E \) can be realized by a Borel \(\mathbb{Z} \)-action iff \(E \leq_B E_0 \).

Theorem (Gao-Jackson)

If \(G \) is a countable abelian group and \(X \) is a standard Borel \(G \)-space, then \(E_X^G \leq_B E_0 \).
Countable Borel equivalence relations

Definition

A countable Borel equivalence relation E is **universal** iff $F \leq_B E$ for every countable Borel equivalence relation F.

Theorem (Thomas-Velickovic)

The isomorphism relation on G_{fg} is countable universal.

Definition

A countable Borel equivalence relation E_∞ is **universal** if E_∞ is hyperfinite.

Definition

A countable Borel equivalence relation E_0 is **hyperfinite**.

Definition

A countable Borel equivalence relation $id_{2^\mathbb{N}}$ is **smooth**.
Countable Borel equivalence relations

Theorem (Adams-Kechris)
There exist 2^{\aleph_0} many countable Borel equivalence relations up to Borel bireducibility.

Question
Where does \equiv_T fit into this picture?

Conjecture (Kechris)
\equiv_T is universal.

Conjecture (Martin)
\equiv_T is not universal.
The Turing degrees

Definition

The set of *Turing degrees* is defined to be

\[\mathcal{D} = \{ a = [A]_\equiv_T \mid A \in 2^\mathbb{N} \}. \]

Definition

A subset \(X \subseteq \mathcal{D} \) is said to be **Borel** iff

\[X^* = \bigcup \{ a \mid a \in X \} \]

is a Borel subset of \(2^\mathbb{N} \).

Remark

\(\mathcal{D} \) is **not** a standard Borel space.
Example
For each \(a \in D \), the corresponding cone \(C_a = \{ b \in D \mid a \leq b \} \) is a Borel subset of \(D \).

Definition
If \(a, b \in D \), then \(a \leq b \) iff \(A \leq_T B \) for each \(A \in a \), \(B \in b \).

Theorem (Martin)
If \(X \subseteq D \) is Borel, then for some \(a \in D \), either \(C_a \subseteq X \) or \(C_a \subseteq D \setminus X \).
Suppose that $X \subseteq D$ is Borel and let $X^* = \bigcup \{ a \mid a \in X \} \subseteq 2^\mathbb{N}$.

Consider the two player Borel game $G(X^*)$

$$s(0) \ s(1) \ s(2) \ s(3) \ \cdots$$

where I wins iff $s = (s(0) \ s(1) \ s(2) \ \cdots) \in X^*$.

Suppose that $\sigma : 2^{<\mathbb{N}} \rightarrow 2$ is a winning strategy for I.

Let $\sigma \leq_T t \in 2^\mathbb{N}$ and consider the run of $G(X^*)$ where

- II plays $t = (s(1) \ s(3) \ s(5) \ \cdots)$
- I responds with σ and plays $(s(0) \ s(2) \ s(4) \ \cdots)$.

Then $s \in X^*$ and $s \equiv_T t$. Hence $C_\sigma \subseteq X$.

Simon Thomas (Rutgers University)

RIMS Set Theory Workshop

25th August 2008
Martin’s Conjecture

Definition

A function \(\varphi : \mathcal{D} \rightarrow \mathcal{D} \) is Borel iff there exists a Borel function \(f : 2^\mathbb{N} \rightarrow 2^\mathbb{N} \) such that \(\varphi([A]_{\equiv_T}) = [f(A)]_{\equiv_T} \).

Example

The jump operator \(a \mapsto a' \) is a Borel function on \(\mathcal{D} \).

Martin’s Conjecture

If \(\varphi : \mathcal{D} \rightarrow \mathcal{D} \) is Borel, then either \(\varphi \) is constant on a cone or else \(\varphi(a) \geq a \) on a cone.
Remark
By Martin’s Theorem, if $\varphi : D \to D$ is Borel, then one of the following must occur on a cone:

1. $\varphi(a) < a$; or
2. $\varphi(a) \geq a$; or
3. $\varphi(a)$ and a are incomparable.

