PRACTICE FIRST MIDTERM

Question 1. Negate each of the following statements.
(a) There exists a natural number n such that for every prime p, if $p>n$, then $p+2$ is not a prime.
(b) For all $\epsilon>0$, there exist natural numbers n and m such that $\left|n^{2}-7 m^{2}\right|<\epsilon$. WARNING: In order to receive full credit, your final answers should be written in mathematical English. In particular, your final answers should not include abbreviations such as $\forall x, \exists x, \Rightarrow$, etc. Of course, it is acceptable (and probably a good idea) to use these abbreviations in your working.

Question 2. Use truth tables to determine whether each of the following statements is a tautology.
(a) $((P \vee Q) \Rightarrow Q) \Rightarrow P$
(b) $(P \wedge(Q \vee \sim Q)) \Leftrightarrow P$

Question 3. For each of the following statements, give either give a proof or give a counterexample.
(a) Let A and B be any sets. Then

$$
\mathcal{P}(A) \backslash \mathcal{P}(B) \subseteq \mathcal{P}(A \backslash B)
$$

(b) If A, B and C are any sets, then

$$
(A \backslash B) \backslash C=(A \backslash C) \backslash(B \backslash C)
$$

Question 4. Suppose that A, B and C are sets which satisfy both of the following conditions:

- $A \cup C=B \cup C$; and
- $A \cap C=B \cap C$.

Prove that $A=B$.

Question 5. Prove that $10^{n+1}+3 \cdot 4^{n-1}+5$ is divisible by 9 for all $n \geq 1$.

Question 6. The Fibonacci sequence is defined recursively by

$$
\begin{aligned}
c_{0} & =1 \\
c_{1} & =1 \\
c_{n+2} & =c_{n+1}+c_{n}
\end{aligned}
$$

Prove by induction that for all $n \geq 0$,

$$
c_{0}+c_{3}+c_{6}+\cdots+c_{3 n}=\frac{c_{3 n+2}}{2}
$$

