## PRACTICE SECOND MIDTERM

Question 1. Prove that if $A, B$ and $C$ are any sets, then

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

Question 2. Let $E$ be the relation on $\mathbb{N}$ defined by $x E y \quad$ iff $\quad$ there exist $a, b \in \mathbb{N}$ such that $a^{2} x=b^{2} y$.

Prove that $E$ is an equivalence relation.
(Warning: recall that in this course, $0 \notin \mathbb{N}$.)
Question 3. Let $\sim$ be the relation defined on $\mathbb{Z} \times \mathbb{Z}$ by

$$
(a, b) \sim(c, d) \quad \text { iff } \quad a d=b c
$$

Determine whether $\sim$ is an equivalence relation.
Question 4. Let $\leq^{*}$ be the relation on $\mathbb{N} \times \mathbb{N}$ defined by

$$
(a, b) \leq^{*}(c, d) \quad \text { iff } \quad a \leq c \text { and } b \geq d
$$

(a) Prove that $\leq^{*}$ is a partial ordering of $\mathbb{N} \times \mathbb{N}$.
(b) Determine whether $\left(\mathbb{N} \times \mathbb{N}, \leq^{*}\right)$ is a linear order.
(c) Determine whether $\left(\mathbb{N} \times \mathbb{N}, \leq^{*}\right)$ has the least upper bound property.

## Question 5.

(a) Let $\leq_{1}$ and $\leq_{2}$ be linear orderings on the set $A$. Let $R$ be the relation on $A$ defined by

$$
a R b \quad \text { iff } \quad a \leq_{1} b \text { and } a \leq_{2} b
$$

Prove that $R$ is a partial order on $A$.
(b) Give an example of linear orderings $\leq_{1}$ and $\leq_{2}$ on a set $A$ such that the relation $R$ defined by

$$
a R b \quad \text { iff } \quad a \leq_{1} b \text { and } a \leq_{2} b
$$

is not a linear order.

