The stationary set splitting game

Paul B. Larson

October 4, 2007
ω₁ is the least uncountable ordinal.

\(C \subset \omega_1 \) is club if it is closed and unbounded in the order topology on \(\omega_1 \).

\(A \subset \omega_1 \) is stationary if it intersects every club subset of \(\omega_1 \).
Theorem 1 (Ulam). *Every stationary subset of \(\omega_1 \) can be split into \(\aleph_1 \) many stationary pieces.*
The stationary set splitting game SG is a game of length ω_1 between two players, Split and Unsplit.

In each round α, Unsplit either accepts or rejects α. If he accepts, then Split puts α into one of two sets (A and B). Otherwise, Split does nothing.

After all ω_1 rounds have been played, let Y be the set of ordinals accepted by Unsplit. Split wins if Y is nonstationary, or if both A and B are stationary.
• Martin’s Maximum implies that SG is not determined.

• Split has a winning strategy in c.c.c. forcing extensions of models of “condensation.”

• It is possible to force a winning strategy for either player, and both are consistent with $\diamondsuit(S)$ holding for every stationary $S \subset \omega_1$.
The canonical function game is a game of length ω_1 between two players, Undominated and Dominating. In round α, Undominated plays a countable ordinal $u(\alpha)$ and Dominating plays a wellordering σ_α of α of length greater than u_α.

After all ω_1 rounds have been played, Dominating wins if there is a club $C \subset \omega_1$ such that

$$\sigma_\alpha = \sigma_\beta \cap (\alpha \times \alpha)$$

for all $\alpha < \beta$ in C.
The Neeman game for an \(n \)-ary formula \(\phi \) is a game of length \(\omega_1 \) where players \(I \) and \(II \) collaborate to build \(A \subset \omega_1 \), and \(I \) wins if there is a club \(C \subset \omega_1 \) such that
\[
\langle H(\omega_1), A, \in \rangle \models \phi(\alpha_1, \ldots, \alpha_n)
\]
for all \(\alpha_1 < \ldots < \alpha_n \) in \(C \).

Neeman has shown that the existence of an iterable model with indiscernible Woodin cardinals implies that all Neeman games for unary formulas are determined.

The payoff set for \(S_\mathcal{G} \) is a simple Boolean combination of payoffs for unary Neeman games.
Theorem 2 (Woodin). Suppose that there exists an iterable class model M and a countable ordinal θ which is a Woodin limit of Woodin cardinals in M. Then there is a model in which all length-ω_1 ordinal definable games on integers are determined.

3 Question. What are the consequences of this form of determinacy for combinatorics on ω_1? (\Diamond? CH?)

4 Question. What about games on an arbitrary ordinal γ?
Theorem 5 (Woodin). If δ is a measurable Woodin cardinal, then in a forcing extension there exists an inner model satisfying all Σ^2_2 sentences ϕ such that $\phi + CH$ is forceable by a partial order in V_δ.

The assertions that Unsplit or Split have a winning strategy in SG are both $\Sigma^2_2(\text{NS}_{\omega_1})$, and both are consistent with $\diamond(S)$ holding for every stationary $S \subset \omega_1$.
MLO is an extension of first-order logic with logical constants $=, \in$ and \subseteq and a binary symbol $<$ as the only non-logical constant, allowing quantification over subsets of the domain. Every ordinal is a model for MLO, interpreting $<$ as \in.

Given an ordinal α, an MLO game of length α is determined by an MLO formula with two free variables for subsets of the domain. In such a game, two players each build a subset of α, and the winner is determined by whether these two sets satisfy the formula in α.
Theorem 6 (Büchi-Landweber). All MLO games of length ω are determined.

Theorem 7 (Rabinovich). All MLO games of countable length are determined.

The stationary set splitting game is an example of an MLO game of length ω_1 whose determinacy is independent of ZFC.
Indeterminacy from MM

Given a strategy for either player, consider the two-step forcing adding a generic run against the strategy by initial segments, and then forcing a club witnessing that the player using the strategy lost.

Either this two-step forcing preserves stationary sets from the ground model, or the strategy can already be defeated in the ground model.
A collection S of subsets of a nonempty stationary set X is stationary if for all

$$F: X^{<\omega} \to X$$

there is a member of S closed under F.