Theorem (Slaman-Steel)

If $\varphi : D \to D$ is Borel and $\varphi(a) < a$ on a cone, then φ is constant on a cone.
Some partial results

Theorem (Slaman-Steel)

If the Borel map \(\varphi : D \rightarrow D \) is uniformly invariant, then either \(\varphi \) is constant on a cone or else \(\varphi(a) \geq a \) on a cone.

Slightly Inaccurate Definition

A Borel function \(f : 2^\omega \rightarrow 2^\omega \) is uniformly invariant iff there exists a function \(t : \omega \times \omega \rightarrow \omega \times \omega \) such that “on a cone”

\[
A = \{ i \}^B, \quad B = \{ j \}^A \quad \implies \quad f(A) = \{ t_1(i, j) \}^{f(B)}, \quad f(B) = \{ t_2(i, j) \}^{f(A)}.
\]

Conjecture (Steel)

Every Borel map \(\varphi : D \rightarrow D \) is uniformly invariant.
Proposition (Martin’s Conjecture)

Suppose that $f : 2^\mathbb{N} \to 2^\mathbb{N}$ is a Borel reduction from \equiv_T to \equiv_T and let $\varphi : D \to D$ be the corresponding map. Then $\text{ran } \varphi$ contains a cone.

Proof.

Otherwise, there exists a cone C_a such that

1. $C_a \cap \text{ran } \varphi = \emptyset$; and
2. $\varphi(b) \geq b$ for all $b \in C_a$.

But then $\varphi(a) \geq a$ and so $\varphi(a) \in C_a \cap \text{ran } \varphi$.

Corollary (Martin’s Conjecture)

1. $(\equiv_T \sqcup \equiv_T) \not\preccurlyeq_B \equiv_T$.
2. In particular, \equiv_T is not countable universal.
Weak Borel Reducibility

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

- The map $f : X \to Y$ is a Borel homomorphism from E to F iff
 \[x \ E \ y \iff f(x) \ F \ f(y). \]

- $E \leq^w_B F$ iff there exists a Borel homomorphism $f : X \to Y$ such that the induced map $X / E \to Y / F$ is countable-to-one.

- $E \sim^w_B F$ iff both $E \leq^w_B F$ and $F \leq^w_B E$.

- $E <^w_B F$ iff both $E \leq^w_B F$ and $E \sim^w_B F$.

Simon Thomas (Rutgers University)
RIMS Set Theory Workshop
25th August 2008
Remark

- If E and F are countable Borel, then a Borel homomorphism $f : X \rightarrow Y$ is a weak Borel reduction iff f is countable-to-one.
- In particular, if $E \subseteq F$ are countable Borel equivalence relations on X, then $E \leq^w_B F$ via the identity map.

Theorem (Kechris-Miller)

If E, F are countable Borel equivalence relations on the uncountable standard Borel spaces X, Y respectively, then the following are equivalent:

(a) $E \leq^w_B F$.
(b) There exists a countable Borel equivalence relation $S \subseteq F$ on Y such that $E \sim_B S$.

Simon Thomas (Rutgers University) RIMS Set Theory Workshop 25th August 2008
Weakly universal equivalence relations

Definition
A countable Borel equivalence relation E is said to be weakly universal iff $F \leq^w_B E$ for every countable Borel equivalence relation F.

Proposition
If E is a countable Borel equivalence relation, then E is weakly universal iff there exists a universal countable Borel equivalence relation $R \subseteq E$.

Implausible Conjecture (Hjorth)
Every weakly universal countable Borel equivalence relation is universal.
The weak universality of Turing equivalence

Theorem (Dougherty-Jackson-Kechris)

The orbit equivalence relation E_∞ of translation action of the free group \mathbb{F}_2 on $2^{\mathbb{F}_2} = \mathcal{P}(\mathbb{F}_2)$ is countable universal.

Corollary

The Turing equivalence relation \equiv_T is weakly universal.

Proof.

Identifying the free group \mathbb{F}_2 with a suitably chosen group of recursive permutations of \mathbb{N}, we have that $E_\infty \subseteq \equiv_T$.

Simon Thomas (Rutgers University)
RIMS Set Theory Workshop
25th August 2008