Question 1.
(a) Give the definition of $\Gamma \models \varphi$ and $\Gamma \vdash \varphi$.

(b) State the Soundness Theorem.

(c) Let L have the following nonlogical symbols:

(i) a binary predicate symbol $<; and

(iii) a unary function symbol f.

Let T be the theory in L with the following axioms:

1. $(\forall x) \neg (x < x)$
2. $(\forall x)(\forall y)(x < y \lor y < x \lor x = y)$
3. $(\forall x)(\forall y)(\forall z)(x < y \land y < z \rightarrow [x < z])$
4. $(\forall x)(\forall y)(\forall z)(x < y \rightarrow (\exists z)[x < z \land z < y])$
5. $(\forall x)(\exists y)(\exists z)(y < x \land x < z)$
6. $(\forall x)(\forall y)(x < y \rightarrow [fx < fy])$.
7. $(\forall x)(x < fx)$.

Let σ be the sentence

$$(\forall x)(\exists y)(fy = x).$$

Prove that $T \not\vdash \sigma$ and that $T \not\vdash \neg \sigma$.

Question 2.
(a) State the Soundness Theorem and the Completeness Theorem for predicate logic.

(b) State and prove the Los-Vaught Theorem.

(c) Let L have the following nonlogical symbols:

- a binary predicate symbol E; and
- two unary predicate symbols P and Q.

For each $n \geq 1$, let φ_n be the sentence which says that there exist at least n distinct elements satisfying the predicate P. For example, φ_2 is the sentence:

$$(\exists x)(\exists y)(x \neq y \land Px \land Py).$$
Similarly, for each \(n \geq 1 \), let \(\psi_n \) be the sentence which says that there exist at least \(n \) distinct elements satisfying the predicate \(Q \). Let \(T \) be the theory in \(\mathcal{L} \) with the following axioms:

- \((\forall x)(Px \lor Qx) \)
- \((\forall x)\neg(Px \land Qx) \)
- \(\varphi_n \) for all \(n \geq 1 \).
- \(\psi_n \) for all \(n \geq 1 \).
- \((\forall x)(\forall y)(Exy \iff (Px \land Qy)) \)

Prove that \(T \) is consistent and complete.