PRACTICE SECOND MIDTERM

Question 1. Prove that if A, B and C are any sets, then

$$A \times (B \cup C) = (A \times B) \cup (A \times C).$$

Question 2. Let *E* be the relation on \mathbb{N} defined by

$$xEy$$
 iff there exist $a, b \in \mathbb{N}$ such that $a^2x = b^2y$.

Prove that E is an equivalence relation.

(Warning: recall that in this course, $0 \notin \mathbb{N}$.)

Question 3. Let \sim be the relation defined on $\mathbb{Z} \times \mathbb{Z}$ by

 $(a,b) \sim (c,d)$ iff ad = bc.

Determine whether \sim is an equivalence relation.

Question 4. Let \leq^* be the relation on $\mathbb{N} \times \mathbb{N}$ defined by

 $(a,b) \leq^* (c,d)$ iff $a \leq c$ and $b \geq d$.

- (a) Prove that \leq^* is a partial ordering of $\mathbb{N} \times \mathbb{N}$.
- (b) Determine whether $(\mathbb{N} \times \mathbb{N}, \leq^*)$ is a linear order.
- (c) Determine whether $(\mathbb{N}\times\mathbb{N},\leq^*)$ has the least upper bound property.

Question 5.

(a) Let \leq_1 and \leq_2 be linear orderings on the set A. Let R be the relation on A defined by

$$a R b$$
 iff $a \leq_1 b$ and $a \leq_2 b$.

Prove that R is a partial order on A.

(b) Give an example of linear orderings \leq_1 and \leq_2 on a set A such that the relation R defined by

$$a R b$$
 iff $a \leq_1 b$ and $a \leq_2 b$.

is *not* a linear order.