When $\omega_1 \subset X$, S is projective stationary if for all stationary $E \subset \omega_1$, the set

$$\{a \in S \mid a \cap \omega_1 \in E\}$$

is stationary.
\(C^+ \) is the statement that there exists a projective stationary set \(\mathcal{X} \) consisting of countable elementary substructures of \(H(\aleph_2) \) such that for all \(X, Y \) in \(\mathcal{X} \) with

\[
X \cap \omega_1 = Y \cap \omega_1,
\]
either every for every club \(C \subset \omega_1 \) in \(X \) there is a club \(D \subset \omega_1 \) in \(Y \) with

\[
D \cap X \subset C \cap X,
\]
or for every for every club \(D \subset \omega_1 \) in \(Y \) there is a club \(C \subset \omega_1 \) in \(X \) with

\[
C \cap X \subset D \cap X.
\]
$\mathcal{C}+$ implies that Split has a winning strategy:

Let

$$y, a, b \in \mathcal{P}(\alpha)$$

be the result of the first α rounds of the game, and suppose that Unsplit has accepted α. Suppose that there exists an $X \in \mathcal{X}$ with

$$X \cap \omega_1 = \alpha$$

and

$$Y, A, B \in \mathcal{P}(\omega_1) \cap X$$

such that Y is stationary and the disjoint union of A and B and

$$y = Y \cap \alpha,$$

$$a = A \cap \alpha$$ and $$b = B \cap \alpha.$$ Then if there is a club $C \in X \cap \mathcal{P}(\omega_1)$ such that

$$C \cap A = \emptyset,$$

put $\alpha \in A$. If there is a club $C \in X \cap \mathcal{P}(\omega_1)$ such that $C \cap B = \emptyset$, put $\alpha \in B$.

15
\(\mathcal{C}^+ \) holds in models of “condensation” (including \(L \)) and is preserved by c.c.c. forcing extensions.

Justin Moore has shown that it is incompatible with PFA.
\mathcal{D}_u is the statement that there exists a \diamondsuit-sequence $\langle a_\alpha : \alpha < \omega_1 \rangle$ such that for all $A \subset \omega_1$ there is a club $C \subset \omega_1$ such that either

- for all $\alpha \in C$, $a_\alpha = A \cap \alpha \rightarrow \alpha \in C$ or

- for all $\alpha \in C$, $a_\alpha = A \cap \alpha \rightarrow \alpha \not\in C$
\mathcal{D}_u implies that Unsplit has a winning strategy: put α in Y if and only if $a_\alpha = A \cap \alpha$.

To force \mathcal{D}_u, first add a sequence

$$\langle a_\alpha \subset \alpha : \alpha < \omega_1 \rangle$$

by initial segments. Then iteratively destroy the stationarity of any stationary subset of ω_1 witnessing that this sequence does not witness \mathcal{D}_u.
strong club guessing:

A sequence $\langle c_\alpha : \alpha < \omega_1 \text{ limit} \rangle$ is a strong club guessing sequence if each c_α is a cofinal subset of α and for all club $C \subset \omega_1$, the set of α such that $c_\alpha \setminus C$ is finite contains a club.
(too) strong club guessing:

\[\langle c_\alpha : \alpha < \omega_1 \lim \rangle \text{ such that each } c_\alpha \text{ is a cofinal subset of } \alpha \text{ and for all club } C \subset \omega_1 \text{ and all stationary } A \subset \omega_1, \text{ there exists an } \alpha \in A \text{ such that } c_\alpha \setminus C \text{ is finite and } c_\alpha \cap A \text{ is infinite.} \]

Define \(A \) recursively by: \(\alpha \in A \) if and only if \(A \cap \alpha \cap c_\alpha \) is finite.
\(C_s \) is the statement that there exist
\[
\langle a^\alpha_\beta : \alpha < \omega_1 \text{ limit, } \beta < \gamma_\alpha \rangle
\]
such that

- each \(\gamma_\alpha \) is a countable ordinal,
- each \(a^\alpha_{\beta} \) is a cofinal subset of \(\alpha \),
- \(\beta < \beta' < \gamma_\alpha \) implies that \(a^\alpha_{\beta'} \setminus a^\alpha_{\beta} \) is finite,
- for all club \(C \subset \omega_1 \) and all stationary \(A \subset \omega_1 \), there exist \(\alpha \in A \) and \(\beta < \gamma_\alpha \) such that \(a^\alpha_{\beta} \setminus C \) is finite and \(a^\alpha_{\beta} \cap A \) is infinite.
\(C_s \) implies that Split has a winning strategy.

To force \(C_s \), first add a sequence

\[
\langle a^\alpha_\beta : \alpha < \omega_1 \text{ limit}, \beta < \gamma_\alpha \rangle
\]

by initial segments. Then iteratively destroy the stationarity of any stationary subset of \(\omega_1 \) witnessing that this sequence does not witness \(C_s \).